Singular discrete second order BVPs with p-Laplacian

Irena Rachůnková and Lukáš Rachůnek

Department of Mathematics, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: rachunko@inf.upol.cz

Abstract. We study singular discrete boundary value problems with mixed boundary conditions and with the p-Laplacian of the form

$$\Delta(\phi_p(\Delta u(t-1))) + f(t, u(t), \Delta u(t-1)) = 0, \quad t \in [1, T+1],$$

$$\Delta u(0) = u(T+2) = 0.$$

where $[1, T+1] = \{1, 2, ..., T+1\}$, $T \in \mathbb{N}$, $\phi_p(y) = |y|^{p-2}y$, p > 1. We assume that f is continuous on $[1, T+1] \times (0, \infty) \times \mathbb{R}$ and f(t, x, y) has a singularity at x = 0. We prove the existence of a positive solution by means of the lower and upper functions method, the Brouwer fixed point theorem and by a convergence of approximate regular problems.

Keywords. Singular discrete BVP, mixed conditions, lower and upper functions, Brouwer fixed point theorem, approximate regular problems

Mathematics Subject Classification 2000. 39A12, 39A10, 39A70

1 Introduction

Let $T \in \mathbb{N}$ be fixed. We define the discrete interval $[1, T+1] = \{1, 2, \dots, T+1\}$ and consider the second order difference equation with the p-Laplacian

$$\Delta(\phi_p(\Delta u(t-1))) + f(t, u(t), \Delta u(t-1)) = 0, \quad t \in [1, T+1]$$
 (1.1)

subjected to the mixed boundary conditions

$$\Delta u(0) = 0, \quad u(T+2) = 0.$$
 (1.2)

Here Δ denotes the forward difference operator with the step size 1, i.e. $\Delta u(t-1) = u(t) - u(t-1)$, and $\phi_p(y) = |y|^{p-2}y$, p > 1. We will investigate the solvability of problem (1.1), (1.2).

Definition 1.1 By a solution u of problem (1.1), (1.2) we mean $u: [0, T+2] \to \mathbb{R}$, u satisfies the difference equation (1.1) on [1, T+1] and the boundary conditions (1.2). If u(t) > 0 for $t \in [1, T+1]$, we say that u is a positive solution of problem (1.1), (1.2).

Let $\mathcal{D} \subset \mathbb{R}^2$. We say that f is continuous on $[1, T+1] \times \mathcal{D}$, if $f(\cdot, x, y)$ is defined on [1, T+1] for each $(x, y) \in \mathcal{D}$ and if $f(t, \cdot, \cdot)$ is continuous on \mathcal{D} for each $t \in [1, T+1]$.

If $\mathcal{D} = \mathbb{R}^2$, problem (1.1), (1.2) is called regular. If $\mathcal{D} \neq \mathbb{R}^2$ and f has singularities on $\partial \mathcal{D}$, then problem (1.1), (1.2) is singular.

Here we will assume that

$$\mathcal{D} = (0, \infty) \times \mathbb{R}, \ f \text{ is continuous on } [1, T+1] \times \mathcal{D}$$
and f has a singularity at $x=0$, i.e.
$$\limsup_{x \to 0+} |f(t, x, y)| = \infty \text{ for each } t \in [1, T+1]$$
and for some $y \in \mathbb{R}$.

Discrete second order nonlinear boundary value problems have been investigated in several monographs (e.g. [1], [10], [8], [23]) and papers (e.g. [11], [12], [13], [16], [19], [20], [27], [30]). Most of the above results concern regular problems. Singular discrete problems have received less attention. We refer to [3] and [8] where the solvability of the Dirichlet singular discrete problem was studied. Existence theorems for singular higher order discrete problems can be found in [10]. The paper [19] deals with problem (1.1), (1.2) where f is regular and has the form f(t,x) = a(t)g(x). Here, we extend the existence results of [19] onto the singular problem (1.1), (1.2) where f depends both on u and on Δu . The continuous versions of mixed singular problems for differential equations without p-Laplacian have been investigated e.g. in [6], [9], [15], [21], [24], [26], [28] and for problems with the p-Laplacian in [7] or [18].

