MULTIPLEMENT RESULTS FOR FOUR-POINT BOUNDARY VALUE PROBLEMS

IRENA RACHŮNKOVÁ
Department of Mathematical Analysis, Palacký University, Videašká 15, 77146 Olomouc, Czechoslovakia

(Received 1 February 1991; received for publication 24 April 1991)

Key words and phrases: Strict upper and lower solutions, coincidence topological degree, multiplicity results of Ambrosetti–Prodi type, four-point boundary value problem.

1. INTRODUCTION

Let \(R = (\infty, +\infty) \), \(I = [a, b] \), \(-\infty < a < c < d < b < +\infty \), \(f: I \times \mathbb{R}^2 \to \mathbb{R} \) be continuous functions. This paper proves existence and multiplicity results of Ambrosetti–Prodi type for the four-point resonance problem

\[
\begin{align*}
 u'' + f(t, u, u') &= s, \\
 u(a) &= u(c), \quad u(d) = u(b),
\end{align*}
\]

where \(s \) is a real parameter.

Our results have been motivated by similar ones concerning the number of solutions of periodic problems for first and second order differential equations [1, 3]. Our method of proof is close to that of [1]. It is based on the use of strict upper and lower solutions and on coincidence topological degree arguments.

This four-point problem can be understood as an approximation of the Neumann problem, where derivatives at the points \(a, b \) are replaced by differences.

We write \(C^k(I) \) for the space of real valued \(C^k \)-functions \(u \) on \(I \) with the norm

\[
 \|u\|_k = \sum_{i=0}^{k} \max\{|u^{(i)}(t)| : t \in I\}.
\]

We recall that \(\sigma_1, \sigma_2 \in C^2(I) \) are lower and upper solutions for (1.1), (1.2), respectively, if

\[
 [\sigma_i^t + f(t, \sigma_i, \sigma_i') - s](-1)^i \leq 0 \quad \text{for each } t \in I, \tag{1.3}
\]

\[
 [\sigma_i(a) - \sigma_i(c) + 1]^i \geq 0, \quad [\sigma_i(d) - \sigma_i(b) + 1]^i \leq 0, \quad i \in \{1, 2\}. \tag{1.4}
\]

Similarly, \(\sigma_1, \sigma_2 \in C^2(I) \) are strict lower and upper solutions for (1.1), (1.2), respectively, if

\[
 [\sigma_i^t + f(t, \sigma_i, \sigma_i') - s](-1)^i < 0 \quad \text{for each } t \in I, \tag{1.5}
\]

\[
 \sigma_i(a) = \sigma_i(c), \quad \sigma_i(d) = \sigma_i(b), \quad i \in \{1, 2\}. \tag{1.6}
\]

A continuous function \(\omega: (0, +\infty) \to (\epsilon, +\infty) \), with \(\epsilon > 0 \), will be called a Nagumo function, if

\[
 \int_{0}^{+\infty} \frac{z \, dz}{\omega(z)} = +\infty. \tag{1.7}
\]
We say that \(f: I \times \mathbb{R}^2 \to \mathbb{R} \) satisfies the Bernstein–Nagumo conditions, if for any \(r \in (0, +\infty) \) there exists a Nagumo function \(\omega_i \) such that

\[
f(t, x, y) \sgn y \geq -\omega_i(|y|) \quad \text{on } I \times [-r, r] \times \mathbb{R}
\]

and

\[
f(t, x, y) \sgn y \leq \omega_i(|y|) \quad \text{on } [a, c] \times [-r, r] \times \mathbb{R}.
\]

In what follows

\[
D(-r_1) = \{ x \in C^2(I) : x(t) > -r_1 \text{ for each } t \in I\},
\]

\[
D(r_1) = \{ x \in C^2(I) : x(t) < r_1 \text{ for each } t \in I\},
\]

where \(r_1 \in (0, +\infty) \).

2. AUXILIARY RESULTS

We shall need some lemmas whose proofs follow the approach proposed in [5]. Let us consider the equation

\[
u'' = g(t, u, u')
\]

where \(g \in C^0(I \times \mathbb{R}^2) \).

