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Abstract. The paper deals with the singular mixed boundary value problem

(tµu′(t))′ + tµf(t, u(t)) = 0, lim
t→0+

tµu′(t) = 0, u(T ) = A,

where µ ∈ N, µ ≥ 2, [0, T ] ⊂ R, A ∈ [0,∞). For s1, . . . , sr ∈ (0, T ] and
J = (0, T ]\{s1, . . . , sr} we assume that f(t, x) is continuous on the set J×(0,∞)
and may have singularities at t = 0 and x = 0 and integrable discontinuities
at t = si, i = 1, . . . , r. We provide a new approach giving the existence of
positive solutions of the above singular problem by means of a sequence of its
discretizations. As an application we present new existence results for singular
problems arising in the theory of shallow membrane caps.
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1 Formulation of problem

The paper deals with the differential equation

(tµu′(t))′ + tµf(t, u(t)) = 0, (1.1)

µ ∈ N, µ ≥ 2, subject to the mixed boundary conditions

lim
t→0+

tµu′(t) = 0, u(T ) = A, (1.2)
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where [0, T ] ⊂ R, A ∈ [0,∞). We are interested in solutions of (1.1), (1.2) which
are positive on (0, T ). In order to get such solutions, we will investigate possible
discretizations of problem (1.1), (1.2). Due to the positivity of the solutions, we
investigate the function f of (1.1) just on the set [0, T ]× [0,∞).

Consider a finite number of points s1, . . . , sr ∈ (0, T ] and denote J = (0, T ] \
{s1, . . . , sr}. We write f ∈ C(J× (0,∞)) if f is continuous on the set J× (0,∞).

Let [a, b] ⊂ R. We will also work with the following sets:

• C[a, b] (C(a, b)) — the set of continuous functions on [a, b] (on (a, b));

• AC [a, b] — the set of absolutely continuous functions on [a, b];

• AC (a, b) — the set of functions f ∈ AC [c, d] for each [c, d] ⊂ (a, b);

• AC 1[a, b] — the set of functions having absolutely continuous first derivative
on [a, b];

• AC 1(a, b) — the set of functions f ∈ AC 1[c, d] for each [c, d] ⊂ (a, b);

• L[a, b] — the set of Lebesgue integrable functions on [a, b].

We say that f ∈ C(J×(0,∞)) has integrable discontinuities at t = si, i = 1, . . . , r,
if for each [a, T ] ⊂ (0, T ] and for each compact set K ⊂ (0,∞) there is a function
ma,K ∈ L[a, T ] such that

|f(t, x)| ≤ ma,K(t) for a.e. t ∈ [a, T ] and all x ∈ K.

In what follows we will assume:
f ∈ C(J × (0,∞)) may have integrable discontinuities
at t = si, i = 1, . . . , r,
f(t, x) may have singularities at t = 0 and x = 0.

(1.3)

Definition 1.1 A function f(t, x) has a time singularity at t = 0, if there exists
x ∈ (0,∞) such that ∫ ε

0
|f(t, x)|dt = ∞ for ε ∈ (0, T ).

A function f(t, x) has a space singularity at x = 0, if

lim sup
x→0+

|f(t, x)| = ∞ for t ∈ J.

Example 1.2 Let a0 ≥ 0, b0 > 0, γ > 1. The function

f(t, x) =
1

8x2
− a0

x
− b0t

2γ−4 (1.4)

2



appears in an equation modelling shallow membrane caps, see [4] and [7]. We see
that f fulfils (1.3) for J = (0, T ] and has a space singularity at x = 0. Moreover,
for γ ∈ (1, 3

2
], f has also a time singularity at t = 0, because

∫ ε
0 t

2γ−4dt = ∞.
Problem (1.1), (1.2) with f of the form (1.4) has been studied for A > 0 in [8]
and [3] and for A = 0 in [10]. An equidistant discretization of this problem has
been investigated in [12].

