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Abstract

The paper investigates the structure and properties of the set S of
all positive solutions to the singular Dirichlet boundary value problem
u′′(t) + a

t u
′(t) − a

t2
u(t) = f(t, u(t), u′(t)), u(0) = 0, u(T ) = 0. Here a ∈

(−∞,−1) and f satisfies the local Carathéodory conditions on [0, T ]×D,
where D = [0,∞) × R. It is shown that Sc = {u ∈ S : u′(T ) = −c} is
nonempty and compact for each c ≥ 0 and S = ∪c≥0Sc. The uniqueness
of the problem is discussed. Having a special case of the problem, we
introduce an ordering in S showing that the difference of any two solutions
in Sc, c ≥ 0, keeps its sign on [0, T ]. The application on the equation
v′′(t) + k

t v
′(t) = ψ(t)+g(t, v(t)), k ∈ (1,∞), is given here.
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1 Introduction

We consider the singular Dirichlet boundary value problem

u′′(t) +
a

t
u′(t)− a

t2
u(t) = f(t, u(t), u′(t)), (1)

u(0) = 0, u(T ) = 0, (2)

where a ∈ (−∞,−1). For D = [0,∞) × R we assume that f satisfies the local
Carathéodory conditions on [0, T ]×D (f ∈ Car([0, T ]×D)), that is
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(i) f(·, x, y) : [0, T ] → R is measurable for all (x, y) ∈ D,
(ii) f(t, ·, ·) : D → R is continuous for a.e. t ∈ [0, T ],
(iii) for each compact set U ⊂ D there exists a function mU ∈ L1[0, T ] such

that
|f(t, x, y)| ≤ mU(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ U .

Equation (1) has a time singularity at t = 0 due to the differential operator on
its left hand side. This operator has an equivalent form (t−a(tau)′)′ and, after the
substitution x(t) = tau(t) it takes the form (t−ax′)′. It is shown in [18], that such
type of operators appears cf. in the study of phase transitions of Van der Waals
fluids [4], [10], [16], [25], in population genetics, where it appears in models for
the spatial distribution of the genetic composition of a population [8], [9], in the
homogenenous nucleation theory [1], in relativistic cosmology for description of
particles which can be treated as domains in the universe [20], in the nonlinear
field theory [11], in particular, when describing bubbles generated by scalar fields
of the Higgs type in the Minkowski spaces [7].

We say that u : [0, T ] → R is a positive solution of problem (1), (2) if u ∈
AC1[0, T ], u > 0 on (0, T ), u satisfies the boundary conditions (2) and (1) holds
for a.e. t ∈ [0, T ].

Clearly, for each positive solution u of problem (1), (2) there exists c ≥ 0 such
that

u′(T ) = −c. (3)

We denote the set of all positive solutions of problem (1), (2), (3) by Sc and prove
that Sc is nonempty and compact for each c ≥ 0.

In literature, there is a lot of results about the existence of solutions of various
singular problems, for monographs see e.g. [2], [3], [14], [15], [21], [22], [23]. Here,
we provide besides the solvability of problem (1), (2), the deeper study of the set
of all its positive solutions. Our main goal is to prove the properties of the
set S = ∪c≥0Sc. In particular, having a special case of (1), we introduce some
ordering in S showing that the difference of any two solutions in Sc, c ≥ 0, keeps
its sign on [0, T ]. Then we prove that there exist minimal and maximal solutions
uc,min, uc,max ∈ Sc for each c ≥ 0. If the interior of the set {(t, x) ∈ R2 : 0 ≤
t ≤ T, uc,min(t) ≤ x ≤ uc,max(t)} is nonempty, we prove the interesting result
that this interior is covered by graphs of other solutions of Sc for each c > 0.
The uniqueness of solutions of problem (1), (2), (3) is discussed and we prove two
uniqueness results. The first one is generic and need not the Lipschitz continuity
of f . At the end of the paper we provide the application of the results obtained for
solutions of problem (1), (2) onto the equation v′′+ k

t
v′ = ψ(t)+g(t, v), satisfying

v(T ) = 0. In contrast to the literature, [12], [13], [17], [19], [24], our solutions are
unbounded at the left end point t = 0 of [0, T ] (see condition (25)).

We work with the following conditions on f in (1).

(H1) f ∈ Car([0, T ]×D), where D = [0,∞)× R.
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(H2) There exists ϕ ∈ L1[0, T ] such that

0 < ϕ(t) ≤ f(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ D.

(H3) For a.e. t ∈ [0, T ] and all (x, y) ∈ D the estimate

f(t, x, y) ≤ h(t, x, |y|),

is fulfilled, where h ∈ Car([0, T ] × [0,∞)2), h(t, x, z) is nondecreasing in
the variables x, z, and

lim
x→∞

1

x

∫ T

0
h(t, x, x) dt = 0.

Let us by L1[0, T ] denote the set of functions which are (Lebesgue) integrable
on [0, T ] equipped with the norm ‖x‖1 =

∫ T
0 |x(t)| dt. Moreover, let us by C[0, T ]

and C1[0, T ] denote the set of functions being continuous on [0, T ], and hav-
ing continuous first derivative on [0, T ], respectively. The norm on C[0, T ] and
C1[0, T ] is defined as ‖x‖∞ = maxt∈[0,T ] |x(t)| and ‖x‖∞ + ‖x′‖∞, respectively.
Further, we denote by AC1[0, T ] the set of functions which have absolutely con-
tinuous first derivatives on [0, T ], while AC1

loc(0, T ] is the set of functions having
absolutely continuous derivatives on each compact subinterval of (0, T ]. Finally,
for J ⊂ R we denote by PC1(J) the set of functions continuous on J and having
piecewise continuous derivatives on J .

The paper is organized as follows. Section 2 is devoted to the study of three
operators associated to problem (1), (2). In Section 3 we prove the existence and
properties of positive solutions of (1), (2). Section 4 deals with the special case
of problem (1), (2) and presents the structure and further properties of the set of
all positive solutions. Section 5 contains some blow-up results. Throughout the
paper a ∈ (−∞,−1).

2 Operators

In order to prove the properties of the sets S and Sc, c ≥ 0, we will introduce
three operators H, Kt0,A and Lc acting on C1[0, T ]. To do this we will need an
auxiliary function f̃ : [0, T ]× R2 → R given by the formula

f̃(t, x, y) =

{
f(t, x, y) if x ≥ 0
f(t, 0, y) if x < 0.

Under conditions (H1)− (H3), f̃ satisfies
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(H̃1) f̃ ∈ Car([0, T ]× R2).

(H̃2) There exists ϕ ∈ L1[0, T ] such that

0 < ϕ(t) ≤ f̃(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2.

(H̃3) For a.e. t ∈ [0, T ] and all (x, y) ∈ R2 the estimate

f̃(t, x, y) ≤ h(t, |x|, |y|),

is fulfilled, where h is given in (H3).

Now, we put

(Hx)(t) = t
∫ T

t
s−a−2

(∫ T

s
ξa+1f̃(ξ, x(ξ), x′(ξ)) dξ

)
ds. (4)

Further, for each t0 ∈ (0, T ) and A ≥ 0 we define

(Kt0,Ax)(t) =
t

t0

T−a−1 − t−a−1

T−a−1 − t−a−1
0

max{0, A− (Hx)(t0)}+ (Hx)(t), (5)

and for each c ≥ 0 we define

(Lcx)(t) = t
cT a+1

|a+ 1|
(T−a−1 − t−a−1) + (Hx)(t). (6)

The following lemmas will be needed in our proofs.