Lemma 1. Let \(\sigma_1 \) be a lower solution and \(\sigma_2 \) an upper solution of (2.1), (1.2) with \(\sigma_1(t) \leq \sigma_2(t) \) for each \(t \in I \). Further, let there exist \(k \in (0, +\infty) \) such that for each \(t \in I, x, y \in \mathbb{R}, \) where \(\sigma_1(t) \leq x \leq \sigma_2(t) \), the inequality

\[|g(t, x, y)| \leq k \]

is fulfilled.

Then problem (2.1), (1.2) has a solution \(u \) fulfilling

\[
\sigma_1(t) \leq u(t) \leq \sigma_2(t) \quad \text{for each } t \in I.
\]

Proof. Similarly, to the proof of [5, lemma 6], we put

\[
w_i(t, x, y) = (-1)^i m(x - \sigma_i)[g(t, \sigma_i, \sigma_i') - g(t, \sigma_i, y) + (-1)^i r_0 / m], \quad i = 1, 2
\]

\[
g_m(t, x, y) = \begin{cases}
g(t, \sigma_1, \omega_1) - r_0 / m & \text{for } x \leq \sigma_1(t) - 1/m \\
g(t, \sigma_1, \omega_1) + w_1 & \text{for } \sigma_1(t) - 1/m < x < \sigma_1(t) \\
g(t, x, y) & \text{for } \sigma_1(t) \leq x \leq \sigma_2(t) \\
g(t, \sigma_2, \omega_2) & \text{for } \sigma_2(t) < x < \sigma_2(t) + 1/m \\
g(t, \sigma_2, \omega_2) + r_0 / m & \text{for } x \geq \sigma_2(t) + 1/m,
\end{cases}
\]

where \(m \) is a natural number and \((t, x, y) \in I \times \mathbb{R}^2 \), and consider the equation

\[
u'' = (1/m)u + g_m(t, u, u').
\]

By the Fredholm nonlinear alternative theorem, problem (2.3), (1.2) has a solution \(u_m \), because \(g_m \) is bounded and the linear problem corresponding to (2.3), (1.2) has only the trivial solution.

Similarly to [5, lemma 6], it can be checked that

\[
\sigma_1(t) = 1/m \leq u_m(t) \leq \sigma_2(t) + 1/m
\]

for each \(t \in I \) and any natural \(m \). This implies, by (1.2), (2.3), that the sequences \((u_m)_m \) and \((u'_m)_m \) are uniformly bounded and equi-continuous on \(I \) and thus, by the Arzelà–Ascoli
theorem, we conclude that \((u_m)\) contains a subsequence converging in \(C^1(I)\). Writing, for every \(m\), equations (2.3) in integral forms, it is easily seen that the limit of that subsequence is a solution of (2.1), (1.2) and satisfies (2.2). The proof is complete.

Lemma 2 (on a priori estimate). Let, for \(r \in (0, +\infty)\), \(\omega\), be a Nagumo function. Then there exists a number \(\rho = \rho(r, \omega_r)\) such that for any function \(u \in C^2(I)\) the conditions

\[
\|u\|_0 \leq r, \quad u(a) = u(c), \quad u(b) = u(d),
\]

\[
u^\circ \operatorname{sgn} u' \leq \omega_r(|u'|) \quad \text{for each } t \in I,
\]

and

\[
u^\circ \operatorname{sgn} u' \geq -\omega_r(|u'|) \quad \text{for each } t \in [a, c]
\]

imply the estimate

\[
\|u'\|_0 < \rho.
\]

Proof. In view of (2.4) we can choose \(a_1 \in (a, c)\) such that \(u'(a_1) = 0\). From (1.7) it follows that there exists \(\rho \in (r, +\infty)\) such that

\[
\int_0^\rho \frac{z \, dz}{\omega_r(z)} > 2r.
\]

Now, let us suppose that there exists \(t_0 \in (a_1, b)\) such that

\[
u'(t_0) \geq \rho.
\]