Example 1.3 Let q ∈ L[0, T ] ∩ C(J), q(t) > 0 for t ∈ J . The function

f(t, x) =
q(t)

x2
(1.5)

has a space singularity at x = 0. Problem (1.1), (1.2) with f given by (1.5)
describes a behaviour of symmetric circular membranes and, for A > 0 and
q ∈ C[0, 1], has been studied in [1].

Discretization of problem (1.1), (1.2).
Let n ∈ N. For f satisfying condition (1.3), we can find points

0 = t0 < t1 < · · · < tn−1 < tn = T, (1.6)

such that
f(tk, ·) is continuous on (0,∞) for k = 1, . . . , n− 1. (1.7)

The points (1.6) cannot be equidistant in general, and so we use variable steps
and denote them by

hk = tk − tk−1, k = 1, . . . , n, (1.8)

and we get the following discretization of problem (1.1), (1.2):

1

hk+1

∆

(
tµk
hk

∆uk−1

)
+ tµkf(tk, uk) = 0, k = 1, . . . , n− 1, (1.9)

∆u0 = 0, un = A. (1.10)

Here ∆ denotes the forward difference operator, i.e. ∆uk−1 = uk − uk−1.

The main goal of the paper is to present a new approach giving the existence
of a positive solution of the singular problem (1.1), (1.2) by means of its proper
non-equidistant discretizations. Questions about discrete problems associated
with differential boundary value problems have been also discussed in [5], [9] and
[14].

Definition 1.4 A function y ∈ C[0, T ] ∩ AC 1(0, T ) with y > 0 on (0, T ), which
satisfies equation (1.1) for a.e. t ∈ (0, T ) and fulfils conditions (1.2), is called a
positive solution of problem (1.1), (1.2).
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Definition 1.5 A vector (u0, . . . , un) ∈ Rn+1 satisfying equation (1.9), condi-
tions (1.10) and uk > 0 for k = 0, . . . , n − 1, is called a positive solution of
problem (1.9), (1.10).

In order to get a positive solution of (1.1), (1.2) we construct the discrete
problems (1.9), (1.10), n ∈ N, and we prove that they have positive solutions. By
means of a sequence of positive solutions of the discrete problems (1.9), (1.10),
n ∈ N, we get a sequence of approximate functions which converges for n→∞ to
a positive solution of the singular differential problem (1.1), (1.2). Such approach
was used for equidistant discretization and f(t, x) continuous on (0, 1] × (0,∞)
in [12]. Here we generalize the results of [12] for functions f(t, x) which can be
quickly growing for large x and need not be continuous on (0, 1]× (0,∞) and for
non-equidistant discretizations. Moreover, in (1.2), we consider A = 0 as well as
A > 0. As an application we present new existence results for singular problems
which cover problem (1.5), (1.2). We emphasize that this problem has not been
solved before for A = 0.

2 Solvability of discrete problems

Linear discrete problems.
Assume that n ∈ N and g ∈ L[0, T ]. Let us choose the points of (1.6) in such a
way that

g(tk) ∈ R, k = 1, . . . , n− 1.

For hk given by (1.8), consider the linear difference equation

1

hk+1

∆

(
tµk
hk

∆uk−1

)
+ g(tk) = 0, k = 1, . . . , n− 1, (2.1)

and the corresponding homogeneous equation

1

hk+1

∆

(
tµk
hk

∆uk−1

)
= 0, k = 1, . . . , n− 1, (2.2)

subject to the boundary conditions

∆u0 = 0, u(T ) = 0. (2.3)

Since problem (2.2), (2.3) has just the trivial solution, there exists its Green
function. If we put

P (tk) =
k∑

i=1

hi

tµi
, k = 1, . . . , n,

then the Green function G can be written in the form

G(tk, si) = hi+1

{
P (tk)− P (T ) for 0 < si ≤ tk ≤ T ,
P (si)− P (T ) for 0 ≤ tk < si ≤ T ,

(2.4)
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where hn+1 = hn, si =
∑i

j=1 hj, tk =
∑k

j=1 hj, i, k = 1, . . . , n. We can check that

G(T, si) = 0, ∆G(t0, si) = 0, i = 1, . . . , n, (2.5)

