Nonlinear Analysis, Theory, Methods & Applications, Vol. 18, No. 5, pp. 497-505, 1992. 0362-546X/92 $5.00+ .00
Printed in Great Britain. © 1992 Pergamon Press plc

MULTIPLICITY RESULTS FOR FOUR-POINT BOUNDARY
VALUE PROBLEMS

IRENA RACHUNKOVA
Department of Mathematical Analysis, Palacky University, Videnska 15, 77146 Olomouc, Czechoslovakia

(Received 1 February 1991; received for publication 24 April 1991)

Key words and phrases: Strict upper and lower solutions, coincidence topological degree, multiplicity
results of Ambrosetti-Prodi type, four-point boundary value problem.

I. INTRODUCTION

LET R = (-0, +), I = [a,b], —o <a<c=<=d<b<+w, f:Ix R*—> R be continuous
functions. This paper proves existence and multiplicity results of Ambrosetti-Prodi type for the
four-point resonance problem
: u" + f(t,u,u') = s, (1.1)

u(a) = u(c), u(d) = u(b), (1.2)

where s is a real parameter.

Our results have been motivated by similar ones concerning the number of solutions of
periodic problems for first and second order differential equations [1, 3]. Our method of
proof is close to that of [1]. It is based on the use of strict upper and lower solutions and on
coincidence topological degree arguments.

This four-point problem can be understood as an approximation of the Neumann problem,
where derivatives at the points a, b are replaced by differences.

We write C*(I) for the space of real valued C*-functions « on I with the norm

k
lulle = ¥ max{lu®@)|:t € 1},
i=0

We recall that o,, g, € C*(I) are lower and upper solutions for (1.1), (1.2), respectively, if
o/ + f(t,0;,0]) —sl(—-1)) <0  foreach t e, (1.3)
[0:(@) = g;@I(=1) 20,  [0:(d) — g;(DN(-1)' =0, ie(l,2]. (1.4)

Similarly, o,, g, € C*(I) are strict lower and upper solutions for (1.1), (1.2), respectively, if
| [o! + f(t,0;,0]) —sl(-1)) < 0  for each t €I, (1.5)
oi(a) = g;(c), o,(d) = ag;(b), iefl,?2]. (1.6)
A continuous function w: (0, +) = (¢, +), with &¢ > 0, will be called a Nagumo

function, if -

So ;szz) = 400, 1.7
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We say that f: I x R? - R satisfies the Bernstein-Nagumo conditions, if for any r e (0, +o0)
there exists a Nagumo function w, such that

S, x,y)sgny = —w,(|y)) onlX[—r,r] xR (1.8)
and

S, x, y)seny < wly))  onla,c] x [-r, 7] X R, (1.9)
In what follows
D(-ry) = {x € C*I): x(t) > —r, for each ¢ € I},

(1.10)
D(ry) = {x € C*(I): x(t) < r, for each ¢ € I},

where r; € (0, + ).

2. AUXILIARY RESULTS

We shall need some lemmas whose proofs follow the approach proposed in [5]. Let us
consider the equation

u" = g(t,u,u') (2.1)
where g € C°(I x R?).

LeEMMA 1. Let g, be a lower solution and 0, an upper solution of (2.1), (1.2) with (1) = a,(t)
for each ¢ € I. Further, let there exist k e (0, + ) such that for each ¢ € I, X,y € R, where
0,(t) < x =< a,(¢), the inequality

lgt, x, »)| = k
is fulfilled.

Then problem (2.1), (1.2) has a solution u fulfilling

o,(t) = u(?) < a,(t) for each ¢ € 1. 2.2)

Proof. Similarly, to the proof of [5, lemma 6], we put

wi(ta X,}’) = (_l),m(x - Gi)[g(t7 g, all) - g(t’ Ui,y) + (—l)irO/m], I = 1) 2:

g, o,,0() —re/m forx < o,(t) — 1/m

glt,o,) +w fora,(t) — 1/m < x < 0,(t)
gmlt, x,y) = ( gt x,y) fora,(t) = x < a,(1)

&(t,0,,y) + w, foro,(t) < x < a,(t) + 1/m

g(t,a,,03) + ro/m forx = a,(t) + 1/m,
where m is a natural number and (¢, x, ») € I x R?, and consider the equation
u" = (1/myu + g,,(t, u, u"). 2.3)