Let \([\alpha, \beta] \subset [a, b]\) be the maximal interval containing \(t_0\) with \(u'(t) \geq 0\) for \(t \in [\alpha, \beta]\). Let \(t^* \in (\alpha, \beta)\) be such point that \(u'(t^*) = c_1 = \max\{|u'(t): \alpha \leq t \leq \beta|\}\). Then, from (2.5), it follows

\[
\int_0^{c_1} \frac{z \, dz}{\omega(z)} \leq 2r,
\]

which implies, by (2.8), \(c_1 < \rho\). The latter inequality contradicts (2.9). Similarly, supposing that there exists \(t_0 \in (a_1, b)\) with

\[
u'(t_0) \leq -\rho
\]

and choosing the maximal interval \([\alpha, \beta] \subset [a_1, b]\) such that \(t_0 \in (\alpha, \beta)\) and \(u'(t) \leq 0\) on \([\alpha, \beta]\), we can get the same contradiction. Finally, if we suppose that \(t_0\) satisfying (2.9) or (2.10) can be chosen in \([a, a_1]\), then using (2.6) instead of (2.5) we obtain a contradiction by the same arguments as above. Therefore \(\|u'\|_0 < \rho\) and the lemma is proved.

Lemma 3. Let \(s\) be a real number. Assume that the function \(f\) in equation (1.1) satisfies the Bernstein–Nagumo conditions. Further let \(\sigma_1\) and \(\sigma_2\) be lower and upper solutions of problem (1.1), (1.2), respectively, with \(\sigma_1(t) \leq \sigma_2(t)\) for each \(t \in I\).

Then problem (1.1), (1.2) has at least one solution \(u\) satisfying (2.2).

Proof. Let

\[
r_i = \max\{|\sigma_1(t)| + |\sigma_2(t)|: t \in I\}, \quad i = 0, 1.
\]

Then for \(r_0\) there exists a Nagumo function \(\omega_r\) such that \(f\) satisfies (1.8) and (1.9) where \(r = r_0\). Put \(\tilde{\omega}(z) = |s| + \omega_{r_0}(z), \, z \in (0, +\infty)\). We can easily verify that \(\tilde{\omega}\) is also a Nagumo function.
Further, let $\rho = \rho(r_0, \omega)$ be the number found by lemma 2. Put $\mu = \rho + r_0 + r_1$ and

$$
\chi(\mu, z) = \begin{cases}
1 & \text{for } |z| \leq \mu \\
2 - z/\mu & \text{for } \mu < |z| < 2\mu \\
0 & \text{for } |z| \geq 2\mu,
\end{cases}
$$

$$
\tilde{f}(t, x, y) = \chi(\mu, |x| + |y|)f(t, x, y).
$$

Next, for fixed real s consider the equation

$$
u^n + \tilde{f}(t, u, u') = s.
$$

Since $\|\sigma_i\| < \mu$, $i = 1, 2$, we can see that σ_1 is a lower solution and σ_2 an upper solution for (2.12), (1.2). Moreover

$$
|s - \tilde{f}(t, x, y)| \leq k + |s| \quad \text{on } I \times \mathbb{R}^2,
$$

where $k = \max|f(t, x, y)| : t \in I, |x| + |y| \leq 2\mu$. Thus, by lemma 1, problem (2.12), (1.2) has a solution u satisfying (2.2). Therefore u fulfills (2.4). Further, by (2.11) and the first part of the proof, u satisfies (2.5) and (2.6) where $r = r_0$ and $\omega = \omega$. So, applying lemma 2 we get estimate (2.7). Therefore $\|u\|_1 < \mu$ and u is also a solution of problem (1.1), (1.2). The lemma is proved.

3. EXISTENCE RESULTS

THEOREM 1. Let $f \in C^0(I \times \mathbb{R}^2)$ satisfy the Bernstein–Nagumo conditions and let there exist numbers $r_1 > 0$ and s_1 such that for all $t \in I$

$$
f(t, -r_1, 0) > s_1 > f(t, 0, 0). \tag{3.1}
$$

Then there exists $s_0 < s_1$ (with the possibility $s_0 = -\infty$) such that

(a) for $s < s_0$, (1.1), (1.2) has no solution in $D(-r_1)$,

(b) for $s \in (s_0, s_1)$, (1.1), (1.2) has at least one solution $u \in D(-r_1)$. [For $D(-r_1)$ see (1.10).]