2 Lower and upper function for regular problems

We start our investigation with the equation

$$\Delta(\phi_p(\Delta u(t-1))) + h(t, u(t), \Delta u(t-1)) = 0, \quad t \in [1, T+1],$$
(2.1)

where h is continuous on $[1, T+1] \times \mathbb{R}^2$ and we apply the lower and upper functions method for the regular problem (2.1), (1.2).

Definition 2.1 $\alpha:[0,T+2] \to \mathbb{R}$ is called a lower function of problem (2.1), (1.2) if

$$\Delta(\phi_p(\Delta\alpha(t-1))) + h(t,\alpha(t),\Delta\alpha(t-1)) \ge 0 \text{ for } t \in [1,T+1],$$
 (2.2)

$$\Delta \alpha(0) > 0, \quad \alpha(T+2) < 0. \tag{2.3}$$

 $\beta: [0, T+2] \to \mathbb{R}$ is called an upper function of problem (2.1), (1.2) if

$$\Delta(\phi_p(\Delta\beta(t-1))) + h(t,\beta(t),\Delta\beta(t-1)) \le 0 \text{ for } t \in [1,T+1],$$
 (2.4)

$$\Delta\beta(0) \le 0, \quad \beta(T+2) \ge 0. \tag{2.5}$$

Theorem 2.2 (Lower and upper functions method) Let α and β be a lower and an upper function, respectively, of (2.1), (1.2) and $\alpha \leq \beta$ on [1, T+1]. Let α be continuous on $[1, T+1] \times \mathbb{R}^2$ and nonincreasing in its third variable. Then problem (2.1), (1.2) has a solution α usatisfying

$$\alpha(t) \le u(t) \le \beta(t) \text{ for } t \in [0, T+2]. \tag{2.6}$$

Proof. Step 1. For $t \in [1, T+1]$, $x, z \in \mathbb{R}$, define functions

$$\sigma(t,z) = \begin{cases} \beta(t-1) & \text{if } z > \beta(t-1) \\ z & \text{if } \alpha(t-1) \le z \le \beta(t-1) \\ \alpha(t-1) & \text{if } z < \alpha(t-1), \end{cases}$$

$$\tilde{h}(t,x,x-z) = \begin{cases} h(t,\beta(t),\beta(t)-\sigma(t,z)) - \frac{x-\beta(t)}{x-\beta(t)+1} & \text{if} \quad x>\beta(t) \\ h(t,x,x-\sigma(t,z)) & \text{if} \quad \alpha(t) \leq x \leq \beta(t) \\ h(t,\alpha(t),\alpha(t)-\sigma(t,z)) + \frac{\alpha(t)-x}{\alpha(t)-x+1} & \text{if} \quad x<\alpha(t). \end{cases}$$

Then \tilde{h} is continuous on $[1, T+1] \times \mathbb{R}^2$ and there exists M>0 such that

$$|\tilde{h}(t, x, y)| \le M \quad \text{for } t \in [1, T+1], \ (x, y) \in \mathbb{R}^2.$$
 (2.7)

We will study the auxiliary difference equation

$$\Delta(\phi_p(\Delta u(t-1))) + \tilde{h}(t, u(t), \Delta u(t-1)) = 0, \quad t \in [1, T+1],$$
(2.8)

and we will prove that problem (2.8), (1.2) has a solution (see Steps 2–3).

Step 2. We denote

$$E = \{u: [0, T+2] \to \mathbb{R}, \ \Delta u(0) = 0, \ u(T+2) = 0\}$$
 (2.9)

and define $||u|| = \max\{|u(t)|: t \in [1, T+1]\}$. Then E is a Banach space with $\dim E = T+1$. Further we put $\sum_{i=b}^{a} = 0$ for each $a, b \in \mathbb{N} \cup \{0\}$, a < b, and define an operator $\mathcal{T}: E \to E$ by

$$(\mathcal{T}u)(t) = \sum_{s=t}^{T+1} \phi_q \left(\sum_{i=1}^s \tilde{h}(i, u(i), \Delta u(i-1)) \right), \quad t \in [0, T+2].$$
 (2.10)

Here $\phi_q = \phi_p^{-1}$, $\frac{1}{p} + \frac{1}{q} = 1$.