By the Fredholm nonlinear alternative theorem, problem (2.3), (1.2) has a solution u,,, because
&m 18 bounded and the linear problem corresponding to (2.3), (1.2) has only the trivial solution.
Similarly to [5, lemma 6], it can be checked that

0,(t) = 1/m < u,,(t) < o,(t) + 1/m

for each ¢ € I and any natural m. This implies, by (1.2), (2.3), that the sequences (u,,)7
and (u,,)7 are uniformly bounded and equi-continuous on / and thus, by the Arzelo-Ascoli
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theorem, we conclude that (u,,)7 contains a subsequence converging in C'(f). Writing, for
every m, equations (2.3) in integral forms, it is easily seen that the limit of that subsequence is
a solution of (2.1), (1.2) and satisfies (2.2). The proof is complete.

LEMMA 2 (on a priori estimate). Let, for r € (0, +), w, be a Nagumo function. Then there
exists a number p = p(r, w,) such that for any function v € C*(I) the conditions

lullo < r, u(a) = u(c), u(b) = u(d), (2.4)
u"sgnu' < w,(|u'l) for each r € I, (2.5)
and
u"sgnu' = —w,(|u'l) for each ¢ € [a, c] (2.6)
imply the estimate
lu'llo < p. 2.7)

Proof. In view of (2.4) we can choose a, € (a, c) such that u'(a;) = 0. From (1.7) it follows
that there exists p € (r, +c0) such that

r 245 . o, 2.8)
0 CU,(Z)

Now, let us suppose that there exists ¢, € (a,, b] such that
u'(ty) = p. 2.9)

Let [, B] C [a, b] be the maximal interval containing #, with u'(f) = 0 for 7 € [«, f]. Let
t* € («, ] be such point that u'(t*) = ¢; = max{u'(t): « < ¢ < f}. Then, from (2.5), it follows

S”‘ zdz
= F,
0 W)

which implies, by (2.8), ¢, < p. The latter inequality contradicts (2.9). Similarly, supposing that
there exists ¢, € (a,, b] with
u'(ty) < —p (2.10)

and choosing the maximal interval [«, 8] C [a,, b] such that ¢, € («, 8] and u'(¢) < O on [«, ],
we can get the same contradiction. Finally, if we suppose that ¢, satisfying (2.9) or (2.10) can
be chosen in [a, a,), then using (2.6) instead of (2.5) we obtain a contradiction by the same
arguments as above. Therefore |u'||, < p and lemma is proved.

LeMMA 3. Let s be a real number. Assume that the function f in equation (1.1) satisfies the
Bernstein-Nagumo conditions. Further let o, and o, be lower and upper solutions of problem
(1.1), (1.2), respectively, with g,(f) < g,(¢) foreach ¢ € 1.

Then problem (1.1), (1.2) has at least one solution u satisfying (2.2).

Proof. Let , .
r; = max{|a{’(®)| + |6P@)| :tel}, i=0,1.

Then for r, there exists a Nagumo function w, such that f satisfies (1.8) and (1.9) wherer = r,.
Put @(z) = |s| + w,,(2), z € (0, +). We can easily verify that & is also a Nagumo function.
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Further, let p = p(ry, @) be the number found by lemma 2. Put 4 = p + ry, + r, and
1 for lz| < u
x(u,2)=4{2—-2z/u foru<|z| <2u
0 for lz| = 2u,
%, 3) = x(u, x| + [yD s, x, y). (2.11)
Next, for fixed real s consider the equation
u' + flt,u, u') = s. (2.12)

Since ||o;]l; < i, i = 1,2, we can see that g, is a lower solution and &, an upper solution for
(2.12), (1.2). Moreover .
ls = ft, x,»)| <k +|s] onlIxR?

where k = max{| f(¢, x, y)| : t € I, |x| + |»| < 2u}. Thus, by lemma 1, problem (2.12), (1.2) has
a solution u satisfying (2.2). Therefore u fulfills (2.4). Further, by (2.11) and the first part of
the proof, u satisfies (2.5) and (2.6) where r = r, and w, = @. So, applying lemma 2 we get
estimate (2.7). Therefore ||u||, < u and u is also a solution of problem (1.1), (1.2). The lemma
is proved.