Lemma 1 Let p ∈ L1[0, T ]. Then the inequalities∣∣∣∣∣t−a−1
∫ T

t
sa+1p(s) ds

∣∣∣∣∣ ≤
∫ T

t
|p(s)| ds, (7)

∣∣∣∣∣
∫ T

t
s−a−2

(∫ T

s
ξa+1p(ξ) dξ

)
ds

∣∣∣∣∣ ≤ 1

|a+ 1|

∫ T

t
|p(s)| ds (8)

are fulfilled for t ∈ [0, T ].

Proof. Inequality (7) follows from the relation∣∣∣∣∣t−a−1
∫ T

t
sa+1p(s) ds

∣∣∣∣∣ ≤ t−a−1
∫ T

t
sa+1|p(s)| ds ≤

∫ T

t
|p(s)| ds.

Since ∣∣∣∣∣
∫ T

t
s−a−2

(∫ T

s
ξa+1p(ξ) dξ

)
ds

∣∣∣∣∣ ≤
∫ T

t
s−a−2

(∫ T

s
ξa+1|p(ξ)| dξ

)
ds
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and integration by parts gives (note that a+ 1 < 0)

∫ T

t
s−a−2

(∫ T

s
ξa+1|p(ξ)| dξ

)
ds =

t−a−1

a+ 1

∫ T

t
sa+1|p(s)| ds− 1

a+ 1

∫ T

t
|p(s)| ds

≤ − 1

a+ 1

∫ T

t
|p(s)| ds =

1

|a+ 1|

∫ T

t
|p(s)| ds,

we see that (8) holds for t ∈ [0, T ]. 2

Lemma 2 Let (H1), (H2) hold. Then
(a) H : C1[0, T ] → C1[0, T ],
(b) H is completely continuous.

Proof.
(a) Let x ∈ C1[0, T ]. We see that (Hx) ∈ C1(0, T ]. Since f̃ fulfils conditions

(H̃1) and (H̃2), the functions

ϕ1(t) :=
∫ T

t
s−a−2

(∫ T

s
ξa+1f̃(ξ, x(ξ), x′(ξ)) dξ

)
ds,

ϕ2(t) :=
∫ T

t
ξa+1f̃(ξ, x(ξ), x′(ξ)) dξ

are continuous, positive and decreasing on (0, T ]. Hence there exist limt→0+ ϕ1(t),
limt→0+ ϕ2(t) and, by (7), (8),

0 ≤ lim
t→0+

ϕ1(t) ≤
1

|a+ 1|

∫ T

0
f̃(ξ, x(ξ), x′(ξ)) dξ,

0 ≤ lim
t→0+

t−a−1ϕ2(t) ≤
∫ T

0
f̃(ξ, x(ξ), x′(ξ)) dξ.

Since (Hx)(t) = tϕ1(t) and (Hx)′(t) = ϕ1(t) − t−a−1ϕ2(t) for t ∈ (0, T ], we
conclude that (Hx) ∈ C1[0, T ].

(b) We start to prove that H is continuous. To this end let {xn} ⊂ C1[0, T ]
be convergent to x in C1[0, T ]. Denote

rn(t) = f̃(t, xn(t), x′n(t))− f̃(t, x(t), x′(t)) for a.e. t ∈ [0, T ] and all n ∈ N.

Then (7), (8) yield

|(Hxn)(t)− (Hx)(t)| ≤ t
∫ T

t
s−a−2

(∫ T

s
ξa+1|rn(ξ)| dξ

)
ds ≤ T‖rn‖1

|a+ 1|
,

|(Hxn)′(t)−(Hx)′(t)| ≤
∫ T

t
s−a−2

(∫ T

s
ξa+1|rn(ξ)| dξ

)
ds+t−a−1

∫ T

t
sa+1|rn(s)| ds
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≤
(

1

|a+ 1|
+ 1

)
‖rn‖1

for t ∈ [0, T ] and n ∈ N. In particular,

‖Hxn −Hx‖∞ ≤ T‖rn‖1

|a+ 1|
,

‖(Hxn)′ − (Hx)′‖∞ ≤
(

1

|a+ 1|
+ 1

)
‖rn‖1

for n ∈ N. If we prove that limn→∞ ‖rn‖1 = 0, then the above inequalities
guarantee that H is a continuous operator. From the fact that f̃ ∈ Car([0, T ]×
R2) and {xn} is bounded in C1[0, T ], it follows that

|f̃(t, xn(t), x′n(t)| ≤ ρ(t) for a.e. t ∈ [0, T ] and all n ∈ N,

where ρ ∈ L1[0, T ]. Since

lim
n→∞

f̃(t, xn(t), x′n(t)) = f̃(t, x(t), x′(t)) for a.e. t ∈ [0, T ],

the Lebesgue dominated convergence theorem yields limn→∞ ‖rn‖1 = 0.
Now, we choose a bounded set Ω ⊂ C1[0, T ] and prove that the set H(Ω) is

relatively compact in C1[0, T ]. The boundedness of Ω implies the existence of
µ ∈ L1[0, T ] such that

|f̃(t, x(t), x′(t))| ≤ µ(t) for a.e. t ∈ [0, T ] and all x ∈ Ω.

Therefore, by (7), (8), we get

|(Hx)(t)| ≤ t
∫ T

t
s−a−2

(∫ T

s
ξa+1µ(ξ) dξ

)
ds ≤ T‖µ‖1

|a+ 1|
,

|(Hx)′(t)| ≤
∫ T

t
s−a−2

(∫ T

s
ξa+1µ(ξ) dξ

)
ds+ t−a−1

∫ T

t
sa+1µ(s) ds

≤
(

1

|a+ 1|
+ 1

)
‖µ‖1

for t ∈ [0, T ] and x ∈ Ω. We have proved that the set H(Ω) is bounded in
C1[0, T ]. We now show that the set {x′ : x ∈ H(Ω)} is equicontinuous on [0, T ].
For a.e. t ∈ [0, T ] and all x ∈ Ω we have that

|(Hx)′′(t)| ≤ t−a−2
∫ T

t
sa+1µ(s) ds+ |a+ 1|t−a−2

∫ T

t
sa+1µ(s) ds+ µ(t).

Since, by (8),

t−a−2

(∫ T

t
sa+1µ(s) ds

)
∈ L1[0, T ],
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there exists a majorant function µ∗ ∈ L1[0, T ] such that |(Hx)′′(t)| ≤ µ∗(t) for
a.e. t ∈ [0, T ] and all x ∈ Ω. As a result the set {x′ : x ∈ H(Ω)} is equicontinuous
on [0, T ] and consequently, the set H(Ω) is relatively compact in C1[0, T ] by the
Arzelà-Ascoli theorem. 2

Lemma 3 Let (H1), (H2) hold. Then
(a) the operator Kt0,A : C1[0, T ] → C1[0, T ] is completely continuous for each

t0 ∈ (0, T ) and A ≥ 0;
(b) the operator Lc : C1[0, T ] → C1[0, T ] is completely continuous for each

c ≥ 0.