Since $\phi_q \colon \mathbb{R} \to \mathbb{R}$ and $\tilde{h} \colon [1, T+1] \times \mathbb{R}^2 \to \mathbb{R}$ are continuous, we see that \mathcal{T} is a continuous operator. Moreover, (2.7) and (2.10) imply that if $r \geq \sum_{s=1}^{T+1} \phi_q(sM)$, then $\mathcal{T}\left(\overline{B(r)}\right) \subset \overline{B(r)}$, where $B(r) = \{u \in E \colon ||u|| < r\}$. Therefore the Brouwer fixed point theorem yields the existence of at least one point $u \in \overline{B(r)}$ such that $u = \mathcal{T}u$.

Step 3. We prove that u is a fixed point of \mathcal{T} if and only if u is a solution of problem (2.8), (1.2).

(i) Assume that $u = \mathcal{T}u$. Then $u \in E$ and so u satisfies (1.2). Further we have

$$\Delta u(t-1) = u(t) - u(t-1) = \sum_{s=t}^{T+1} \phi_q \left(\sum_{i=1}^s \tilde{h}(i, u(i), \Delta u(i-1)) \right) - \frac{1}{s-1} \left(\sum_{s=t-1}^{T+1} \phi_q \left(\sum_{i=1}^s \tilde{h}(i, u(i), \Delta u(i-1)) \right) \right),$$

$$\phi_p(\Delta u(t-1)) = -\sum_{i=1}^{t-1} \tilde{h}(i, u(i), \Delta u(i-1)),$$

$$\Delta \left(\phi_p(\Delta u(t-1)) \right) = \phi_p(\Delta u(t)) - \phi_p(\Delta u(t-1)) = \frac{1}{s-1} \left(\sum_{t=1}^{T+1} \tilde{h}(t, u(t), \Delta u(t-1)) \right),$$

$$\Delta \left(\sum_{t=1}^{T+1} \tilde{h}(t, u(t), \Delta u(t-1)) \right) = \frac{1}{s-1} \left(\sum_{t=1}^{T+1} \tilde{h}(t, u(t), \Delta u(t-1)) \right).$$

(ii) Assume that u is a solution of (2.8), (1.2). Then $u \in E$ and $\phi_p(\Delta u(0)) = \phi_p(0) = 0$. Further we have $\Delta(\phi_p(\Delta u(0))) = -\tilde{h}(1, u(1), \Delta u(0))$, which yields $\phi_p(\Delta u(1)) = -\tilde{h}(1, u(1), \Delta u(0))$.

Similarly

$$\Delta(\phi_p(\Delta u(1))) = -\tilde{h}(2, u(2), \Delta u(1)),$$

and hence

$$\phi_p(\Delta u(2)) = -\tilde{h}(1, u(1), \Delta u(0)) - \tilde{h}(2, u(2), \Delta u(1)).$$

By induction we get

$$\phi_p(\Delta u(t)) = -\sum_{i=1}^t \tilde{h}(i, u(i), \Delta u(i-1))$$

and

$$\Delta u(t) = -\phi_q \left(\sum_{i=1}^t \tilde{h}(i, u(i), \Delta u(i-1)) \right), \quad t \in [1, T+1].$$
 (2.11)

Using (1.2) and (2.11) we get

$$u(T+1) = \phi_q \left(\sum_{i=1}^{T+1} \tilde{h}(i, u(i), \Delta u(i-1)) \right),$$

$$u(T) = \phi_q \left(\sum_{i=1}^{T} \tilde{h}(i, u(i), \Delta u(i-1)) \right) + \phi_q \left(\sum_{i=1}^{T+1} \tilde{h}(i, u(i), \Delta u(i-1)) \right),$$

and by induction we get

$$u(t) = \sum_{s=t}^{T+1} \phi_q \left(\sum_{i=1}^s \tilde{h}(i, u(i), \Delta u(i-1)) \right), \quad t \in [0, T+2].$$

Note that for t=0 and t=T+2 we use the equalities $\sum\limits_{i=1}^{0}=0$ and $\sum\limits_{s=T+2}^{T+1}=0$.