3. EXISTENCE RESULTS

THEOREM 1. Let f e C°(I X R?) satisfy the Bernstein-Nagumo conditions and let there exist
numbers r; > 0 and s, such that for all t € 7

S, —ry,0) > s, > f(2, 0, 0). (3.1

Then there exists s, < s, (with the possibility s, = —) such that
(a) for s < sy, (1.1), (1.2) has no solution in D(—r,),
(b) fors € (s, 511, (1.1), (1.2) has at least one solution u; € D(—r,). [For D(—r,) see (1.10).]

The proof of theorem 1 follows the approach proposed in [1], for periodic solutions.
However condition (3.1) is weaker than the corresponding one in [1], where it is assumed

S, x,0) > s, > f(¢,0,0) forallte Rand all x < —r,. (3.2)
Proof. Put
S, x,») forx = —r,
h(t, x,y) = 3.3
%, ) {f(t, —ry,¥) forx < —r, (3-3)

and consider the equation
u" + h(t,u,u’) = s. (3.4)

We can see that 4 satisfies the Bernstein-Nagumo conditions. Let s* = max{h(¢,0,0): ¢ € I}.
Then for s = s*, 0 is an upper solution and —r, is a lower solution for (3.4), (1.2). Then, by
lemma 3, problem (3.4), (1.2) has a solution u* with —r; < u*(f) < 0 on I. By (3.3), u*is a
solution for (1.1), (1.2) as well.
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Now, suppose first that (3.4), (1.2) has a solution u for some s <s; and show that
u € D(—r;). Let, on the contrary, min{u(¢):¢ € I} = u(¢;) < —r,. Then, by (1.2), u'(¢;) = 0,
u"(ty) = 0. On the other hand, from (3.1), (3.3), it follows that

u"(ty) = s = hity, ulty), 0) = s = flty, —=ry,0) = 5, = flty, —r1,0) <0,

a contradiction.

Next, let us show that if problem (3.4), (1.2) has a solution & for s = § < s,, then it has at
least one solution for each s € [, 5,]. From the above considerations it follows that 7 € D(—r,).
Further, @” + h(t, 4, d') = § < s and so @ is an upper solution for (3.4), (1.2), where s € [S$, s,].
Similarly, since A(t, —ry,0) > s, = s, —r, is a lower solution for (3.4), (1.2), where s € [S, s,].
Hence, we can use lemma 3 again to get that (3.4), (1.2) has at least one solution in D(—r,)
provided s € [$, s,]. From the latter it is a solution for (1.1), (1.2) as well.

Finally, taking s, = inf{s € R: (1.1), (1.2) has at least one solution in D(-r,)}, we have
sy < s* < s, and from the above considerations (a) and (b) follow. The theorem is proved.

THEOREM 2. Let f e C°( x R?) satisfy the Bernstein-Nagumo conditions and let there exist
numbers 7, > 0 and s, such that for all 7 € /

S, 0,0) > 8 > f(t; Fy, 0) (3.5)

Then there exists s, > s, (with the possibility s, = +o0) such that
(a) for s > s,, (1.1), (1.2) has no solution in D(—r,),
(b) for s € [s,,s), (1.1), (1.2) has at least one solution in D(r,).

Proof. Theorem 2 can be obtained from theorem 1 if f is replaced by —f and x by —x.

4. MULTIPLICITY RESULTS

THEOREM 3. Let f e C°( x R?) satisfy the Bernstein-Nagumo conditions and let there exist
ry,ry € (0, +), s, € R such that for all 7 € I the inequality (3.1) is fulfilled and for all 5 < s,
any solution u; of (1.1), (1.2) belonging to D(—r,) satisfies

u(t)y <ry for each 7 € 1. 4.1)

Then the number s, in theorem 1 is finite and

(a) for s < s,, problem (1.1), (1.2) has no solution in D(—r,),

(b) for s = 54, problem (1.1), (1.2) has at least one solution in D(—r,),

(c) for s € (sy,$,], problem (1.1), (1.2) has at least two solutions in D(—r,).

A similar theorem for a periodic problem is proved in [1], where the stronger condition (3.2)
is assumed instead of (3.1) and moreover the function f(., ., 0) is required to be bounded
below.

Theorem 3 is valid not only for problem (1.1), (1.2) but also for Neumann and periodic
problems.

