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Abstract. We study singular boundary value problems with mixed boundary
conditions of the form

u" + f(tu,u’) =0, u'(0)=0, u(T)=0,

where [0,7] C R, D = (0, 00) X (—00,0), f is a non-negative function and satisfies
the Carathéodory conditions on (0,7") x D. Here, f can have a time singularity
at t = 0 and/or t = T and a space singularity at x = 0 and/or y = 0. We present
conditions for the existence of solutions positive on [0,7") and having continuous
first derivatives on [0, 7).
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1 Introduction

We investigate the solvability of the singular mixed boundary value problem
u" + f(t,u,u’) =0, «'(0)=0, u(T)=0, (1.1)

where [0,7] C R, D = (0,00) x (—00,0), f satisfies the Carathéodory conditions
on (0,7) x D. Here, f can have a time singularity at t = 0 and/or at ¢ =T and a
space singularity at = 0 and/or at y = 0. We prove the existence of solutions of
(1.1) which are positive on [0,7") and have continuous first derivatives on [0, 7.

Let [a,b] C R, M C R? Recall that a real valued function f satisfies the
Carathéodory conditions on the set [a, b] x M if
(i) f(-,x,y) : [a,b] = R is measurable for all (z,y) € M,
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(ii) f(t,-, ) : M — R is continuous for a.e. t € [a, b],

(iii) for each compact set K C M there is a function mg € L;[0,T] such that
|f(t,z,y)| < mg(t) for ae. t € [a,b] and all (z,y) € K.
We write f € Car(]a,b] x M). By f € Car((0,7) x D) we mean that f €
Car([a,b] x D) for each [a,b] C (0,T) and f & Car(]0,7] x D).

Definition1.1. Let f € Car((0,7) x D).
We say that f has a time singularity at t = 0 and/or at t = T if there exists
(x,y) € D such that

€ T
| 1yt = oo andfor [ |f(tay)ldt = oo
0 T—¢
for each sufficiently small € > 0. The point t = 0 and/or t = T will be called a
singular point of f.
We say that f has a space singularity at x = 0 and/or at y = 0 if

limsup |f(t,z,y)| = oo for a.e. t € [0,7] and for some y € (—o0,0)
z—0-+

and/or

limsup |f(t,z,y)] = oo for a.e. t € [0,7] and for some = € (0, 00).
y—0—

The importance of singular mixed problems is derived, in part, from the fact
that they arised when searching for positive, radially symmetric solutions to the
nonlinear elliptic partial differential equations

Au+g(r,u) =0o0n Q, wulp =0, (1.2)

where ) is the open unit disk in R" (centered at the origin), ' is its boundary,
and r is the radial distance from the origin. Radially symmetric solutions to
this problem are solutions of the following ordinary differential equation with the
mixed boundary conditions (see e.g. [9] or [11])

-1
u" + nTU’ +g(t,u) =0, «/(0)=0, u(l) =0, (1.3)

where f(t,z,y) = 2=ty + g(¢, ) has a time singularity at ¢ = 0.

Particularly, Gatica, Oliker and Waltman [10] investigated problem (1.3) with
g(t,z) =(t)z=*, a € (0,1), ¢ € C[0,1). Since a > 0, we see that g has a space
singularity at = 0. In [10], moreover, 1 is allowed to have a time singularity
at ¢ = 1 and the authors have found conditions for the existence of a solution
positive on [0, 1).



In the mathematical literature there are two approaches to solvability of sin-
gular problems which depend on different definitions of a solution. Here, we work
with the following one:

Definition 1.2. By a solution of problem (1.1) we understand a function u €
AC0, T satisfying

u"(t) + f(t,u(t),u'(t)) =0 forae. t€[0,T], «(0)=u(T)=0. (1.4)

We see that our solution has continuous first derivatives on [0, 7], particularly
at the singular point ¢ = 7. Note that such solution of (1.3) is important for the
associated problem (1.2). The alternative approach is based on the following
definition of a ”solution”, which we will call a w-solution.

Definition 1.3. By a w-solution of problem (1.1) we understand a function
u € ACL [0, T) satisfying (1.4).