Proof.
(a) Let us choose t0 ∈ (0, T ) and A ≥ 0. Since H is completely continuous

by Lemma 2, it suffices to prove that an operator Q : C1[0, T ] → C1[0, T ] given
by

(Qx)(t) =
t

t0

T−a−1 − t−a−1

T−a−1 − t−a−1
0

max{0, A− (Hx)(t0)}

is completely continuous. The continuity of Q follows from the inequality

|max{0, A− (Hx)(t0)} −max{0, A− (Hy)(t0)}| ≤ |(Hx)(t0)− (Hy)(t0)|

for x, y ∈ C1[0, T ]. Let Ω ⊂ C1[0, T ] be bounded. Then the set {(Hx)(t0) : x ∈
Ω} is bounded in R, and therefore there exists a positive constant S such that
0 ≤ max{0, A− (Hx)(t0)} ≤ S for x ∈ Ω. Hence the relations

0 ≤ (Qx)(t) ≤ T−aS

t0(T−a−1 − t−a−1
0 )

,

|(Qx)′(t)| =

∣∣∣∣∣ T−a−1 + at−a−1

t0(T−a−1 − t−a−1
0 )

max{0, A− (Hx)(t0)}
∣∣∣∣∣

≤ T−a−1(|a|+ 1)S

t0(T−a−1 − t−a−1
0 )

,

|(Qx)′(t2)− (Qx)′(t1)| =

∣∣∣∣∣ a(t
−a−1
2 − t−a−1

1 )

t0(T−a−1 − t−a−1
0 )

max{0, A− (Hx)(t0)}
∣∣∣∣∣

≤ |a||t−a−1
2 − t−a−1

1 |S
t0(T−a−1 − t−a−1

0 )

hold for t, t1, t2 ∈ [0, T ] and x ∈ Ω. As a result the set {Qx : x ∈ Ω} is bounded
in C1[0, T ], and since the function t−a−1 is continuous on [0, T ] and therefore it is
uniformly continuous on this interval, the set {(Qx)′ : x ∈ Ω} is equicontinuous
on [0, T ]. By the Arzelà-Ascoli theorem, the set {Qx : x ∈ Ω} is relatively
compact in C1[0, T ].

(b) The assertion is a consequence of Lemma 2. 2
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Lemma 4 Let (H1) - (H3) hold. Then for each t0 ∈ (0, T ) and each A ≥ 0, the
set

M = {x ∈ C1[0, T ] : x = λKt0,Ax for some λ ∈ [0, 1]}

is bounded.

Proof. Let us fix t0 ∈ (0, T ) and A ≥ 0 and let x = λKt0,Ax for some λ ∈ [0, 1].
Then

x′(t) = λ
T−a−1 + at−a−1

t0(T−a−1 − t−a−1
0 )

max{0, A− (Hx)(t0)}

+ λ
∫ T

t
s−a−2

(∫ T

s
ξa+1f̃(ξ, x(ξ), x′(ξ)) dξ

)
ds

− λt−a−1
∫ T

t
sa+1f̃(s, x(s), x′(s)) ds, t ∈ [0, T ].

Since f̃ fulfils (H̃3), we get

|x′(t)| ≤ T−a−1(|a|+ 1)

t0(T−a−1 − t−a−1
0 )

(
A+ t0

∫ T

t0
s−a−2

(∫ T

s
ξa+1h(ξ, |x(ξ)|, |x′(ξ)|) dξ

)
ds

)

+
∫ T

t
s−a−2

(∫ T

s
ξa+1h(ξ, |x(ξ)|, |x′(ξ)|) dξ

)
ds

+ t−a−1
∫ T

t
sa+1h(s, |x(s)|, |x′(s)|) ds, t ∈ [0, T ].

Hence, by (7) and (8),

|x′(t)| ≤ T−a−1(|a|+ 1)

t0(T−a−1 − t−a−1
0 )

(
A+

T

|a+ 1|

∫ T

0
h(ξ, ‖x‖∞, ‖x′‖∞) dξ

)

+
1

|a+ 1|

∫ T

0
h(ξ, ‖x‖∞, ‖x′‖∞) dξ

+
∫ T

0
h(ξ, ‖x‖∞, ‖x′‖∞) dξ, t ∈ [0, T ].

Therefore, since x(t) =
∫ t
0 x

′(s) ds implies ‖x‖∞ ≤ T‖x′‖∞, we have

1 ≤ 1

‖x′‖∞

[
T−a−1(|a|+ 1)

t0(T−a−1 − t−a−1
0 )

(
A+

T

|a+ 1|

∫ T

0
h(ξ, T‖x′‖∞, ‖x′‖∞) dξ

)

+

(
1

|a+ 1|
+ 1

)∫ T

0
h(ξ, T‖x′‖∞, ‖x′‖∞) dξ

]
.
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Since

h(t, Tw,w) ≤

 h(t, w, w) if T ≤ 1,

h(t, Tw, Tw) if T > 1,

and since, by (H3),

lim
w→∞

1

νw

∫ T

0
h(ξ, νw, νw) dξ = 0 for all ν > 0,

we have

lim
w→∞

1

w

∫ T

0
h(ξ, Tw,w) dξ = 0.

Consequently,

lim
w→∞

1

w

[
T−a−1(|a|+ 1)

t0(T−a−1 − t−a−1
0 )

(
A+

T

|a+ 1|

∫ T

0
h(ξ, Tw,w) dξ

)

+

(
1

|a+ 1|
+ 1

)∫ T

0
h(ξ, Tw,w) dξ

]
= 0,

which implies that there exists S > 0 such that

1

w

[
T−a−1(|a|+ 1)

t0(T−a−1 − t−a−1
0 )

(
A+

T

|a+ 1|

∫ T

0
h(ξ, Tw,w) dξ

)

+

(
1

|a+ 1|
+ 1

)∫ T

0
h(ξ, Tw,w) dξ

]
< 1 for each w ≥ S.

This gives that

‖x′‖∞ < S, ‖x‖∞ < ST for each x ∈M.

2

Lemma 5 Let (H1) - (H3) hold. Then for each 0 ≤ Q <∞, the set

N = {x ∈ C1[0, T ] : x = λLcx for some λ ∈ [0, 1] and some c ∈ [0, Q]}

is bounded in C1[0, T ].

Proof. Let us fix 0 ≤ Q < ∞ and let x = λLcx for some λ ∈ [0, 1] and some
c ∈ [0, Q]. Then

x′(t) = λ
cT a−1

|a+ 1|
(T−a−1 + at−a−1)

+ λ
∫ T

t
s−a−2

(∫ T

s
ξa+1f̃(ξ, x(ξ), x′(ξ)) dξ

)
ds

− λt−a−1
∫ T

t
sa+1f̃(s, x(s), x′(s)) ds, t ∈ [0, T ].
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By (7) and (8) and since f̃ fulfils (H̃3), we get

|x′(t)| ≤ Q(|a|+ 1)

T 2|a+ 1|

+

(
1

|a+ 1|
+ 1

)∫ T

0
h(ξ, ‖x‖∞, ‖x′‖∞) dξ, t ∈ [0, T ].

Since ‖x‖∞ ≤ T‖x′‖∞, we have

1 ≤ 1

‖x′‖∞

[
Q(|a|+ 1)

T 2|a+ 1|
+

(
1

|a+ 1|
+ 1

)∫ T

0
h(ξ, T‖x′‖∞, ‖x′‖∞) dξ

]
.

Due to (H3), we deduce as in the proof of Lemma 4, that there exists W > 0
such that

‖x′‖∞ < W, ‖x‖∞ < WT for each x ∈ N .

2

From Lemma 5 it follows immediately

Corollary 1 Let (H1) - (H3) hold. Then for each c ≥ 0, the set

N c = {x ∈ C1[0, T ] : x = λLcx for some λ ∈ [0, 1]}

is bounded in C1[0, T ].

3 Structure of the set of positive solutions of

problem (1), (2)

We are now in the position to prove the existence of a positive solution of problem
(1), (2), (3). This result is proved by the following nonlinear alternative of Leray-
Schauder type which follows for example from [6, Corollary 8.1].

Lemma 6 Let X be a Banach space and let F : X → X be a completely continu-
ous operator. Then either the equation λFx = x has a solution for each λ ∈ [0, 1]
or the set

{x ∈ X : λFx = x for some λ ∈ (0, 1)}

is unbounded.
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Theorem 1 Let (H1) − (H3) hold. Then for each c ≥ 0 there exists a positive
solution of problem (1), (2), (3).

Proof. Fix c ≥ 0 and put X = C1[0, T ], F = Lc. By Lemmas 3(b), 6 and by
Corollary 1, the operator Lc has a fixed point u ∈ C1[0, T ]. That is

u(t) = t
cT a+1

|a+ 1|
(T−a−1 − t−a−1)

+ t
∫ T

t
s−a−2

(∫ T

s
ξa+1f̃(ξ, u(ξ), u′(ξ)) dξ

)
ds, t ∈ [0, T ].