The proof of theorem 1 follows the approach proposed in [1], for periodic solutions. However condition (3.1) is weaker than the corresponding one in [1], where it is assumed

$$
f(t, x, 0) > s_1 > f(t, 0, 0) \quad \text{for all } t \in \mathbb{R} \text{ and all } x \leq -r_1. \tag{3.2}
$$

Proof. Put

$$
h(t, x, y) = \begin{cases}
f(t, x, y) & \text{for } x \geq -r_1 \\
f(t, -r_1, y) & \text{for } x < -r_1
\end{cases}
$$

and consider the equation

$$
u^n + h(t, u, u') = s. \tag{3.4}
$$

We can see that h satisfies the Bernstein–Nagumo conditions. Let $s^* = \max[h(t, 0, 0) : t \in I]$. Then for $s = s^*$, 0 is an upper solution and $-r_1$ is a lower solution for (3.4), (1.2). Then, by lemma 3, problem (3.4), (1.2) has a solution u^* with $-r_1 \leq u^*(t) \leq 0$ on I. By (3.3), u^* is a solution for (1.1), (1.2) as well.
Now, suppose first that (3.4), (1.2) has a solution \(u \) for some \(s \leq s_1 \) and show that \(u \in D(-r_1) \). Let, on the contrary, \(\min \{u(t) : t \in I\} = u(t_0) \leq -r_1 \). Then, by (1.2), \(u'(t_0) = 0, u''(t_0) \geq 0 \). On the other hand, from (3.1), (3.3), it follows that

\[
u''(t_0) = s - h(t_0, u(t_0), 0) = s - f(t_0, -r_1, 0) \leq s_1 - f(t_0, -r_1, 0) < 0,\]

a contradiction.

Next, let us show that if problem (3.4), (1.2) has a solution \(\bar{u} \) for \(s = \bar{s} < s_1 \), then it has at least one solution for each \(s \in [\bar{s}, s_1] \). From the above considerations it follows that \(\bar{u} \in D(-r_1) \).

Further, \(\bar{u}'' + h(t, \bar{u}, \bar{u}') = \bar{s} \leq s \) and so \(\bar{u} \) is an upper solution for (3.4), (1.2), where \(s \in [\bar{s}, s_1] \).

Similarly, since \(h(t, -r_1, 0) > s_1 \geq s, -r_1 \) is a lower solution for (3.4), (1.2), where \(s \in [\bar{s}, s_1] \).

Hence, we can use lemma 3 again to get that (3.4), (1.2) has at least one solution in \(D(-r_1) \) provided \(s \in [\bar{s}, s_1] \). From the latter it is a solution for (1.1), (1.2) as well.

Finally, taking \(s_0 = \inf \{s \in \mathbb{R} : (1.1), (1.2) \text{ has at least one solution in } D(-r_1)\} \), we have \(s_0 \leq s_* < s_1 \) and from the above considerations (a) and (b) follow. The theorem is proved.

Theorem 2. Let \(f \in C^0(I \times \mathbb{R}^2) \) satisfy the Bernstein–Nagumo conditions and let there exist numbers \(r_1 > 0 \) and \(s_1 \) such that for all \(t \in I \)

\[
f(t, 0, 0) > s_1 > f(t, r_1, 0).
\]

Then there exists \(s_0 > s_1 \) (with the possibility \(s_0 = +\infty \)) such that

(a) for \(s > s_0 \), (1.1), (1.2) has no solution in \(\overline{D(-r_1)} \),

(b) for \(s \in [s_1, s_0] \), (1.1), (1.2) has at least one solution in \(D(r_1) \).

Proof. Theorem 2 can be obtained from theorem 1 if \(f \) is replaced by \(-f \) and \(x \) by \(-x \).

4. **MULTICLICITY RESULTS**

Theorem 3. Let \(f \in C^0(I \times \mathbb{R}^2) \) satisfy the Bernstein–Nagumo conditions and let there exist \(r_1, r_2 \in (0, +\infty), s_1 \in \mathbb{R} \) such that for all \(t \in I \) the inequality (3.1) is fulfilled and for all \(s \leq s_1 \) any solution \(u_s \) of (1.1), (1.2) belonging to \(D(-r_1) \) satisfies

\[
u_s(t) < r_2 \quad \text{for each } t \in I.
\]

Then the number \(s_0 \) in theorem 1 is finite and

(a) for \(s < s_0 \), problem (1.1), (1.2) has no solution in \(\overline{D(-r_1)} \),

(b) for \(s = s_0 \), problem (1.1), (1.2) has at least one solution in \(\overline{D(-r_1)} \),

(c) for \(s \in [s_0, s_1] \), problem (1.1), (1.2) has at least two solutions in \(D(-r_1) \).