Proof. Let us consider the equation (3.4) where A satisfies (3.3). Then A fulfills the
Bernstein-Nagumo conditions and, according to the proof of theorem 1, each solution of
problem (3.4), (1.2) belongs to D(—r,) provided s < s,.
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Now, proving theorem 3, we shall need several auxiliary propositions.

ProposiTION 1. There exist numbers o, M, o < s; < M, such that for any s < s; and any
solution u, of (3.4), (1.2)

o=<h(tu,0)<M for each t € I. 4.2)

Proof of proposition 1. Let s < s,. Then, by (4.1), any solution u, of (3.4), (1.2) fulfills
—rp<ult) <r for each ¢ € I 4.3)
Therefore we can put
o = min{h(t,x,0):tel,x e [—ry,r,]} and M = max{h(t,x,0):tel,x e [-r, ]}

From (3.1), (3.3) it follows that
g<s <M. (4.4)

ProposiTioN 2. There exists s, € [0, s;) such that for s < s,, problem (3.4), (1.2) has no
solution and for s € (5o, s;] it has at least one solution in D(—r,).

Proof of proposition 2. Suppose on the contrary that for s < ¢ problem (3.4), (1.2) has a
solution. Then, by (4.3), min{u(¢): ¢ € I} = u(ty) € (—ry,1y), u'(ty) =0, u”(t,) = 0. On the
other hand, by (4.2), u"(f,) < 0, which is impossible. Hence there exists s, > ¢ such that (3.4),
(1.2) has no solution for s < s,. By (4.4) and theorem 1 we can deduce s, < s, and (3.4), (1.2)
has at least one solution in D(—r,;) for each s € (s, 54].

From now on, let § € (sy,s;) be fixed and # denote a solution of (3.4), (1.2) for s = §.
Then & € D(—r,). Further, let fortel, x,ye R
—r; for x € =r,
alx) = {x for —r; = x < 4(¢)

u(r) for x > d(¢)
and
g(t, x,y) = f(t, a(x), y) — x + a(x). 4.5)

We shall consider the equation
u" + g(t,u,u’) = s. (4.6)
ProposITION 3. For each s € (§, 5,] any solution # of problem (4.6), (1.2) satisfies
-n<u<iu on /.
Proof of proposition 3. Let u be a solution of (4.6), (1.2) where s € (5, s;]. Suppose that for
some ¢ € I u(t) = i(t). Then there exists ¢, € (a, b) such that u(t,) = a(t,), u'(t,) = @'(ty),

u"(ty) < i#"(¢y). But from (4.5) we can get u"(¢,) > #"(t,), which is a contradiction. The
inequality —r; < u can be proved by similar arguments.
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Now, for an arbitrary fixed s < s;, let us consider the class of equations

u" — (1 — Nu + Alg(t, u,u’) — s] =0, (4.74)

where a real parameter A varies from O to 1.

ProposiTion 4. There exist positive numbers R, p such that for any s e [So, ;] and any
parameter A € [0, 1], every solution u of (4.74), (1.2) satisfies

lully < R, lu'lly < p.

Proof of proposition 4. Let us choose an arbitrary fixed s € [§,, s;] and a number R with
R > max{r, + s, — a,r, + M — sp}. (4.8)

Suppose that for some A € [0, 1] and for a corresponding solution u of (4.71), (1.2) we can
find £, € I such that max{|u(f)|: ¢ € I} = |u(ty)| = R. Let u(f,) = R. Then, in view of (1.2),
u'(ty) = 0, u"(ty) = 0 and by (4.74), (1.2), (4.8),

u'y) =z (1 - AR+ Alsg+ M+ R —r,] >0,
a contradiction. Similarly, if u(f)) < —R, then we get
O=u"(t) =—-0-MDR+As,—d-R+r)<0,

a contradiction. Therefore ||u|, < R.

Further, since f satisfies the Bernstein-Nagumo conditions, there exists a Nagumo function
wg and u"sgnu’ < wp(lu’]) + R+ S, on I and u” sgnu’ > —wg(Ju']) — R — S, on [a, c],
where S, = max(|s, — 1, |s,]}. We can easily check that & = wg + R + S, is a Nagumo
function, and so, using lemma 2 for r = R and w, = & we can find a number p = p(R, @) such
that |lu'l, < p.