Hence u(0) = 0, u(T ) = 0 and, due to (H̃2), u(t) > 0 for t ∈ (0, T ). Therefore

f̃(t, u(t), u′(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Consequently,

u′(t) =
cT a+1

|a+ 1|
(T−a−1 + at−a−1)

+
∫ T

t
s−a−2

(∫ T

s
ξa+1f(ξ, u(ξ), u′(ξ)) dξ

)
ds

− t−a−1
∫ T

t
sa+1f(s, u(s), u′(s)) ds, t ∈ [0, T ],

which yields (3). Since

u′′(t) = caT a+1t−a−2 + at−a−2
∫ T

t
ξa+1f(ξ, u(ξ), u′(ξ)) dξ + f(t, u(t), u′(t)) (9)

for a.e. t ∈ [0, T ], inequality (8) gives u′′ ∈ L1[0, T ], and the direct computation
shows that u satisfies equation (1) for a.e. t ∈ [0, T ]. Thus u is a positive solution
of problem (1), (2), (3). 2

Recall that Sc is the set of all positive solutions of problem (1), (2), (3). By
Theorem 1, for each c ≥ 0, the set Sc is nonempty. Due to S = ∪c≥0Sc, the
cardinality of the set S is continuum. The following result gives the important
property of solutions of problem (1), (2), (3) that is used in further investigation
of the set S.

Lemma 7 Let (H1) - (H3) hold. Then for each 0 ≤ K ≤ Q < ∞, the set⋃
K≤c≤Q Sc is compact in C1[0, T ].
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Proof. Let us choose 0 ≤ K ≤ Q < ∞. We start to show that u ∈ Sc (i.e., u
is a positive solution of problem (1), (2), (3)) if and only if u is a fixed point of
operator Lc.

(⇒) Let u be a fixed point of Lc. Then, due to the proof of Theorem 1, u is
a positive solution of problem (1), (2), (3).

(⇐) Let u be a positive solution of problem (1), (2), (3). Since u > 0 on (0, T ),
we have

f̃(t, u(t), u′(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

We can check that(
ta+2

(
u(t)

t

)′)′
= ta+1

(
u′′(t) +

a

t
u′(t)− a

t2
u(t)

)
for a.e. t ∈ [0, T ],

and therefore the following equality(
ta+2

(
u(t)

t

)′)′
= ta+1f̃(t, u(t), u′(t)) for a.e. t ∈ [0, T ]

holds. We get by integration and by (2), (3) that

−cT a+1t−a−2 −
(
u(t)

t

)′
= t−a−2

∫ T

t
ξa+1f̃(ξ, u(ξ), u′(ξ))dξ, t ∈ [0, T ],

since

T a+2

(
u(t)

t

)′
t=T

= −cT a+1.

The next integration over [t, T ] yields that

u(t) = t
cT a+1

|a+ 1|
(T−a−1 − t−a−1)

+ t
∫ T

t
s−a−2

(∫ T

s
ξa+1f̃(ξ, u(ξ), u′(ξ)) dξ

)
ds, t ∈ [0, T ].

Therefore u is a fixed point of operator Lc.
Now, we are in the position to prove that the set

⋃
K≤c≤Q Sc is compact in

C1[0, T ]. Since Sc is the set of all fixed points of the operator Lc, the boundedness
of
⋃

K≤c≤Q Sc in C1[0, T ] follows from Lemma 5 with λ = 1 in N . Therefore (H1)
gives that there exists µ∗ ∈ L1[0, T ] such that

|f(t, u(t), u′(t))| ≤ µ∗(t) for a.e. t ∈ [0, T ] and all u ∈
⋃

K≤c≤Q

Sc. (10)

Since (9) holds for u ∈ Sc, we have by (10),

|u′′(t)| ≤ Q|a|T a+1t−a−2 + |a|t−a−2
∫ T

t
ξa+1µ∗(ξ) dξ + µ∗(t)

for a.e. t ∈ [0, T ] and all u ∈
⋃

K≤c≤Q

Sc.


12



By inequality (8),

t−a−2
∫ T

t
ξa+1µ∗(ξ) dξ ∈ L1[0, T ],

and hence there exists a majorant function p∗ ∈ L1[0, T ] such that

|u′′(t)| ≤ p∗(t) for a.e. t ∈ [0, T ] and all u ∈
⋃

K≤c≤Q

Sc.

As a result, the set
{
u′ : u ∈ ⋃K≤c≤Q Sc

}
is equicontinuous on [0, T ]. We have

proved that
⋃

K≤c≤Q Sc is relatively compact in C1[0, T ].
It remains to prove that

⋃
K≤c≤Q Sc is closed in C1[0, T ]. To this end consider

a sequence {un} ⊂
⋃

K≤c≤Q Sc converging in C1[0, T ] to a function u ∈ C1[0, T ].
Note that un ∈

⋃
K≤c≤Q Sc implies un ∈ Scn for some cn ∈ [K,Q] and so, by the

definition of the set Sc, cn = −u′n(T ). Thus

un(t) = −tu
′
n(T )T a+1

|a+ 1|
(T−a−1 − t−a−1)

+ t
∫ T

t
s−a−2

(∫ T

s
ξa+1f(ξ, un(ξ), u′n(ξ)) dξ

)
ds, t ∈ [0, T ], n ∈ N.

Letting n→∞ and using (10) and the Lebesgue dominated convergence theorem,
we get

u(t) = −tu
′(T )T a+1

|a+ 1|
(T−a−1 − t−a−1)

+ t
∫ T

t
s−a−2

(∫ T

s
ξa+1f(ξ, u(ξ), u′(ξ)) dξ

)
ds, t ∈ [0, T ].

Since −u′n(T ) ∈ [K,Q], we have −u′(T ) ∈ [K,Q], and therefore it follows from
the last equality that u ∈ S−u′(T ) ⊂

⋃
K≤c≤Q Sc. Consequently

⋃
K≤c≤Q Sc is

closed in C1[0, T ]. 2

If K = Q = c in Lemma 7, then the following result holds.

Corollary 2 Let (H1) - (H3) hold. Then for each c ≥ 0, the set Sc is compact
in C1[0, T ].

In view of Corollary 2, we can define a bounded function

β(t) = max{u(t) : u ∈ S0} for t ∈ [0, T ]. (11)

We prove that for each t0 ∈ (0, T )

{u(t0) : u ∈ S \ S0}⊃(β(t0),∞). (12)

This result is done in the next theorem.
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Theorem 2 Let (H1)− (H3) hold. Then for each t0 ∈ (0, T ) and each A > β(t0)
there exists a positive solution u of problem (1), (2) satisfying u(t0) = A.

Proof. Fix t0 ∈ (0, T ) and choose A > β(t0). Put X = C1[0, T ], F = Kt0,A. By
Lemmas 3(a), 4 and 6, the operator Kt0,A has a fixed point u ∈ C1[0, T ]. That is

u(t) =
t

t0

T−a−1 − t−a−1

T−a−1 − t−a−1
0

max{0, A− (Hu)(t0)}+ (Hu)(t) t ∈ [0, T ],

where H is given in (4). We will consider two cases.
Case 1. Let max{0, A − (Hu)(t0)} = 0. That is A ≤ (Hu)(t0). Then u(t) =

(Hu)(t), which yields u ∈ S0, according to the proof Theorem 1. So, by (11),
u(t0) = (Hu)(t0) ≤ β(t0) < A, a contradiction.

Case 2. Let max{0, A− (Hu)(t0)} > 0. That is A > (Hu)(t0). Then

u(t) =
t

t0

T−a−1 − t−a−1

T−a−1 − t−a−1
0

(A− (Hu)(t0)) + (Hu)(t), t ∈ [0, T ].