A similar theorem for a periodic problem is proved in [1], where the stronger condition (3.2) is assumed instead of (3.1) and moreover the function \(f(\cdot, \cdot, 0) \) is required to be bounded below.

Theorem 3 is valid not only for problem (1.1), (1.2) but also for Neumann and periodic problems.

Proof. Let us consider the equation (3.4) where \(h \) satisfies (3.3). Then \(h \) fulfills the Bernstein–Nagumo conditions and, according to the proof of theorem 1, each solution of problem (3.4), (1.2) belongs to \(D(-r_1) \) provided \(s \leq s_1 \).
Now, proving theorem 3, we shall need several auxiliary propositions.

Proposition 1. There exist numbers \(\sigma, M, \sigma < s_1 < M \), such that for any \(s \leq s_1 \) and any solution \(u_s \) of (3.4), (1.2)

\[
\sigma \leq h(t, u_s, 0) \leq M \quad \text{for each } t \in I. \tag{4.2}
\]

Proof of proposition 1. Let \(s \leq s_1 \). Then, by (4.1), any solution \(u_s \) of (3.4), (1.2) fulfills

\[
-r_1 < u_s(t) < r_2 \quad \text{for each } t \in I. \tag{4.3}
\]

Therefore we can put

\[
\sigma = \min\{h(t, x, 0) : t \in I, x \in [-r_1, r_2]\} \quad \text{and} \quad M = \max\{h(t, x, 0) : t \in I, x \in [-r_1, r_2]\}.
\]

From (3.1), (3.3) it follows that

\[
\sigma < s_1 < M. \tag{4.4}
\]

Proposition 2. There exists \(s_0 \in [\sigma, s_1] \) such that for \(s < s_0 \), problem (3.4), (1.2) has no solution and for \(s \in (s_0, s_1] \) it has at least one solution in \(D(-r_1) \).

Proof of proposition 2. Suppose on the contrary that for \(s < \sigma \) problem (3.4), (1.2) has a solution. Then, by (4.3), \(\min\{u(t) : t \in I\} = u(t_0) \in (-r_1, r_2) \), \(u'(t_0) = 0 \), \(u''(t_0) \geq 0 \). On the other hand, by (4.2), \(u''(t_0) < 0 \), which is impossible. Hence there exists \(s_0 \geq \sigma \) such that (3.4), (1.2) has no solution for \(s < s_0 \). By (4.4) and theorem 1 we can deduce \(s_0 < s_1 \) and (3.4), (1.2) has at least one solution in \(D(-r_1) \) for each \(s \in (s_0, s_1] \).

From now on, let \(\xi \in (s_0, s_1) \) be fixed and \(\bar{u} \) denote a solution of (3.4), (1.2) for \(s = \xi \). Then \(\bar{u} \in D(-r_1) \). Further, let for \(t \in I, x, y \in \mathbb{R} \)

\[
\alpha(x) = \begin{cases}
-r_1 & \text{for } x < -r_1 \\
0 & \text{for } -r_1 \leq x \leq \bar{u}(t) \\
\bar{u}(t) & \text{for } x > \bar{u}(t)
\end{cases}
\]

and

\[
g(t, x, y) = f(t, \alpha(x), y) - x + \alpha(x). \tag{4.5}
\]

We shall consider the equation

\[
u'' + g(t, u, u') = s. \tag{4.6}
\]

Proposition 3. For each \(s \in (\xi, s_1] \) any solution \(u \) of problem (4.6), (1.2) satisfies

\[-r_1 < u < \bar{u} \quad \text{on } I. \]

Proof of proposition 3. Let \(u \) be a solution of (4.6), (1.2) where \(s \in (\xi, s_1] \). Suppose that for some \(t \in I \) \(u(t) \geq \bar{u}(t) \). Then there exists \(t_0 \in (a, b) \) such that \(u(t_0) \geq \bar{u}(t_0) \), \(u'(t_0) = \bar{u}'(t_0) \), \(u''(t_0) \leq \bar{u}''(t_0) \). But from (4.5) we can get \(u''(t_0) > \bar{u}''(t_0) \), which is a contradiction. The inequality \(-r_1 < u \) can be proved by similar arguments.
Now, for an arbitrary fixed $s \leq s_1$, let us consider the class of equations

$$u'' - (1 - \lambda)u + \lambda[g(t, u, u') - s] = 0, \quad (4.7\lambda)$$

where a real parameter λ varies from 0 to 1.