1

hi+1

∆

(
tµk
hk

∆G(tk−1, si)

)
= δik, i, k = 1, . . . , n− 1, (2.6)

hold. Moreover, if we denote M0 = T/tµ1 , we have

−M0hi+1 < G(tk, si) < 0, i = 1, . . . , n− 1, k = 0, . . . , n− 1. (2.7)

Lemma 2.1 Problem (2.1), (2.3) has a unique solution (u0, . . . , un) ∈ Rn+1. The
solution (u0, . . . , un) has the form

uk = −
n−1∑
i=1

G(tk, si)g(si), k = 0, . . . , n. (2.8)

Proof. Since the homogeneous problem (2.2), (2.3) has just the trivial solution,
the nonhomogeneous problem (2.1), (2.3) has a unique solution. Let us show that
this solution is given by (2.8). By virtue of (2.5) we get

un = −
n−1∑
i=1

G(T, si)g(si) = 0,

∆u0 = u1 − u0 = −
n−1∑
i=1

G(t1, si)g(si) +
n−1∑
i=1

G(t0, si)g(si)

= −
n−1∑
i=1

∆G(t0, si)g(si) = 0.

Hence (u0, . . . , un) satisfies condition (2.3). Further, using equality (2.6), we
obtain

1

hk+1

∆

(
tµk
hk

∆uk−1

)
=

1

hk+1

n−1∑
i=1

hi+1

(
1

hi+1

∆

(
tµk
hk

∆G(tk−1, si)

)
g(si)

)

= − 1

hk+1

n−1∑
i=1

hi+1δikg(si) = −g(tk), k = 1, . . . , n− 1.

Therefore (u0, . . . , un) satisfies equation (2.1). �

Nonlinear discrete problems.
Now, we will study the solvability of the nonlinear singular discrete problem (1.9),
(1.10). To this end we will use lower and upper functions.
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Definition 2.2 The vector (α0, . . . , αn) ∈ Rn+1 is called a lower function of
problem (1.9), (1.10) if

1

hk+1

∆

(
tµk
hk

∆αk−1

)
+ tµkf(tk, αk) ≥ 0, k = 1, . . . , n− 1, (2.9)

∆α0 ≥ 0, αn ≤ A. (2.10)

Definition 2.3 The vector (β0, . . . , βn) ∈ Rn+1 is called an upper function of
problem (1.9), (1.10) if

1

hk+1

∆

(
tµk
hk

∆βk−1

)
+ tµkf(tk, βk) ≤ 0, k = 1, . . . , n− 1, (2.11)

∆β0 ≤ 0, βn ≥ A. (2.12)

The next theorem contains the lower and upper functions method which is
based on the assumption that there exists a well ordered couple of lower and upper
functions to a problem under consideration. This method for regular discrete
problems can be found e.g. in [2], [6], [11] and for singular discrete problems with
equidistant points t0, . . . , tn in [12].

Theorem 2.4 Assume that conditons (1.3), (1.6) and (1.7) hold. Let (α0, . . . , αn)
and (β0, . . . , βn) be, respectively, a lower and an upper function of problem (1.9),
(1.10) with

0 < αk ≤ βk, k = 1, . . . , n− 1. (2.13)

Then problem (1.9), (1.10) has a positive solution (u0, . . . , un) satisfying

αk ≤ uk ≤ βk, k = 0, . . . , n. (2.14)

Proof. We argue similarly as in the proof of Theorem 3.3 in [12]. For k ∈
{1, . . . , n− 1}, x ∈ R define a function

f̃(tk, x) =


f(tk, βk)− x−βk

x−βk+1
if x > βk,

f(tk, x) if αk ≤ x ≤ βk,
f(tk, αk) + αk−x

αk−x+1
if x < αk.

We see that f̃(tk, ·): R → R is continuous for k = 1, . . . , n − 1 and there exists
M > 0 such that

|f̃(tk, x)| ≤M for k = 1, . . . , n− 1, x ∈ R.