Hence u(t) > 0 for t ∈ (0, T ), u(0) = 0, u(T ) = 0 and u(t0) = A − (Hu)(t0)) +
(Hu)(t0) = A. Further,

u′(t) =
T−a−1 + at−a−1

t0(T−a−1 − t−a−1
0 )

(A− (Hu)(t0)) + (Hu)′(t), t ∈ [0, T ],

u′′(t) =
a(−a− 1)t−a−2

t0(T−a−1 − t−a−1
0 )

(A− (Hu)(t0)) + (Hu)′′(t) for a.e. t ∈ [0, T ].

Since the direct computation gives

u′′(t) +
a

t
u′(t)− a

t2
u(t) = (Hu)′′(t) +

a

t
(Hu)′(t)− a

t2
(Hu)(t)

= f̃(t, u(t), u′(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u is a positive solution of problem (1), (2) satisfying u(t0) = A. 2

Remark 1 Note that, due to Corollary 2, for each t0 ∈ (0, T ) and each c ≥ 0
the set {u(t0) : u ∈ Sc} is a compact set in R.

Example 1 Let us choose α, η ∈ [0, 1) and for a.e. t ∈ [0, T ] and all x ∈
[0,∞), y ∈ R, define a function f by

f(t, x, y) = h1(t) + h2(t, x, y)x
α + h3(t, x, y)|y|η.

Here h1 ∈ L1[0, T ], h1(t) > 0 a.e. on [0, T ], h2, h3 are nonnegative, bounded and
continuous on [0, T ] × [0,∞) × R. Then f satisfies conditions (H1) − (H3). To
check it we take Mi = sup{hi(t, x, y) : t ∈ [0, T ], x ∈ [0,∞), y ∈ R}, i = 2, 3,
ϕ(t) = h1(t) a.e. on [0, T ], h(t, x, y) = ϕ(t) + M1x

α + M2y
η for t ∈ [0, T ],

x ∈ [0,∞), y ∈ [0,∞).
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In order to prove that the set Sc contains only one solution of problem
(1), (2), (3) we will use the assumption

(H4) f(t, ·, ·) ∈ Liploc(D), for a.e. t ∈ [0, T ],

which means that for each compact set U ⊂ D there exists a function `U ∈ L1[0, T ]
such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ `U(t)
2∑

i=1

|xi − yi|

for a.e. t ∈ [0, T ] and all (x1, x2), (y1, y2) ∈ U .

Theorem 3 Let (H1)− (H4) hold. Then the set Sc is one-point for each c ≥ 0.

Proof. Choose an arbitrary c ≥ 0. Theorem 1 guarantees that the set Sc is
nonempty. Condition (H4) implies that a solution u of equation (1) on [0, T ]
satisfying conditions u(T ) = 0, u′(T ) = −c is unique. 2

Example 2 Let hi ∈ L1[0, T ], hi(t) > 0 a.e. on [0, T ], i ∈ {1, 2, 3}. For a.e.
t ∈ [0, T ] and all x ∈ [0,∞), y ∈ R, define a function f by

f(t, x, y) = h1(t) + h2(t)g1(x) + h3(t)g2(y),

where g1 and g2 satisfy

g1 ∈ PC1[0,∞), g2 ∈ PC1(R), lim
x→∞

g1(x)

x
= 0, lim

y→±∞

g2(y)

y
= 0.

Then f satisfies conditions (H1)− (H4).

4 Special case of problem (1), (2)

In this section we consider the special case of equation (1), where the function f
does not depend on u′, that is f(t, x, y) = f(t, x) and

u′′(t) +
a

t
u′(t)− a

t2
u(t) = f(t, u(t)). (13)

Now we will work with the following assumptions on f :

(H∗
1 ) f ∈ Car([0, T ]× [0,∞)).

(H∗
2 ) 0 < f(t, x) for a.e. t ∈ [0, T ] and all x ∈ [0,∞).
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(H∗
3 ) f(t, x) is increasing in x for a.e. t ∈ [0, T ] and

lim
x→∞

1

x

∫ T

0
f(t, x) dt = 0.

Conditions (H∗
1 )−(H∗

3 ) guarantee that assumptions (H1)−(H3) are fulfilled with
ϕ(t) = f(t, 0) for a.e. t ∈ [0, T ]. Therefore all results of Section 3 are applicable
on problem (13), (2). For simplicity we denote again by S the set of all positive
solutions of problem (13), (2) and by Sc the set {u ∈ S : u′(T ) = −c}, where
c ≥ 0. Note that if u ∈ Sc, then

u(t) = t
cT a+1

|a+ 1|
(T−a−1 − t−a−1)

+ t
∫ T

t
s−a−2

(∫ T

s
ξa+1f(ξ, u(ξ)) dξ

)
ds, t ∈ [0, T ].

Lemma 8 Let (H∗
1 ) − (H∗

3 ) hold. Assume that c1 > c2 ≥ 0, ui ∈ Sci
, i = 1, 2.

Then
u1(t) > u2(t) for t ∈ (0, T ).

Proof. Since c1 > c2, u
′
1(T ) = −c1, u′2(T ) = −c2 and u1(T ) = u2(T ) = 0, there

exists δ > 0 such that u1(t) > u2(t) for t ∈ (T − δ, T ). Assume that there exists
t1 ∈ (0, T − δ] such that u1(t1) = u2(t1) and u1(t) > u2(t) or t ∈ (t1, T ). Then

0 = (u1 − u2)(t1) =
t1T

a+1

|a+ 1|
(c1 − c2)(T

−a−1 − t−a−1
1 )

+ t1

∫ T

t1
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds.

Since
t1T

a+1

|a+ 1|
(c1 − c2)(T

−a−1 − t−a−1
1 ) > 0

and, by (H∗
3 ),

t1

∫ T

t1
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds > 0,

we get a contradiction. 2
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Lemma 9 Let (H∗
1 ) − (H∗

3 ) hold. Assume that c ≥ 0, ui ∈ Sc, i = 1, 2. Let
u1(t0) > u2(t0) for some t0 ∈ (0, T ). Then either u1(t) > u2(t) for t ∈ [0, T ] or
there exists t∗ ∈ (t0, T ] such that u1(t) > u2(t) for t ∈ (0, t∗) and u1(t) = u2(t)
for t ∈ [t∗, T ].

Proof. There exist `1, `2 ∈ [0, T ], `1 < t0 < `2 such that u1(`1) = u2(`1),
u1(`2) = u2(`2) and

u1(t) > u2(t) for t ∈ (`1, `2). (14)

Case 1. Let `1 > 0 and `2 < T . Then

0 = (u1 − u2)(`1)

= `1

∫ T

`1
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds,

(15)

0 = (u1 − u2)(`2)

= `2

∫ T

`2
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds.

(16)

Further,

0 ≤ (u1 − u2)
′(`1)

=
∫ T

`1
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds

−`−a−1
1

∫ T

`1
sa+1(f(s, u1(s))− f(s, u2(s))) ds,

(17)

0 ≥ (u1 − u2)
′(`2)

=
∫ T

`2
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds

−`−a−1
2

∫ T

`2
sa+1(f(s, u1(s))− f(s, u2(s))) ds.

(18)

Using (15) and (16) we deduce from (17) and (18)

0 ≤ (u1 − u2)
′(`1)

`−a−1
1

− (u1 − u2)
′(`2)

`−a−1
2

= −
∫ T

`1
sa+1(f(s, u1(s))− f(s, u2(s))) ds

+
∫ T

`2
sa+1(f(s, u1(s))− f(s, u2(s))) ds

= −
∫ `2

`1
sa+1(f(s, u1(s))− f(s, u2(s))) ds < 0,

a contradiction.
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Case 2. Let `1 > 0 and `2 = T . Then we get a contradiction immediately
from (15) since (due to (14) and (H∗

3 ) )

`1

∫ T

`1
s−a−2

(∫ T

s
ξa+1(f(ξ, u1(ξ))− f(ξ, u2(ξ))) dξ

)
ds > 0.