Step 4. We prove that the solution u of (2.8), (1.2) satisfies (2.6). Put $v(t) = u(t) - \beta(t)$ for $t \in [0, T+2]$ and assume that $\max\{v(t): t \in [0, T+2]\} = v(\ell) > 0$. Conditions (1.2) and (2.5) imply $\ell \in [1, T+1]$. Thus we have $v(\ell+1) \leq v(\ell)$, $v(\ell-1) \leq v(\ell)$, and consequently $\Delta u(\ell) \leq \Delta \beta(\ell)$, $\Delta u(\ell-1) \geq \Delta \beta(\ell-1)$. This leads to $\phi_p(\Delta u(\ell)) \leq \phi_p(\Delta \beta(\ell))$, $\phi_p(\Delta u(\ell-1)) \geq \phi_p(\Delta \beta(\ell-1))$ and

$$\Delta(\phi_p(\Delta u(\ell-1))) \le \Delta(\phi_p(\Delta \beta(\ell-1))). \tag{2.12}$$

On the other hand, since h is nonincreasing in its third variable, we get by (2.8)

$$\Delta \left(\phi_p(\Delta u(\ell-1)) \right) - \Delta \left(\phi_p(\Delta \beta(\ell-1)) \right) =$$

$$= -\tilde{h}(\ell, u(\ell), \Delta u(\ell-1)) - \Delta \left(\phi_p(\Delta \beta(\ell-1)) \right) =$$

$$= -h(\ell, \beta(\ell), \beta(\ell) - \sigma(\ell, u(\ell-1))) + \frac{v(\ell)}{v(\ell)+1} - \Delta \left(\phi_p(\Delta \beta(\ell-1)) \right) \ge$$

$$\ge -h(\ell, \beta(\ell), \Delta \beta(\ell-1)) + \frac{v(\ell)}{v(\ell)+1} - \Delta \left(\phi_p(\Delta \beta(\ell-1)) \right) \ge$$

$$\ge \frac{v(\ell)}{v(\ell)+1} > 0,$$

which contradicts (2.12). So, we have proved $u(t) \leq \beta(t)$ for $t \in [0, T+2]$. The inequality $\alpha(t) \leq u(t)$ for $t \in [0, T+2]$ can be proved similarly. Therefore u satisfies (2.6) and hence u is a solution of problem (2.1), (1.2).

3 Main result and example

The next theorem provides sufficient conditions for the solvability of the singular problem (1.1), (1.2). The proof is based on the construction of a sequence of approximating auxiliary regular problems and on the lower and upper functions method from Theorem 2.2.

Theorem 3.1 Assume (1.3) and let the following conditions hold:

there exists
$$c \in (0, \infty)$$
 such that $f(t, c, 0) \le 0$ for $t \in [1, T+1]$, (3.1)

$$f$$
 is nonincreasing in y for $t \in [1, T+1], x \in (0, c],$ (3.2)

$$\lim_{x \to 0+} f(t, x, y) = \infty \text{ for } t \in [1, T+1], \ y \in [-c, c].$$
(3.3)

Then problem (1.1), (1.2) has a solution u satisfying

$$0 < u(t) \le c \text{ for } t \in [0, T+1].$$
 (3.4)

Proof. Step 1. For $k \in \mathbb{N}$, $t \in [1, T+1]$, $(x, y) \in \mathbb{R}^2$ define

$$f_k(t, x, y) = \begin{cases} f(t, |x|, y) & \text{if } |x| \ge \frac{1}{k} \\ f\left(t, \frac{1}{k}, y\right) & \text{if } |x| < \frac{1}{k}. \end{cases}$$

Then f_k is continuous on $[1, T+1] \times \mathbb{R}^2$ and nonincreasing in y for $t \in [1, T+1]$, $x \in [-c, c]$. Assumption (3.3) implies the existence of $k_0 \in \mathbb{N}$ such that for each $k \in \mathbb{N}$, $k \geq k_0$

$$f_k(t,0,0) = f\left(t,\frac{1}{k},0\right) > 0 \text{ for } t \in [1,T+1].$$

Consider an auxiliary sequence of equations

$$\Delta(\phi_p(\Delta u(t-1))) + f_k(t, u(t), \Delta u(t-1)) = 0, \quad t \in [1, T+1],$$
 (3.5)