Consider the auxiliary regular difference equation

1

hk+1

∆

(
tµk
hk

∆vk−1

)
+ tµk f̃(tk, vk + A) = 0, k = 1, . . . , n− 1. (2.15)
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Denote E = {v = (v0, . . . , vn) ∈ Rn+1: ∆v0 = 0, vn = 0}, and define ‖v‖ =
max{|vk|: k = 1, . . . , n− 1}. Then E is a Banach space with dimE = n− 1. Let
the function G be given by formula (2.4). Define an operator F :E → E by

(Fv)k = −
n−1∑
i=1

G(tk, si)f̃(si, vi + A), k = 0, . . . , n.

Estimate (2.7) implies

|(Fv)k| < M0M
n−1∑
i=1

hi+1 < TM0M, k = 0, . . . , n.

Therefore, by the Brouwer fixed point theorem, there is a fixed point v∗ of the
operator F . By Lemma 2.1, the vector v∗ = (v∗0, . . . , v

∗
n) is a solution of problem

(2.15), (2.3). Put uk = v∗k + A, k = 0, . . . , n. Then we get (2.14) as in the proof
of Theorem 3.3 in [12]. Consequently the vector u = (u0, . . . , un) is a solution of
problem (1.9), (1.10). �

3 Approximation principle

This section is devoted to the study of sequences of piece-wise linear functions
which approximate solutions of the singular differential problem (1.1), (1.2). We
describe a construction of such functions.

Remark 3.1 We want to point out that for an approximation of problem (1.1),
(1.2) with f satisfying (1.3) we need, for n ∈ N, the isolated time scale (1.6),
where tk /∈ {s1, . . . , sr}, k = 1, . . . , n − 1. Moreover, since we need to prove an
approximation principle (Theorem 3.3) and, in particular, convergences (3.10)
and (3.11), a choice of tk depends on the fact whether f(t, x) is unbounded for
t→ si or not. See Remarks 3.2 and 3.4. Consider, for example, the function

f(t, x) =
x3 + 1

t
√

(si+1 − t)(t− si)
for t ∈ (si, si+1), x ∈ [0,∞), i = 1, . . . , r − 1.

Then f ∈ C(J × [0,∞)) and f is unbounded near each si, i = 1, . . . , r.

In Remark 3.2, we explain a choice of the time scale (1.6) for n ∈ N.

Remark 3.2 Consider a non-negative functions g1 ∈ C(J × (0,∞)) and g2 ∈
C(J × [0,∞)) which are unbounded if t → si, i = 1, . . . , r, x ∈ (0,∞). For
n ∈ N, choose points (1.6) such that tk ∈ J , k = 1, . . . , n − 1, and each interval
(tk, tk+1) contains at most one si ∈ {s1, . . . , sr}. Moreover, if some si ∈ (tk, tk+1),
then tk and tk+1 are chosen such that

gj(tk, x) ≤ gj(t, x) for t ∈ (tk, tk+1), x ∈ (0,∞), j = 1, 2. (3.1)
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For each sufficiently large n ∈ N we assume{
conditions (1.6), (1.7) and (3.1) hold,
problem (1.9), (1.10) has a positive solution (u0, . . . , un).

(3.2)

Denote

vk =
tµk
hk

∆uk−1, k = 1, . . . , n, (3.3)

and define

y[n](t) = uk +
∆uk

hk+1

(t− tk), t ∈ [tk, tk+1], k = 0, . . . , n− 1, (3.4)


z[n](t) = 0, t ∈ [t0, t1],

z[n](t) = vk +
∆vk

hk+1

(t− tk), t ∈ [tk, tk+1], k = 1, . . . , n− 1.
(3.5)

The main result of the paper is contained in the next theorem providing an
approximation principle.