Case 3. Let `1 = 0 and `2 < T . Assume that there exists γ ∈ (`2, T ) such that
u1(γ) 6= u2(γ). Consequently we can find t1, t2 such that `2 ≤ t1 < γ < t2 ≤ T ,
u1(t1) = u2(t1), u1(t2) = u2(t2) and

(u1 − u2)(t) · sgn(u1 − u2)(γ) > 0 for t ∈ (t1, t2).

Now, we can derive a contradiction as in Case 1. Therefore u1(t) = u2(t) for
t ∈ [`2, T ] and the assertion is valid with t∗ = `2.

Case 4. Let `1 = 0 and `2 = T . Then the assertion is valid. 2

Let c ≥ 0 and let I : Sc → R be a functional defined by

I(x) =
∫ T

0
x(t) dt.

Then I is continuous and since Sc is compact by Corollary 2, there exist uc,min, uc,max ∈
Sc such that

I(uc,min) = min{I(x) : x ∈ Sc}, I(uc,max) = max{I(x) : x ∈ Sc}.

It follows from Lemma 9, that if u1, u2 ∈ Sc and u1 6= u2, then I(u1) 6= I(u2).
This together with the fact that I is increasing imply

uc,min(t) ≤ u(t) ≤ uc,max(t) for t ∈ [0, T ], u ∈ Sc. (19)

Besides, by Lemma 8, uc2,max(t) < uc1,min(t) for t ∈ (0, T ) and c1 > c2 ≥ 0. In
particular, ci, cj ∈ [0,∞), ci 6= cj and Sc1 , Sc2 are not one-point sets imply

(uci,min(t), uci,max(t)) ∩ (ucj ,min(t), ucj ,max(t)) = ∅ for t ∈ (0, T ). (20)

If uc,min = uc,max on [0, T ] for some c ≥ 0, then problem (13), (2), (3) has a
unique solution. If it is not that case, the structure of the set Sc is described in
the next theorem. Note that, by Lemma 9, if uc,min 6= uc,max, two possibilities
can occur. Either uc,min(t) < uc,max(t) for t ∈ (0, T ) or there exists t∗ ∈ (0, T )
such that

uc,min(t) < uc,max(t), t ∈ (0, t∗), uc,min(t) = uc,max(t), t ∈ [t∗, T ].

In particular, if for some c > 0 the interior of the set {(t, x) ∈ R2 : 0 ≤ t ≤
T, uc,min(t) ≤ x ≤ uc,max(t)} is nonempty, then it is covered by graphs of other
functions of Sc. This is contained in Theorem 4.
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Theorem 4 Let (H∗
1 )−(H∗

3 ) hold. Assume that there exists t0 ∈ (0, T ) such that
uc,min(t0) < uc,max(t0) for some c > 0. Then for each A ∈ (uc,min(t0), uc,max(t0))
there exists u ∈ Sc satisfying u(t0) = A.

Proof. Since the function β given by (11) is equal to u0,max, we have that
A > β(t0). Therefore, by Theorem 2, there exists a positive solution u of problem
(13), (2) satisfying u(t0) = A. We prove that u ∈ Sc by contradiction.

Let c1 > c and u ∈ Sc1 . Then, by Lemma 8, u(t) > uc,max(t) for t ∈ (0, T ),
which contradicts that u(t0) = A < uc,max(t0).

Let 0 ≤ c2 < c and u ∈ Sc2 . Then, by Lemma 8, u(t) < uc,min(t) for t ∈ (0, T ),
which contradicts that u(t0) = A > uc,min(t0). 2

Remark 2 Let us note that if the interior of the set {(t, x) ∈ R2 : 0 ≤ t ≤
T, u0,min(t) ≤ x ≤ u0,max(t)} is nonempty, then we cannot apply Theorem 4 and
the description of this set is an open problem.

The next two theorems give results on a unique solution of problem (13), (2), (3).
The first theorem uses only the basic assumptions (H∗

1 )− (H∗
3 ) while the second

one needs the additional assumption

(H∗
4 ) f(t, ·) ∈ Liploc[0,∞) for a.e. t ∈ [0, T ].

Theorem 5 Let (H∗
1 ) − (H∗

3 ) hold. Then problem (13), (2), (3) has a unique
solution for each c ∈ [0,∞) \ Γ, where Γ ⊂ [0,∞) is at most countable.

Proof. Since problem (13), (2), (3) has a unique solution for some c ∈ [0,∞) if
and only if uc,min = uc,max, we need to prove that the set Γ := {c ∈ [0,∞) :
uc,min 6= uc,max} is at most countable.

For t ∈ (0, T ) we define

Ψ(t) = {c ∈ (0,∞) : uc,min(t) < uc,max(t)}.

By Lemma 9, Ψ(t1) ⊃ Ψ(t2) for 0 < t1 < t2 < T . It follows from Theorem 2
and Lemma 8 that {u(t) ∈ R : u ∈ S \ S0} = (β(t),∞) for t ∈ (0, T ). Therefore
Lemmas 8 and 9 and Theorem 4 yield β = u0,max andu(t) ∈ R : u ∈

⋃
0<c≤N

Sc

 = (u0,max(t), uN,max(t)] for t ∈ (0, T ), N ∈ N. (21)

For t ∈ (0, T ), N ∈ N and ε > 0 let us put

ΨN(t) = {c ∈ (0, N ] : uc,min(t) < uc,max(t)},
ΨN,ε(t) = {c ∈ (0, N ] : uc,max(t)− uc,min(t) ≥ ε}.
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We claim that ΨN,ε(t) is finite for t ∈ (0, T ), N ∈ N and ε > 0. Suppose, contrary
to our claim, that there exist t0 ∈ (0, T ), N0 ∈ N and ε0 > 0 such that ΨN0,ε0(t0)
is infinite. Then there exists a sequence {cn} ⊂ ΨN0,ε0(t0), ci 6= cj for i 6= j.
Since ucn,max(t0)− ucn,min(t0) ≥ ε0 for n ∈ N, we have

∞∑
n=1

(ucn,max(t0)− ucn,min(t0)) = ∞,

which contradicts (cf. (20))

∞∑
n=1

(ucn,max(t0)− ucn,min(t0)) ≤ uN0,max(t0)− u0,max(t0) <∞

by (21) (for t = t0 and N = N0). Hence the set ΨN(t) is at most countable
for t ∈ (0, T ) and N ∈ N which follows from the equality ΨN(t) =

⋃∞
n=1 ΨN, 1

n
(t).

Since Ψ(t) =
⋃∞

N=1 ΨN(t) we see that Ψ(t) is at most countable for t ∈ (0, T ).
Let {tn} ⊂ (0, T ) be decreasing and let limn→∞ tn = 0. We now show that

Γ \ {0} =
∞⋃

n=1

Ψ(tn). (22)

Let us choose c ∈ Γ \ {0}. Then uc,min 6= uc,max and therefore there exists ν ∈ N
such that uc,min(t) < uc,max(t) for t ∈ (0, tν) by Lemma 9. Hence c ∈ Ψ(tν) and
since

⋃∞
n=1 Ψ(tn) ⊂ Γ \ {0}, equality (22) holds. Using the fact that Ψ(tn) is

at most countable for all n ∈ N it follows from (22) that the set Γ is at most
countable. 2

Theorem 6 Let (H∗
1 ) − (H∗

4 ) hold. Then problem (13), (2), (3) has a unique
solution for each c ∈ [0,∞).