 $k \in \mathbb{N}$, $k \geq k_0$. Put $\alpha(t) = 0$, $\beta(t) = c$ for $t \in [0, T+2]$. Then α and β are a lower and an upper function of each problem (3.5), (1.2) and $\alpha(t) < \beta(t)$ for $t \in [1, T+1]$. By Theorem 2.2, there exists a solution u_k of problem (3.5), (1.2) satisfying

$$0 \le u_k(t) \le c \quad \text{for } t \in [0, T+2], \ k \in \mathbb{N}, \ k \ge k_0.$$
 (3.6)

Consequently

$$|\Delta u_k(t)| \le c \quad \text{for } t \in [0, T+1], \ k \in \mathbb{N}, \ k \ge k_0. \tag{3.7}$$

Step 2. Let $k \in \mathbb{N}$, $k \geq k_0$. Since u_k satisfies (3.5), we get by (2.11)

$$\Delta u_k(t) = \phi_q \left(-\sum_{i=1}^t f_k(i, u_k(i), \Delta u_k(i-1)) \right), \quad t \in [1, T+1].$$
 (3.8)

By (3.3) there exists $\varepsilon_1 \in \left(0, \frac{1}{k_0}\right)$ such that if $k \geq \frac{1}{\varepsilon_1}$, then

$$f_k(1, x, y) > \phi_p(c) \quad x \in (0, \varepsilon_1], \ y \in [-c, c].$$
 (3.9)

Assume that $k \geq \frac{1}{\varepsilon_1}$ and $u_k(1) < \varepsilon_1$. Then, by (3.8) and (3.9), we get

$$\Delta u_k(1) = \phi_q \left(-f_k(1, u_k(1), \Delta u_k(0)) \right) < \phi_q(-\phi_p(c)) = -c,$$

which contradicts (3.7). Therefore

$$u_k(1) \ge \varepsilon_1 \quad \text{for each } k \in \mathbb{N}, \ k \ge \frac{1}{\varepsilon_1}.$$
 (3.10)

Denote

$$m_1 = \max\{|f_k(1, x, y)|: x \in [\varepsilon_1, c], y \in [-c, c]\}.$$

By (3.3) there exists $\varepsilon_2 \in (0, \varepsilon_1]$ such that if $k \geq \frac{1}{\varepsilon_2}$, then

$$f_k(2, x, y) > \phi_p(c) + m_1 \quad \text{for } x \in (0, \varepsilon_2], \ y \in [-c, c].$$
 (3.11)

Assume that $k \geq \frac{1}{\varepsilon_2}$ and $u_k(2) < \varepsilon_2$. Then, by (3.8), (3.10) and (3.11), we get

$$\Delta u_k(2) = \phi_q \left(-f_k(1, u_k(1), \Delta u_k(0)) - f_k(2, u_k(2), \Delta u_k(1)) \right) <$$

$$<\phi_q(m_1-f_k(2,u_k(2),\Delta u_k(1)))<\phi_q(-\phi_p(c))=-c,$$

which contradicts (3.7). Therefore

$$u_k(2) \ge \varepsilon_2$$
 for each $k \in \mathbb{N}, \ k \ge \frac{1}{\varepsilon_2}$.

We continue similarly for $t=3,\ldots,T$ and get $0<\varepsilon_T\leq\varepsilon_{T-1}\leq\cdots\leq\varepsilon_1$ such that

$$u_k(t) \ge \varepsilon_t \quad \text{for } t \in [1, T], \ k \in \mathbb{N}, \ k \ge \frac{1}{\varepsilon_T}.$$
 (3.12)

If we denote

$$m_i = \max\{|f_k(i, x, y)|: x \in [\varepsilon_i, c], y \in [-c, c]\}, i \in [1, T]$$

then by virtue of (3.3) there exists $\varepsilon_{T+1} \in (0, \varepsilon_T]$ such that if $k \geq \frac{1}{\varepsilon_{T+1}}$, then

$$f_k(T+1, x, y) > \phi_p(c) + \sum_{i=1}^T m_i \quad \text{for } x \in (0, \varepsilon_{T+1}], \ y \in [-c, c].$$
 (3.13)