Proposition 4. There exist positive numbers R, ρ such that for any $s \in [s_0, s_1]$ and any parameter $\lambda \in [0, 1]$, every solution u of (4.7λ), (1.2) satisfies

$$\|u\|_0 < R, \quad \|u'\|_0 < \rho.$$

Proof of proposition 4. Let us choose an arbitrary fixed $s \in [s_0, s_1]$ and a number R with

$$R > \max[r_1 + s_1 - \sigma, r_2 + M - s_0]. \quad (4.8)$$

Suppose that for some $\lambda \in [0, 1]$ and for a corresponding solution u of (4.7λ), (1.2) we can find $t_0 \in I$ such that $|u(t_0)| \geq R$. Let $u(t_0) \geq R$. Then, in view of (1.2),

$$u'(t_0) = 0, \quad u''(t_0) \leq 0$$

and by (4.7λ), (1.2), (4.8),

$$u''(t_0) \geq (1 - \lambda)R + \lambda[s_0 + M - r_2] > 0,$$

a contradiction. Similarly, if $u(t_0) \leq -R$, then we get

$$0 \leq u''(t_0) \leq -(1 - \lambda)R + \lambda(s_1 - \sigma - R + r_1) < 0,$$

a contradiction. Therefore $\|u\|_0 < R$.

Further, since f satisfies the Bernstein-Nagumo conditions, there exists a Nagumo function ω_R and $u'' \text{ sgn } u'' < \omega_R(|u'|) + R + S_2$ on I and $u'' \text{ sgn } u'' > -\omega_R(|u'|) - R - S_2$ on $[a, c]$, where $S_2 = \max\{|s_0 - 1|, |s_1|\}$. We can easily check that $\tilde{\omega} = \omega_R + R + S_2$ is a Nagumo function, and so, using lemma 2 for $r = R$ and $\omega_r = \tilde{\omega}$ we can find a number $\rho = \rho(R, \tilde{\omega})$ such that $\|u\|_0 < \rho$.

Let us put

$$\text{dom } L = \{u \in C^2(I) : u(a) = u(c), \ u(b) = u(d)\},$$

$$L : \text{dom } L \rightarrow C^0(I), \quad u \mapsto u'',$$

$$N_s : C^1(I) \rightarrow C^0(I), \quad u \mapsto h(\cdot, u(\cdot), u'(\cdot)) - s,$$

$$G_s : C^1(I) \rightarrow C^0(I), \quad u \mapsto g(\cdot, u(\cdot), u'(\cdot)) - s,$$

$$I : C^1(I) \rightarrow C^1(I), \quad u \mapsto u.$$

Then problems (3.4), (1.2) or (4.6), (1.2) or (4.7\lambda), (1.2) can be written in the forms

$$\quad (L + N_s)u = 0, \quad (4.9)$$

or

$$\quad (L + G_s)u = 0, \quad (4.10)$$

or

$$\quad (L - (1 - \lambda)I + \lambda G_s)u = 0. \quad (4.11)$$

Similarly to the periodic case, it can be proved (see [6]), that N_s and G_s are L-compact on $C^1(I)$, so that the coincidence degree method (see [2]) can be applied to problems (4.9)-(4.11).
Let us consider two open bounded sets in $C^1(I)$:

$$\Omega = \{ u \in C^1(I) : -r_1 < u(t) < 0 \text{ for each } t \in I, \| u' \|_0 < \rho \}$$

and

$$\Omega_1 = \{ u \in C^1(I) : \| u \|_0 < R, \| u' \|_0 < \rho \},$$

where R and ρ are numbers in proposition 4.

