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Abstract. We study singular discrete boundary value problems with mixed
boundary conditions and with the p-Laplacian of the form

App(Ault —1))) + f(t,ult), Au(t — 1)) =0, t€[1,T+1],

Au(0) =u(T +2) =0,

where [1,7 +1] = {1,2,...,T+ 1}, T € N, ¢,(y) = |y’ %y, p > 1. We assume
that f is continuous on [1,7 + 1] x (0,00) x R and f(¢,x,y) has a singularity at
x = 0. We prove the existence of a positive solution by means of the lower and
upper functions method, the Brouwer fixed point theorem and by a convergence
of approximate regular problems.
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1 Introduction

Let T € N be fixed. We define the discrete interval [1,7 + 1] = {1,2,..., T+ 1}
and consider the second order difference equation with the p-Laplacian

A(pp(Au(t —1))) + f(tut), Au(t —1)) =0, te[L,T+1]  (L1)
subjected to the mixed boundary conditions
Au(0) =0, u(T+2)=0. (1.2)

Here A denotes the forward difference operator with the step size 1, i.e. Au(t —
1) = u(t)—u(t—1), and ¢,(y) = |y|’ 2y, p > 1. We will investigate the solvability
of problem (1.1), (1.2).



Definition 1.1 By a solution u of problem (1.1), (1.2) we mean u: [0,T+2] — R,
u satisfies the difference equation (1.1) on [1,7 + 1] and the boundary conditions
(1.2). If u(t) > 0 for t € [1,T + 1], we say that u is a positive solution of problem
(1.1), (1.2).

Let D C R?. We say that f is continuous on [1,7 + 1] x D, if f(-,z,y) is
defined on [1,7 + 1] for each (z,y) € D and if f(¢,-,-) is continuous on D for
each t € [1,T + 1].

If D = R? problem (1.1), (1.2) is called regular. If D # R? and f has
singularities on 0D, then problem (1.1), (1.2) is singular.

Here we will assume that

D = (0,00) x R, fis continuous on [1,7 + 1] x D

and f has a singularity at x =0, i.e.

limsup | f (¢, z,y)| = oo for each ¢ € [1,T + 1] (1.3)
z—0+

and for some y € R.

Discrete second order nonlinear boundary value problems have been investi-
gated in several monographs (e.g. [1], [10], [8], [23]) and papers (e.g. [11], [12],
[13], [16], [19], [20], [27], [30]). Most of the above results concern regular prob-
lems. Singular discrete problems have received less attention. We refer to [3] and
[8] where the solvability of the Dirichlet singular discrete problem was studied.
Existence theorems for singular higher order discrete problems can be found in
[10]. The paper [19] deals with problem (1.1), (1.2) where f is regular and has
the form f(¢,2) = a(t)g(x). Here, we extend the existence results of [19] onto
the singular problem (1.1), (1.2) where f depends both on u and on Au. The
continuous versions of mixed singular problems for differential equations without
p-Laplacian have been investigated e.g. in [6], [9], [15], [21], [24], [26], [28] and
for problems with the p-Laplacian in [7] or [18].

2 Lower and upper function for regular prob-
lems

We start our investigation with the equation
A(pp(Ault = 1)) + hlt, u(t), Au(t 1)) =0, te[1,T+1], (2.1)

where h is continuous on [1, T+1]xR? and we apply the lower and upper functions
method for the regular problem (2.1), (1.2).

Definition 2.1 a:[0,7 + 2] — R is called a lower function of problem (2.1),
(1.2) if

A(pp(Aa(t = 1)) + h(t,a(t), Aa(t — 1)) > 0 for t € [1,T + 1], (2.2)
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Aa(0) >0, «a(T+2)<0. (2.3)

B:10,T + 2] — R is called an upper function of problem (2.1), (1.2) if
A(pp(AB(t= 1)) +h(t, B(1), AB(t—1)) <O for t € [I,T+1],  (24)
ABO) <0, BT +2)>0. 2.5)

Theorem 2.2 (Lower and upper functions method) Let o and 5 be a lower
and an upper function, respectively, of (2.1), (1.2) and o < 8 on [1,T + 1]. Let
h be continuous on [1,T + 1] x R® and nonincreasing in its third variable. Then
problem (2.1), (1.2) has a solution u satisfying

a(t) <u(t) < B(t) fort €[0,T + 2]. (2.6)
Proof. Step 1. Fort e [1,T + 1], z,z € R, define functions

{ﬂ(tl) it z>p(t—-1)

(t,z) =1 = if at—1)<z<pB{t-1)

at—1) if z<a(t—1)
-1 .

h(t, B(¢), B(t) — o(t, 2)) — W if x> p()

h(t,z, 0 —2) = h(t,z,x —o(t, 2)) if a(t) <z <pB(1)

alt) —x
| it a(t), alt) = ot 2)) + o) —z+1

Then h is continuous on [1,T + 1] x R? and there exists M > 0 such that

Y

if = <aflt).