Assume that $k \geq \frac{1}{\varepsilon_{T+1}}$ and $u_k(T+1) < \varepsilon_{T+1}$. Then, by (3.8), (3.12) and (3.13), we get

$$\Delta u_k(T+1) =$$

$$= \phi_q \left(-\sum_{i=1}^T f_k(i, u_k(i), \Delta u_k(i-1)) - f_k(T+1, u_k(T+1), \Delta u_k(T)) \right) < \phi_q \left(\sum_{i=1}^T m_i - f_k(T+1, u_k(T+1), \Delta u_k(T)) \right) < \phi_q(-\phi_p(c)) = -c,$$

which contradicts (3.7). Therefore, if we put $\varepsilon = \varepsilon_{T+1}$, we get

$$0 < \varepsilon \le u_k(t) \le c \quad \text{for } t \in [0, T+1], \ k \in \mathbb{N}, \ k \ge \frac{1}{\varepsilon}.$$
 (3.14)

Since u_k satisfies (3.14) and (1.2) we can choose a subsequence $\{u_{k_n}\}\subset\{u_k\}$ such that $\lim_{n\to\infty}u_{k_n}(t)=u(t),\ t\in[0,T+2]$, where $u\in E$ (see (2.9)). Moreover, (3.8) yields for each sufficiently large $n\in\mathbb{N}$

$$\Delta u_{k_n}(t) = -\phi_q \left(\sum_{i=1}^t f(i, u_{k_n}(i), \Delta u_{k_n}(i-1)) \right), \quad t \in [1, T+1].$$

Letting $n \to \infty$ and using the continuity of ϕ_q on \mathbb{R} and f on $[1, T+1] \times \mathcal{D}_{\varepsilon}$, where $\mathcal{D}_{\varepsilon} = [\varepsilon, \infty) \times \mathbb{R}$, we get

$$\Delta u(t) = -\phi_q \left(\sum_{i=1}^t f(i, u(i), \Delta u(i-1)) \right), \quad t \in [1, T+1],$$

from which the equality

$$\Delta \phi_p(\Delta u(t-1)) = -f(t, u(t), \Delta u(t-1)), \quad t \in [1, T+1]$$

follows. Therefore u is a solution of (1.1) and, by (3.14), u satisfies (3.4). The theorem is proved.

Example. Let $T \in \mathbb{N}$, $\alpha \in [0, \infty)$, $c, \beta \in (0, \infty)$, $p \in (1, \infty)$, $a: [1, T+1] \to \mathbb{R}$. By Theorem 3.1 the problem

$$\Delta(\phi_p(\Delta u(t-1))) + (a(t) + (u(t))^{\alpha} + (u(t))^{-\beta})(c - u(t)) - (\Delta u(t-1))^3,$$

$$t \in [1, T+1], \quad \Delta u(0) = u(T+2) = 0$$

has a solution u satisfying (3.4).

Acknowledgments

Supported by the Council of Czech Government MSM 6198959214.