Proof. Since the assumptions (H∗
1 ) − (H∗

4 ) guarantee that the assumptions
(H1)− (H4) of Theorem 3 are fulfilled, there exists a unique solution of problem
(13), (2), (3) for each c ∈ [0,∞). 2

The following result deals with the existence of a positive solution u of problem
(13), (2) satisfying the extra condition max{u(t) : t ∈ [0, T ]} = A. Note that for
positive solutions u of problem (13), (2) we have ‖u‖∞ = max{u(t) : t ∈ [0, T ]}.

Theorem 7 Let (H∗
1 )− (H∗

3 ) hold. Then for each A > ‖u0,max‖∞ there exists a
positive solution u of problem (13), (2) such that ‖u‖∞ = A.

Proof. Suppose the assertion of the theorem is false. Then there exists A >
‖u0,max‖∞ such that

‖u‖∞ 6= A for all u ∈ S \ S0. (23)
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Put

U− = {v ∈ S \ S0 : ‖v‖∞ < A}, U+ = {u ∈ S \ S0 : ‖u‖∞ > A}.

Then S \ S0 = U− ∪ U+ and U− ∩ U+ = ∅. Let

A− = sup{‖v‖∞ : v ∈ U−}, A+ = inf{‖u‖∞ : u ∈ U+}.

Then A− ≤ A ≤ A+ and there exist sequences {vn} ⊂ U− and {un} ⊂ U+ such
that {‖vn‖∞} is increasing, {‖un‖∞} is decreasing and limn→∞ ‖vn‖∞ = A−,
limn→∞ ‖un‖∞ = A+. Hence, by Lemmas 8 and 9, the inequality vn ≤ vn+1 ≤
un+1 ≤ un is fulfilled on [0, T ] for each n ∈ N. Then

0 > v′n(T ) ≥ v′n+1(T ) ≥ u′n+1(T ) ≥ u′n(T ) for n ∈ N,

which yields

vn, un ∈
⋃

K≤c≤Q

Sc for n ∈ N, where K := −v′1(T ) > 0, Q := −u′1(T ) ≥ K.

Since
⋃

K≤c≤Q Sc is compact in C1[0, T ] by Lemma 7, there exist v, u ∈ ⋃K≤c≤Q Sc

such that limn→∞ vn = v, limn→∞ un = u in C1[0, T ]. Hence v, u are solutions of
problem (13), (2) and ‖v‖∞ = A−, ‖u‖∞ = A+. In view of relation (23) we have
A− < A < A+. Since u(0) = u(T ) = 0 and ‖u‖∞ = A+, there exists t0 ∈ (0, T )
such that u(t0) = A+ and u ≤ A+ on [0, t0), u < A+ on (t0, T ]. Let us choose
B ∈ (A−, A+). Then, by Theorem 2, there is a solution w of problem (13), (2)
satisfying w(t0) = B. Lemmas 8 and 9 guarantee that v < w < u on (0, t0] and
v ≤ w ≤ u on (t0, T ]. In addition, w(t) < u(t) on a right neighbourhood of t = t0
because w(t0) < u(t0). Consequently, ‖w‖∞ ∈ (A−, A+), which contradicts the
definition of A− and A+. 2

Example 3 Let us choose α ∈ [0, 1) and for a.e. t ∈ [0, T ] and all x ∈ [0,∞),
define the function f by

f(t, x) = h1(t) + h2(t, x)x
α,

or
f(t, x) = h1(t) + h2(t, x)

x

ln(x+ 2)
,

where h1 ∈ L1[0, T ], h1 > 0 a.e. on [0, T ], h2 is nonnegative, bounded and
continuous on [0, T ] × [0,∞) and increasing in x. Then f satisfies conditions
(H∗

1 )− (H∗
3 ). To check it we take M = max{h2(t, x) : t ∈ [0, T ], x ∈ [0,∞)}, and

then we get

0 ≤ lim
x→∞

1

x

(∫ T

0
h1(t)dt+ xα

∫ T

0
h2(t, x)dt

)
≤ TM lim

x→∞
xα−1 = 0,
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or

0 ≤ lim
x→∞

1

x

(∫ T

0
h1(t)dt+

x

ln(x+ 2)

∫ T

0
h2(t, x)dt

)
≤ TM lim

x→∞

1

ln(x+ 2)
= 0.

Example 4 Let hi ∈ L1[0, T ], hi > 0 a.e. on [0, T ], i ∈ {1, 2}. For a.e. t ∈ [0, T ]
and all x ∈ [0,∞), define a function f by

f(t, x) = h1(t) + h2(t)g(x),

where g ∈ PC1[0,∞) is increasing and limx→∞
g(x)

x
= 0. Then f satisfies con-

ditions (H∗
1 ) − (H∗

4 ). We can choose for example g(x) = xα for x ∈ [0, 1] and
g(x) = xη for x ∈ (1,∞), where α ∈ [1,∞) and η ∈ (0, 1).

5 Blow-up results

In this section we provide new blow-up results for positive solutions of the equa-
tion

v′′(t) +
k

t
v′(t) = ψ(t)+g(t, v(t)), (24)

where k ∈ (1,∞) and ψ, g satisfy the following assumptions.

(H◦
1 ) tkψ ∈ L1[0, T ] and ψ > 0 a.e. on [0, T ].

(H◦
2 ) g ∈ Car([0, T ]× [0,∞)).

(H◦
3 ) 0 ≤ g(t, x) ≤ φ(x), for a.e. t ∈ [0, T ] and all x ∈ [0,∞),

where φ ∈ C[0,∞) is nondecreasing on [0,∞), and

lim
x→∞

φ(x)

x
= 0.

In particular, we consider the boundary conditions

lim
t→0+

v(t) = ∞, v(T ) = 0, (25)

and define a positive solution of problem (24), (25) as a function u ∈ AC1
loc(0, T ]

such that u > 0 on (0, T ), u satisfies the boundary conditions (25) and (24) holds
for a.e. t ∈ [0, T ].
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Theorem 8 Let (H◦
1 ) − (H◦

3 ) hold. Then for each c ≥ 0 there exists a positive
solution v of problem (24), (25) satisfying

v′(T ) = −c. (26)

Proof. Since equation (24) has an equivalent form (tkv′)′ = tk(ψ(t)+ g(t, v)), we
see that, after the substitution

k = −a, v(t) = tau(t) for t ∈ (0, T ], (27)

equation (24) transforms to the equation

(t−a(tau(t))′)′ = t−a(ψ(t) + g(t, tau(t)), (28)

and consequently to equation (13) with

f(t, x) = t−a(ψ(t) + g(t, tax)) = tk(ψ(t) + g(t, t−kx))

for a.e. t ∈ [0, T ] and all x ∈ [0,∞),
(29)

where a ∈ (−∞,−1).
We check that f satisfies conditions (H1)− (H3), where we put f(t, x) instead

of f(t, x, y). Clearly f(·, x) : [0, T ] → R is measurable for all x ∈ [0,∞) and
f(t, ·) : [0,∞) → R is continuous for a.e. t ∈ [0, T ]. Assumption (H◦

3 ) implies
that there exists A > 0 such that φ(x) ≤ φ(A) + x for all x ≥ 0. Consider a
compact set U ⊂ [0,∞) and put BU := max{x : x ∈ U}. Then for a.e. t ∈ [0, T ]
and all x ∈ U

f(t, x) ≤ tk(ψ(t) + φ(t−kx)) ≤ tk(ψ(t) + φ(A)) + x ≤ tk(ψ(t) + φ(A)) +BU ,

where tk(ψ(t)+φ(A))+BU =: mU ∈ L1[0, T ]. Hence f fulfils (H1). Assumptions
(H◦

1 ) and (H◦
3 ) yield 0 < tkψ(t) ≤ f(t, x) for a.e. t ∈ [0, T ] and all x ∈ [0,∞).