A(t,z,y)| < M forte[1,T+1], (z,y) € R (2.7)
We will study the auxiliary difference equation
A(pp(Ault = 1)) + hlt,u(t), Au(t — 1)) =0, t€[1,T+1], (2.8)
and we will prove that problem (2.8), (1.2) has a solution (see Steps 2-3).
Step 2. We denote
E={u[0,T+2] - R, Au(0) =0, u(T +2) =0} (2.9)

and define ||u|| = max{|u(t)|: ¢ € [1,7 + 1]}. Then E is a Banach space with

dim £ =T + 1. Further we put > = 0 for each a,b € NU {0}, a < b, and define
i=b

an operator 7: E — FE by

T+1

Z¢q (th u(i Auz—l))) te0,T+ 2] (2.10)
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Here ¢, = ¢;", %4—%:1.
Since ¢,: R — R and h:[1,T + 1] x R* = R are continuous, we see that 7 is
T+1
a continuous operator. Moreover, (2.7) and (2.10) imply that if r > > ¢,(sM),
s=1
then T( (r )) C B(r), where B(r) = {u € E:||lu|| < r}. Therefore the Brouwer

fixed point theorem yields the existence of at least one point u € B(r) such that

u=Tu.

Step 3. We prove that u is a fixed point of 7 if and only if u is a solution of
problem (2.8), (1.2).

(i) Assume that w = Tu. Then u € E and so u satisfies (1.2). Further we have

T+1

Au(t —1) =u(t) —u(t—1) = Z¢q<2hzu Auz—l)))

=3 o (SR, Aui- 1),

p(But = 1) = = SR u(@), Suli = 1),

A(dp(Au(t —1))) = dp(Au(t)) = ¢p(Au(t —1)) =
= —h(t,u(t), Au(t — 1)) fort e [1,T +1].

(ii) Assume that u is a solution of (2.8), (1.2). Then u € E and ¢,(Au(0)) =
¢,(0) = 0. Further we have A(%(AU(O))) = —h(1,u(1), Au(0)), which yields

dp(Au(1)) = ~h(1, u(1), Au(0)).

Similarly B
A(gp(Au(1))) = =h(2, u(2), Au(1)),

and hence

dp(Au(2)) = —h(1,u(1), Au(0)) — h(2,u(2), Au(1)).

By induction we get

Gp(Au(t)) = = 3 (i, u(i), Au(i - 1))

and

Au <Z:: ), Au(i — 1))) tell,T+1]. (2.11)
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Using (1.2) and (2.11) we get
741

w(T +1) = m(thu Aul—l))>

T+1
qﬁq(thu ), Au(i — 1)) )—l—qﬁq(thu Au(z—l)))
and by induction we get

T+1

Z% <th u Auz—l))) te[0,7+2)

0 T41
Note that for ¢t = 0 and t = T+ 2 we use the equalities >}, =0and ), =0.
i=1 s=T+2

Step 4. 'We prove that the solution u of (2.8), (1.2) satisfies (2.6). Put v(t) =
u(t) —B(t) for t € [0,T+2] and assume that max{v(t): t € [0,7+2]} = v(¢) > 0.
Conditions (1.2) and (2.5) imply ¢ € [1,T + 1]. Thus we have v({ + 1) < v(¢),
v(l —1) < wv(l), and consequently Au(l) < AB(£), Au(f —1) > Ap(¢ —1). This
leads to 6y(Au(0)) < 6,(AB(0)), Gy(Aull — 1) > 6,(AB( 1)) and

A(p(Au(l = 1)) < A (AB(L—1))). (2.12)
On the other hand, since h is nonincreasing in its third variable, we get by

(2.8)
A(p(Au(t=1))) = A(gp(AB(L—1))) =

—h(t,u(l), Au(t = 1)) = A(¢p(AB(L - 1)) =

B v(0)
—h(€.8(0), 8(6) = o (L, u(l — 1)) + v(0) + 1

v(l
> —h((, B(£), AB(L — 1)) + v(ﬁ)(j— - A(0p(AB(E-1)) 2

v()
() +1
which contradicts (2.12). So, we have proved u(t) < §(t) for t € [0,7 + 2]. The

inequality a(t) < wu(t) for t € [0,7 + 2] can be proved similarly. Therefore u
satisfies (2.6) and hence u is a solution of problem (2.1), (1.2). O

~ A(pp(AB(L—1))) >

>0,



3 Main result and example

The next theorem provides sufficient conditions for the solvability of the singular
problem (1.1), (1.2). The proof is based on the construction of a sequence of
approximating auxiliary regular problems and on the lower and upper functions
method from Theorem 2.2.