Hence having a w-solution we do not know a behaviour of its derivative near
the singular point ¢ = T". For the existence of w-solutions of (1.1) we refer to [1]
- [3], [6], [14] - [16], while the existence of solutions of (1.1) can be found e.g.
in [4], [3], (7], [8], [12], [13], [17], [18]. Note that the papers [2], [4], [13], [17]
[18] deal with problem (1.1) allowing just space singularities but not time ones
and the papers [5], [7], [8] consider both time and space (at z = 0 ) singularities.
Motivated by the existence results in [2] and [5] which are based on a lot of rather
complicated conditions, we offer simple conditions which guarantee the existence
of solutions for (1.1) provided both time and space (at + = 0 and moreover at
y = 0) are allowed.

2 Lower and upper functions

In the investigation of singular problems lower and upper functions of correspond-
ing regular problems can be a fruitfull tool. See [5], [12] or [15]. Therefore we
first consider an auxiliar regular mixed problem

u" + h(t,u,u') =0, «'(0)=0, u(T) =0, (2.1)
where h € Car([0,T] x R?).

Definition 2.1. A function o € C|[0,7] is called a lower function of (2.1) if there
exists a finite set ¥ C (0,7) such that o € ACL,([0,T]\ %), o/(7+),0'(t—) €R
for each 7 € ¥,

a"(t) + h(t,o(t),o’(t)) > 0 for ae.t € [0,T] (2.2)
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and
d(0) >0, o(T)<0, o'(r—)<o'(r+) foreach T e X. (2.3)

If the inequalities in (2.2) and (2.3) are reversed, then o is called an upper function

of (2.1).

In what follows we will need the classical lower and upper functions result for
regular mixed problem (2.1):

Lemma 2.2. [15], Lemma 3.7. Let o1 and o9 be lower and upper functions for
problem (2.1) such that oy < o9 on [0,T]. Assume also that there is a function
Y € L]0, T) such that

|h(t,z,y| < P(t) forae t€[0,T], all z € [o1(t),02(t)], vy € R. (2.4)
Then problem (2.1) has a solution u € AC*[0, T satisfying
o1(t) < u(t) < oq(t) fortel0,T]. (2.5)

3 Main result and example

Theorem 3.1. Let f € Car((0,T) x D) can have time singularities at t = 0,t =
T and space singularities at x = 0,y = 0. Assume that there exist ¢ € (0,1),
v € (0,T), c € (v,00) such that

ft,e(T—1t),—c) =0 for a.e. t €[0,T], (3.1)

0< f(t,x,y) forae t€l0,T], allz € (0,c(T —1t)],y € [—c¢,0), (3.2)

e < f(t,x,y) forae tel0,v], allze (0,c(T —1)], ye€[-v,0). (3.3
Then problem (1.1) has a solution u € AC'[0, T satisfying

0<u(t)<e(T-t), —c<u(t)<0 forte(0,T). (3.4)

PROOF. Let k € N, k > 3/T.
Step 1. Approzimate solutions. For t € [1/k,T — 1/k|, x € R put

c(r'—t) it x>c¢T—1)
ak(t,x)—{ @ it c/k<x<c(T-t)
c/k it z<elk

and for y € R denote

y it —c<y<-—¢/k
—c if y < —c

{ —e/k if  y>-—¢/k



€ if Yy > —v
V(y)—{6(0+y)/(61/) if  —e<y<-v.

0 if  y< —c
For a.e. t € [0,7] and z,y € R define
7(y) if  tel0,1/k)
0 if te (T —1/k 1]

Then f;, € Car([0,T] x R?) and there is 1, € L1[0,T] such that
|fe(t,z,y)| < () forace. t€[0,T], all z,y € R. (3.5)
We have got an auxiliary regular problem
u" + fe(t,u,u’) =0, u'(0)=0, u(T)=0. (3.6)
Conditions (3.2) and (3.1) yield
fr(t,0,0) >0, fr(t,e(T —t),—c) =0 for a.e. t €[0,T].

Put o,(t) = 0, 09(t) = ¢(T"—t) on [0,7]. Then oy and oy are lower and upper
functions of (3.6). Hence, by Lemma 2.2, problem (3.6) has a solution uj and

0 <wug(t) <e(T'—t) onl0,T]. (3.7)

Step 2. A priori estimates of approximate solutions. Since u}(0) = 0 and
fe(t,z,y) > 0 for a.e. t € [0,7] and all z,y € R, we get u)(t) < 0 on [0,7].
Condition (3.7) and ug(7T) = 0 give ug(T) — u(t) > —c(T — t) which yields
uy(T) > —e. Since uj, is non-increasing on [0, 7], we have proved

—c<u(t) <0 onl0,7]. (3.8)
Due to uj(0) = 0, there is ¢, € (0,7] such that
—v < u(t) <0 fort e [0,