Proposition 5. Let $s \in (\bar{s}, s_1]$. Then

$$d_L(L + N_s, \Omega) = \pm 1. \quad (4.12)$$

Proof of proposition 5. Suppose that $s \in (\bar{s}, s_1]$. Then, by proposition 4, for any $\lambda \in [0, 1]$, each solution u of (4.11) belongs to Ω_1 and so $u \notin \partial \Omega_1$. Further, for $\lambda = 0$, (4.11) has the form $(L - I)u = 0$ and since $\ker(C(L - I)) = \{0\}$, we get

$$d_L(L - I, \Omega_1) = \pm 1.$$

(See [2, proposition II.16].) Next, for $\lambda = 1$, (4.11) is equal to (4.10) and so, by the property of invariance under homotopy (see [2, p. 15]) we have

$$d_L(L + G_s, \Omega_1) = \pm 1.$$

Now, using propositions 3 and 4, we get for each solution u of (4.10) that $u \in \Omega$. Therefore, by the excess property [2, p. 15],

$$d_L(L + G_s, \Omega) = \pm 1.$$

Since, $N_s = G_s$ on Ω, we get

$$d_L(L + N_s, \Omega) = \pm 1.$$

Proposition 6. Let $s \in (\bar{s}, s_1]$. Then

$$d_L(L + N_s, \Omega_1 \setminus \bar{\Omega}) = \pm 1. \quad (4.13)$$

Proof of proposition 6. Clearly $\Omega_1 \setminus \bar{\Omega}$ is a nonempty open bounded set in $C^1(I)$. Since problem (4.9) has no solution for $s < s_0$ (see proposition 2), it is an immediate consequence of the existence property (see [2, p. 16]) that, for $s < s_0$

$$d_L(L + N_s, \Omega_1) = 0. \quad (4.14)$$

On the other hand, by (4.3), for $s_0 - 1 < s \leq s_1$ any solution u of (4.9) belongs to Ω_1 and so $u \notin \partial \Omega_1$ (see proposition 4). Letting s vary from $s_0 - 1$ to s_1 we can deduce by the property of invariance under homotopy that (4.14) holds for each $s \in (s_0 - 1, s_1]$. Now, for $s \in (\bar{s}, s_1]$, using (4.12) and (4.14), it follows from the additivity property of degree (see [2, p. 15]) that

$$d_L(L + N_s, \Omega_1 \setminus \bar{\Omega}) = \pm 1.$$

Now, by means of the above propositions, we can complete the proof of theorem 3 as follows.

Proposition 2 and relation (3.3), together with the fact that any solution of (3.4), (1.2) belongs to $D(-r_1)$, imply assertion (a).
The relations (4.12) and (4.13) imply that, for \(s \in (s, s_1] \), equation (4.9) has at least one solution in \(\Omega \) and at least another one in \(\Omega_1 \setminus \Omega \). Since any solution of (4.9) belongs to \(D(-r_1) \) and \(s \) is arbitrary in \((s_0, s_1] \), conclusion (c) is proved.

Finally, to prove (b), let \((u_n)_1^n \) be a sequence in \((s_0, s_1) \) which converges to \(s_0 \) and let \(u_n \) be a solution of (4.9) with \(s = t_n \). Using proposition 4, one gets \((u_n)_1^n \) bounded in \(C^1(I) \) and hence in \(C^2(I) \) by the equation. By Ascoli’s theorem and the integrated form of the equation, one gets the existence of a converging subsequence of \((u_n)_1^n \) whose limit is a solution \(u_0 \) of (4.9) with \(s = s_0 \). Clearly, \(u_0 \in D(-r_1) \) is a solution of (1.1), (1.2). Theorem 3 is proved.

Similarly we can prove theorem 4.

Theorem 4. Let \(f \in C^0(I \times \mathbb{R}^2) \) satisfy the Bernstein–Negumo conditions and let there exist \(r_1, r_2 \in (0, +\infty) \), \(s_1 \in \mathbb{R} \) such that for all \(t \in I \) the inequality (3.5) is fulfilled and for all \(s \geq s_1 \) any solution \(u_s \) of (1.1), (1.2) belonging to \(D(r_1) \) satisfies

\[-r_1 < u_s(t) \quad \text{for each } t \in I.\]

Then the number \(s_0 \) in theorem 2 is finite and

(a) for \(s > s_0 \), problem (1.1), (1.2) has no solution in \(D(r_1) \),

(b) for \(s = s_0 \), problem (1.1), (1.2) has at least one solution in \(D(r_1) \),

(c) for \(s \in [s_1, s_0) \), problem (1.1), (1.2) has at least two solutions in \(D(r_1) \).

REFERENCES

5. RACHŮNKOVÁ I., On a certain four-point problem, Preprint.