Let us put

dom L= {u € C*(): u(a) = u(c), u(b) = u(d)},

L:domL - C°(0), uw~ u",
Ng:C'(I) = C),  u = h(-,u(*), u'()) — s,
G:C'() » C°U),  u = g(-,u(-), u'(+) — s,
O -CKD, uw u
Then problems (3.4), (1.2) or (4.6), (1.2) or (4.74), (1.2) can be written in the forms

(L + N)u =0, (4.9)

or
(L + G)u =0, (4.10)

or
(L — (1 = NI+ AG,)u = 0. 4.11)

Similarly to the periodic case, it can be proved (see [6]), that N; and G are L-compact on C'(/),
so that the coincidence degree method (see [2]) can be applied to problems (4.9)-(4.11).
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Let us consider two open bounded sets in C'(J):

Q ={ueC'U): —r <u(t) <) foreach t eI, |u'll, < p}
and
Q =ueC'(:luly <R, u'lly < p},

where R and p are numbers in proposition 4.

ProrosiTION 5. Let s € (5, 5,]. Then

di(L + N,,Q) = +1. (4.12)

Proof of proposition 5. Suppose that s € (5, 5,]. Then, by proposition 4, for any A € [0, 1],
each solution u of (4.11) belongs to Q, and so u ¢ dQ, . Further, for A = 0, (4.11) has the form
(L — Iu = 0 and since Ker(L — I) = {0}, we get

dy(L —1,Q)) = +1.

(See [2, proposition II.16].) Next, for A = 1, (4.11) is equal to (4.10) and so, by the property
of invariance under homotopy (see [2, p. 15]) we have

dill + G, Q) = +1.

Now, using propositions 3 and 4, we get for each solution u of (4.10) that u € Q. Therefore, by
the excession property [2, p. 15],

d;(L + G,, Q) = £1.
Since, Ny, = G, on Q, we get

d;(L + N;, Q) = £1.

ProrosiTION 6. Let s € (5, s,]. Then

di(L + N,, Q\Q) = +1. (4.13)

Proof of proposition 6. Clearly Q,\Q is a nonempty open bounded set in C'(I). Since
problem (4.9) has no solution for s < s, (see proposition 2), it is an immediate consequence of
the existence property (see [2, p. 16]) that, for s < s,

dp(L + Ny, &) = 0. (4.14)

On the other hand, by (4.3), for s, — 1 < s < 5, any solution « of (4.9) belongs to Q, and so
u ¢ 9€2 (see proposition 4). Letting s vary from s, — 1 to s; we can deduce by the property of
invariance under homotopy that (4.14) holds for each s € (s, — 1, s,]. Now, for s € (5, sil,
using (4.12) and (4.14), it follows from the additivity property of degree (see [2, p. 15]) that

di(L + N;, Q\Q) = +1.

Now, by means of the above propositions, we can complete the proof of theorem 3 as
follows.

Proposition 2 and relation (3.3), together with the fact that any solution of (3.4), (1.2)
belongs to D(—r,), imply assertion (a).
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The relations (4.12) and (4.13) imply that, for s € (5, s;], equation (4.9) has at least one
solution in Q and at least another one in Q;\Q. Since any solution of (4.9) belongs to D(—ry)
and § is arbitrary in (s,, 5;), conclusion (c) is proved.

Finally, to prove (b), let (,)T be a sequence in (s,, s;) which converges to s, and let u, be a
solution of (4.9) with s = ¢,. Using proposition 4, one gets (u,)7 bounded in C'(J) and hence
in C*(I) by the equation. By Ascoli’s theorem and the integrated form of the equation, one gets
the existence of a converging subsequence of (#,)7 whose limit is a solution u, of (4.9) with
s = 8. Clearly, uy € D(—r;) is a solution of (1.1), (1.2). Theorem 3 is proved.

Similarly we can prove theorem 4.

THEOREM 4. Let f e C°(I x R?) satisfy the Bernstein-Negumo conditions and let there exist
ri,ry € (0, +), s; € R such that for all 7 € I the inequality (3.5) is fulfilled and for all s > s,
any solution u of (1.1), (1.2) belonging to D(r,) satisfies

—r; < uy () for each € I.

Then the number s, in theorem 2 is finite and

(a) for s > s,, problem (1.1), (1.2) has no solution in D(r,),

(b) for s = s, problem (1.1), (1.2) has at least one solution in D(r,),

(c) fors € [sy,58,), problem (1.1), (1.2) has at least two solutions in D(r,).
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