If tx > v, we get by (3.3)

uy(t) < —et for t € [0,v]. (3.9)
Assume that ¢, < v and uj,(t) < —v for t € (tg, v]. Then
up(t) < —et for t € [0,

Since —v < —¢t for t € (tx, v], we get (3.9) again. Integrating (3.9) on [0, v| and
using the concavity of uy on [0,7] we deduce that
ev?

o7 (T =1) < ui(t) on[0,7]. (3.10)



Step 3. Convergence of a sequence of approzimate solutions. Consider the
sequence {ug}. Choose an arbitrary compact interval J C (0,7). By virtue of
(3.7)-(3.10) there is ko € N such that for each k € N, k > ky

Eocult) <e(T—1), —c<ul(t) < —ki on J, (3.11)
0

and hence there is ¢ € L;(J) such that

| fro(t, ug(t), up ()| < (t) ae. on J. (3.12)

Using conditions (3.7), (3.8), (3.12), the Arzela-Ascoli theorem and the diag-
onalization principle, we can choose v € C[0,7]N C*(0,7) and a subsequence of
{ux} which we denote for the simplicity in the same way such that

limy oo ux = v uniformly on [0, 7],

limy,, o uj, = v’ locally uniformly on (0, 7). (3.13)

Therefore we have u(7T") = 0.
Step 4. Convergence of a sequence of approzimate problems. Choose an arbi-
trary £ € (0,7) such that

f(&,-,-) is continuous on (0,00) X (—00,0).

By (3.11) there exist a compact interval J* C (0,7") and k, € N such that £ € J*
and for each k > k,

w(§) > = w(©) < -, JC /T~ 1/H.

*

Therefore
(& ui(§), ui(€)) = f(&, ur(8), ur(€))
and, due to (3.13),

Jim Tr(t ug(t), up(t) = f(t,u(t),u'(t)) forae. t e (0,T). (3.14)

Choose an arbitrary ¢ € (0,7"). Then there exists a compact interval J C (0,7')
such that (3.12) holds for all sufficiently large k. By virtue of (3.6) we get

Wl (T/2) — ul(t) = // Fuls, ue(s), 1, (5))ds.

Letting k — oo and using (3.12), (3.13), (3.14) and the Lebesgue convergence
theorem on J, we get
t

d(T)2) — ' (t) = /} | J (s u(s). w()ds - for each 1 € (0,7). (3.15)



Therefore u € AC}_(0,T) satisfies
u"(t) + f(t,u(t),u'(t)) =0 a.e. on (0,7). (3.16)

Further, according to (3.6) and (3.8) we have for each k > 3/T

/OT T (s, ug(s), up(s))ds = —up (1) < ¢,

which together with (3.2), (3.7), (3.8) and (3.14) yield, by the Fatou lemma, that
f(t,u(t),u'(t)) € L1[0, T]. Therefore, by (3.16), u € AC*0,T]. Moreover for each
k>3/T and t € (0,T)

)] < [ 1l (), 4 (5)) = s () () + [ 1F(s,us), w(5)lds.

Hence, by (3.13) and (3.14), for each ¢ > 0 there exists 6 > 0 and for each
t € (0,0) there exists ko = ko(e,t) € N such that

/()] < [0 (#) = ugy ()] + Jug, ()] < e

It means that «'(0) = lim;_,o; v/(t) = 0. We have proved that u is a solution of
problem (1.1).

Ezample. Let a,v € (0,00), k, 8 € [0,00). By Theorem 3.1 problem
u + (u e’ k()T D)1+ (W)?) =0, «'(0)=0, wu(l)=0 (3.17)
has a solution u € AC'|0, 1] satisfying
O<u(t)<l—t, —-1<d(t)<0 forte(0,1). (3.18)

Note that Theorem 2.2 in [2] yields the existence of a solution of problem (3.17)
positive on [0, 1) provided the nonlinearity f(t,z,y) = (z7*+z° +1)(1+¢?) has a
weak space singularity (i.e. « € (0,1)) at 2 = 0 and no singularity (i.e. k¥ = 0) at
y. On the other hand, due to Theorem 3.1, we get a solution u of problem (3.17)
satisfying (3.18) even for f(t,z,y) = (z~“ + 2 + k(—y) 7 + 1)(1 + y*) having
a strong space singularity (o« > 1) at x = 0 and moreover a space singularity
(k>0)aty=0.
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