So, f satisfies (H2). Finally, by (H◦
3 ),

f(t, x) ≤ h(t, x):=tk(ψ(t) + φ(t−kx)) for a.e. t ∈ [0, T ] and all x ∈ [0,∞),

and for any ε > 0 there exists S > 0 such that φ(x)/x < ε for all x ≥ S. If we
put V = T kS, then

t−kx ≥ T−kx ≥ S for all x ≥ V ,

φ(t−kx)

t−kx
< ε and

∫ T

0

φ(t−kx)

t−kx
dt < εT for all x ≥ V .

This yields

lim
x→∞

∫ T

0

φ(t−kx)

t−kx
dt = 0,
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and consequently,

lim
x→∞

1

x

∫ T

0
h(t, x)dt = lim

x→∞

1

x

∫ T

0
tkψ(t)dt+ lim

x→∞

∫ T

0

φ(t−kx)

t−kx
dt = 0.

We have proved that f satisfies conditions (H1)− (H3).
Therefore results of Section 3 are valid for problem (28), (2) and we will modify

them for problem (24), (25). Denote again by S the set of all positive solutions
of problem (28), (2) and let

Sc = {u ∈ S : u′(T ) = −c}, c ≥ 0.

Put c0 = cT−a and choose u ∈ Sc0 . Then v from (27) is positive on (0, T )
and satisfies equation (24) for a.e. t ∈ [0, T ]. Further, v(T ) = T au(T ) = 0,
v′(T ) = aT a−1u(T ) + T au′(T ) = −T ac0 = −c. Hence v satisfies (26) and the
second condition in (25). It remains to prove the first condition in (25). According
to the proof of Lemma 7, we have

u(t) = t
c0T

a+1

|a+ 1|
(T−a−1 − t−a−1)

+ t
∫ T

t
s−a−2

(∫ T

s
ξa+1f(ξ, u(ξ)) dξ

)
ds, t ∈ [0, T ],

and hence

lim
t→0+

u(t)

t
=

c0
|a+ 1|

+
∫ T

0
s−a−2

(∫ T

s
ξa+1f(ξ, u(ξ)) dξ

)
ds =: a0 ∈ (0,∞),

due to (8), (29), (H◦
1 )−(H◦

3 ). Therefore

lim
t→0+

v(t) = lim
t→0+

u(t)

t
· ta+1 = a0 lim

t→0+
ta+1 = ∞.

2

Denote the set of all positive solutions of problem (24), (25) by R and put

Rc = {v ∈ R : v(T ) = −c}, c ≥ 0.

Then the proof of Theorem 8 yields the following lemma.

Lemma 10 Let (H◦
1 ) − (H◦

3 ) hold. Assume that functions u and v fulfil (27).
Then v ∈ Rc if and only if u ∈ Sc0 for c0 = T−ac and c ≥ 0.
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Theorem 9 Let (H◦
1 )− (H◦

3 ) hold. Then the set Rc is nonempty for each c ≥ 0.
If in addition g(t, ·) ∈ Liploc[0,∞), then the set Rc is one-point for each c ≥ 0.

Proof. The assertion follows from Theorem 8, Lemma 10 and Theorem 3. 2

Due to Lemma 10 we can define a function γ

γ(t) = max{v(t) : v ∈ R0} = max{tau(t) : u ∈ S0} for t ∈ (0, T ]. (30)

Theorem 10 Let (H◦
1 )−(H◦

3 ) hold. Then for each t0 ∈ (0, T ) and each B > γ(t0)
there exists a positive solution v of problem (24), (25) satisfying v(t0) = B.

Proof. Choose t0 ∈ (0, T ) and B > γ(t0). Put A = t−a
0 B. Then A > t−a

0 γ(t0) =
t−a
0 max{v(t0) : v ∈ R0} = t−a

0 max{ta0u(t0) : u ∈ S0} = β(t0) and, by Theorem
2, there exists a positive solution u of problem (13), (2) satisfying u(t0) = A.
Consider v satisfying (27). By Lemma 10, v is a positive solution of problem
(24), (25). Clearly v(t0) = ta0u(t0) = ta0A = B. 2

Example 5 Let us choose k ∈ (1,∞), α ∈ [0, k + 1), η ∈ [0, 1) and define the
functions ψ, g by

ψ(t) = h1(t)t
−α, g(t, x) = h2(t, x)x

η, t ∈ [0, T ], x ∈ [0,∞),

where h1 ∈ C[0, T ], h1(t) > 0 for a.e. t ∈ [0, T ] and h2 ∈ C([0, T ] × [0,∞)) is
nonnegative and bounded. Then ψ satisfies condition (H◦

1 ) and g satisfies (H◦
2 )

and (H◦
3 ) with φ(x) = Mxη, where M = sup{h2(t, x) : t ∈ [0, T ], x ∈ [0,∞)}.

Now, assume moreover

(H◦
4 ) g(t, x) is increasing in x for a.e. t ∈ [0, T ].

Conditions (H◦
1 )−(H◦

4 ) guarantee that the function f of (29) satisfies conditions
(H∗

1 ) − (H∗
3 ) as well as conditions (H1) − (H3) with ϕ(t) = tkψ(t) for a.e. t ∈

[0, T ]. Therefore now, all results of the both Sections 3 and 4 are valid (with the
exception of Theorem 6) for problem (28), (2) and can be modified for problem
(24), (25). For example, Lemma 10 and Theorem 4 yield next two assertions.

Lemma 11 Let (H◦
1 )−(H◦

4 ) hold. Assume that c ≥ 0. Then there exist vc,min, vc,max ∈
Rc such that

vc,min(t) ≤ v(t) ≤ vc,max(t) for t ∈ (0, T ], v ∈ Rc. (31)
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Proof. Consider uc0,min, uc0,max ∈ Sc0 , where c0 = T−ac. According to (19)
we have

uc0,min(t) ≤ u(t) ≤ uc0,max(t) for t ∈ [0, T ], u ∈ Sc0 . (32)

If we put
vc,min = tauc0,min, vc,max = tauc0,max, v = tau, (33)

we get by Lemma 10 that vc,min, vc,max, v ∈ Rc and (32) yields (31). 2

Theorem 11 Let (H◦
1 )−(H◦

4 ) hold. Assume that there exists t0 ∈ (0, T ) such
that vc,min(t0) < vc,max(t0) for some c > 0.
Then for each B ∈ (vc,min(t0), vc,max(t0)) there exists v ∈ Rc satisfying v(t0) = B.

Proof. Choose B ∈ (vc,min(t0), vc,max(t0)) and put A = t−a
0 B. Put

c0 = T−ac, uc0,min(t) = t−avc,min(t), uc0,max(t) = t−avc,max(t), t ∈ (0, T ].

By Lemma 10, uc0,min, uc0,max ∈ Sc0 . Since

uc0,min(t0) = t−a
0 vc,min(t0) < A < t−a

0 vc,max(t0) = uc0,max(t0),

Theorem 4 gurantees that there exists u ∈ Sc0 satisfying u(t0) = A. Put v = tau
for t ∈ (0, T ]. Then v(t0) = ta0u(t0) = ta0A = B. Lemma 10 yields v ∈ Rc. 2

Remaining assertions of Section 4 can be modified for problem (24), (25) sim-
ilarly.

Example 6 Consider the functions ψ, g of Example 5 and assume moreover that
the function h2 is increasing in x for a.e. t ∈ [0, T ]. Then ψ, g satisfy conditions
(H◦

1 )−(H◦
4 ).
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[23] I. Rach̊unková, S. Staněk, M. Tvrdý, Solvability of Nonlinear Singular Prob-
lems for Ordinary Differential Equations, Hindawi Publishing Corporation,
New York, USA, 2009, 268 pages.
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