Theorem 3.1 Assume (1.3) and let the following conditions hold:

there exists ¢ € (0,00) such that f(t,c,0) <0 fort e [1,T + 1], (3.1)
[ is nonincreasing iny fort € [1,T + 1], = € (0, (], (3.2)
llr&f(t,x,y) =oo forte[1,T+1], y € [—c,c]. (3.3)

Then problem (1.1), (1.2) has a solution u satisfying
0 <u(t) <cfortel0,T+1]. (3.4)

Proof. Step 1. For k€N, t € [1,T +1], (z,y) € R? define

f@t laly) it fof =

f (t, %,y) it |z| <

Then f; is continuous on [1,7 + 1] x R? and nonincreasing in y for ¢t € [1,7 + 1],
x € [—¢,¢]. Assumption (3.3) implies the existence of ky € N such that for each
keN, k> ke

=

fe(t,z,y) = {

fk(t,o,()):f(t ! 0) >0 fortel[l,T+1].

) E:
Consider an auxiliary sequence of equations

keN, k>ky Put a(t) =0, 8(t) =cfort € [0,7 +2]. Then o and S are
a lower and an upper function of each problem (3.5), (1.2) and «(t) < 5(t) for
t € [1,T + 1]. By Theorem 2.2, there exists a solution u;, of problem (3.5), (1.2)
satisfying

0<u(t)<c fortel0,T+2], keN, k> k. (3.6)

Consequently
|Aug(t)| <ec forte[0,T+1], keN, k> k. (3.7)

Step 2. Let k € N, k > ky. Since uy, satisfies (3.5), we get by (2.11)
¢
Aug(t) = ¢, <— > fiel, wg(@), Aug (i — 1))> , te[l,T+1]. (3.8)
i=1
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By (3.3) there exists ¢; € (0, %) such that if k& > %, then

fe(Lz,y) > ¢ple) @€ (0,a1], y €[=c ¢ (3.9)

Assume that k > é and uy(1) < 1. Then, by (3.8) and (3.9), we get

Dug(1) = (= fe(1, (1), Bug(0))) < b~ y(c)) = —c,

which contradicts (3.7). Therefore
1
ug(l) > e, foreach ke N, k > —. (3.10)
€1
Denote
my = maX{|fk(17xay)|: S [61,0]7 Y€ [_Ca C]}
By (3.3) there exists €5 € (0,¢] such that if £ > L then

Te(2,2,y) > ¢p(c) +my  for x € (0,e9], y € [—c,¢]. (3.11)

Assume that k > é and wuy(2) < g9. Then, by (3.8), (3.10) and (3.11), we get
Aug(2) = ¢y (— (1, ur(1), Aug(0)) = fr(2, uk(2), Au(1))) <

< ¢q(m1 - fk(zauk(Q)aAuk(l))) < By(=p(0)) = —c,
which contradicts (3.7). Therefore

1
ug(2) > ey foreach ke N, k> —.
€2

We continue similarly for ¢t =3,...,7T and get 0 < ep < ep_; < --- < e such

that

1
up(t) > e, forte[l,T], keN, k> - (3.12)
T

If we denote
mi — max{|fk(i,x,y)|: LS [ﬁi,C], y € [_Ca C]}’ i€ [17T]
then by virtue of (3.3) there exists ey € (0,e7] such that if &£ > ﬁ, then

T
T+ 1,2,y) > ¢p(c) + > my  for x € (0,e741], y € [—c, . (3.13)

1=1

Assume that k& > ﬁ and uy(T + 1) < e741. Then, by (3.8), (3.12) and (3.13),
we get
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< ka iy u (i), Aug(i — 1)) — fi(T + 1, ue (T + 1),Auk(T))> <

<6, (zm@ BT+ LT + 1, 80(T) < dy(-6y(c) =

which contradicts (3.7). Therefore, if we put € = e, we get

—_

0<e<u(t)<ec forte|0,T+1], keN, k> -. (3.14)

)

Since wuy satisfies (3.14) and (1.2) we can choose a subsequence {uy,} C {ux}
such that lim wg, (t) = u(t), ¢ € [0,T + 2], where u € E (see (2.9)). Moreover,

(3.8) yields for each sufficiently large n € N

Auy, (t) (Zf i, ug, (1), Auy, (i — 1))) te[1,T+1].

Letting n — oo and using the continuity of ¢, on R and f on [1,7 + 1] x D,,
where D, = [g,00) X R, we get

Au( (Zfzu Auz—l))) te[1,T+1],

from which the equality
Agy(Au(t — 1)) = —f(t,ult), Au(t — 1)), te€[L,T+1]

follows. Therefore u is a solution of (1.1) and, by (3.14), u satisfies (3.4). The
theorem is proved. O

Example. Let T € N, a € [0,00), ¢, € (0,00), p € (1,00), a:[1,T + 1] = R.
By Theorem 3.1 the problem

A(gp(Au(t = 1)) + (al) + (w(t)® + (w(®) ™) (e = u(t) - (Au(t - 1)),
te[l,T7+1], Au(0)=u(T+2)=0
has a solution u satisfying (3.4).
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