References

- [1] R. P. AGARWAL. Difference Equations and Inequalities. Theory, Methods and Applications. Second edition, revised and expanded. *Marcel Dekker*, New York 2000.
- [2] R. P. AGARWAL, D. O'REGAN. A fixed point approach for nonlinear discrete boundary value problems. *Computers Math. Applic.* **36** (1998), 115–121.
- [3] R. P. AGARWAL, D. O'REGAN. Singular discrete boundary value problems. *Applied Mathematics Letters* **12** (1999), 127–131.
- [4] R. P. AGARWAL, D. O'REGAN. Difference equations in abstract spaces. J. Austral Math. Soc. (Series A) 64 (1998), 277–284.
- [5] R. P. AGARWAL, D. O'REGAN. Nonpositone discrete boundary value problems. *Nonlinear Analysis* **39** (2000), 207–215.
- [6] R. P. AGARWAL, D. O'REGAN. Nonlinear superlinear singular and nonsingular second order boundary value problems. *J. Differential Equations* **143** (1998), 60–95.
- [7] R. P. AGARWAL, D. O'REGAN, S. STANĚK. Existence of positive solutions for boundary-value problems with singularities in phase variables. *Proc. Edinb. Math. Soc.* 47 (2004), 1–13.
- [8] R. P. AGARWAL, D. O'REGAN, P. J. Y. WONG. Positive Solutions of Differential, Difference and Integral Equations. *Kluwer*, Dordrecht 1999.
- [9] R. P. AGARWAL, S. STANĚK. Nonnegative solutions of singular boundary value problems with sign changing nonlinearities. *Comp. Math. Appl.* 46 (2003), 1827–1837.
- [10] R. P. AGARWAL, P. J. Y. Wong. Advanced Topics in Difference Equations. *Kluwer*, Dordrecht 1997.
- [11] N. Anderson, A. M. Arthurs. A class of second-order nonlinear difference equations. I: Extremum principles and approximation of solutions. *J. Math. Anal. Appl.* **110** (1985), 212–221.
- [12] F. M. Atici, A. Cabada, V. Otero-Espinar. Criteria for existence and nonexistence of positive solutions to a discrete periodic boundary value problem. J. Difference Equ. Appl. 9 (2003), 765–775.

- [13] F. M. Atici, G. Sh. Guseinov. Positive periodic solutions for nonlinear difference equations with periodic coefficients. *J. Math. Anal. Appl.* **232** (1999), 166–182.
- [14] R. I. Avery. Three positive solutions of a discrete second order conjugate problem. *Panam. Math. J.* 8 (1998), 79–96.
- [15] J. V. Baxley, G. S. Gersdorff. Singular reaction-diffusion boundary value problem. J. Differential Equations 115 (1995), 441–457.
- [16] A. CABADA. The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. *J. Math. Anal. Appl.* **185** (1994), 302–320.
- [17] F. Dannan, S. Elaydi, P. Liu. Periodic solutions to difference equations. J. Difference Equ. Appl. 6 (2000), 203–232.
- [18] J. V. A. GONCALVES, C. A. P. SANTOS. Quasilinear singular equations: a variational approach for nondifferentiable functionals. *Nonlinear Analysis* **55** (2003), 583–607.
- [19] Z. HE. On the existence of positive solutions of p-Laplacian difference equations. J. Comp. Appl. Math. 161 (2003), 193–201.
- [20] J. Henderson, H. B. Thompson. Difference equations associated with fully nonlinear boundary value problems for second order ordinary differential equations. J. Difference Equ. Appl. 7 (2001), 297–321.
- [21] R. KANNAN AND D. O'REGAN. Singular and nonsingular boundary value problems with sign changing nonlinearities. *J. Inequal. Appl.* 5 (2000), 621–637.
- [22] P. Kelevedjiev. Nonnegative solutions to some second-order boundary value problems. *Nonlinear Analysis* **36** (1999), 481–494.
- [23] W. G. Kelley, A. C. Peterson. Difference equations. An introduction with applications. 2nd ed. *Academic Press*, San Diego 2001.
- [24] I. T. KIGURADZE AND B. L. SHEKHTER. Singular boundary value problems for second order ordinary differential equations. *Itogi Nauki Tekh.*, *Ser. Sovrm. Probl. Mat.*, *Viniti* **30** (1987), 105–201 (in Russian).
- [25] R. MA, Y. N. REFFOUL. Positive solutions of three-point nonlinear discrete second order boundary value problem. *J. Difference Equ. Appl.* **10** (2004), 129–138.

- [26] D. O'REGAN. Theory of singular boundary value problems. World Scientific, Singapore 1994.
- [27] H. B. THOMPSON, C. TISDELL. Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations. *Applied Mathematics Letters* **15** (2002), 761–766.
- [28] A. TINEO. On a class of singular boundary value problems which contains the boundary conditions x'(0) = x(1) = 0. J. Differential Equations 113 (1994), 1–16.
- [29] Y.-M. WANG. Monotone methods for a boundary value problem of second-order discrete equation. *Computer Math. Applic.* **36** (1998), 77–92.
- [30] L. Zhang, D. Jiang. Monotone method for second order periodic boundary value problems and periodic solutions of delay difference equations. *Appl. Anal.* 82 (2003), 215–229.