Theorem 3.3 Let A = 0 and (1.3) hold. Assume that there exist functions
α, β ∈ C[0, T ], α < β on (0, T ), β(T ) = 0, and non-negative functions g1 ∈
C(J × (0,∞)) and g2 ∈ C(J × [0,∞)) satisfying

|f(t, x)| ≤ g1(t, x) + g2(t, x) for t ∈ J, x ∈ [α(t), β(t)], (3.6)

where g1 is nonincreasing in its second variable, g1 and g2 have integrable discon-
tinuities at t = si, i = 1, . . . , r, and at t = 0, t = si, i = 1, . . . , r, respectively,
and ∫ T

2

0
tg1(t, α(t))dt <∞. (3.7)

Further assume that there exists n∗ ∈ N such that for each n ∈ N, n ≥ n∗,
condition (3.2) is fulfilled and that

lim
n→∞

max{hk = tk − tk−1: k = 1, . . . , n} = 0, (3.8)

0 < α(tk) < uk < β(tk), k = 1, . . . , n− 1. (3.9)

Then the following approximation principle is valid:
Let the sequences {y[n]} and {z[n]} be given by (3.4) and (3.5). Then there

exist their subsequences {y[m]} and {z[m]} such that

lim
m→∞

y[m](t) = y(t) locally uniformly on (0, T ), (3.10)

lim
m→∞

z[m](t) = z(t) locally uniformly on [0, T ), (3.11)

z(t) = tµy′(t) and y is a positive solution of the singular differential problem
(1.1), (1.2) and

α(t) ≤ y(t) ≤ β(t) for t ∈ [0, T ]. (3.12)
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Proof.

Step 1. Boundedness of sequences {y[n]} and {z[n]}.
Note that without loss of generality we can assume that for x ∈ (0,∞) the
functions g1(t, x) and g2(t, x) are unbounded if t → si, i = 1, . . . , r. Hence, for
n ∈ N, n ≥ n∗, we can choose points (1.6) such that (1.7) and (3.1) are valid.
By (3.2) there exists a positive solution (u0, . . . , un) of problem (1.9) and (1.10).
Inserting (3.3) into equation (1.9) we get

1

hk+1

∆vk = −tµkf(tk, uk), k = 1, . . . , n− 1. (3.13)

Since ∆u0 = v1 = 0, equations (3.3) and (3.13) can be written in the form

uk = u0 +
k∑

i=1

hi
vi

tµi
, k = 1, . . . , n, (3.14)

vk+1 = −
k∑

i=1

hi+1t
µ
i f(ti, ui), k = 1, . . . , n− 1. (3.15)

By (1.10) and (3.9) we have

max{|uk|: k = 0, . . . , n} ≤ max{β(t): t ∈ [0, T ]} =:B.

Since y[n](t) of (3.4) is a continuous piece-wise linear function and y[n](tk) = uk,
k = 0, . . . , n, we get

max{|y[n](t)|: t ∈ [0, T ]} ≤ B, n ∈ N, n ≥ n∗. (3.16)

Choose an arbitrary b ∈
(

T
2
, T
)
. By (3.8) there is n0 ∈ N, n0 ≥ n∗, such that for

each n ∈ N, n ≥ n0, there is bn ∈ {1, . . . , n} such that

tbn ∈ (b, T ), lim
n→∞

tbn = b. (3.17)

There is a function m̃(t) ∈ L[0, T ] ∩ C(J) such that

|g2(t, x)| ≤ m̃(t) for t ∈ J, x ∈ [α(t), β(t)], (3.18)

and due to (3.9), (3.7), (3.1), we can find n0 ∈ N such that for each n ≥ n0

bn∑
i=1

hi+1tig1(ti, ui) ≤ 1 +
∫ b

0
tg1(t, α(t))dt =:M1,

bn∑
i=1

hi+1g2(ti, ui) ≤ 1 +
∫ T

0
m̃(t)dt =:M2.
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Clearly M2 ∈ (0,∞). Let us show that M1 ∈ (0,∞), as well. Since b ∈ (T
2
, T ),

we can write∫ b

0
tg1(t, α(t))dt =

∫ T
2

0
tg1(t, α(t))dt+

∫ b

T
2

tg1(t, α(t))dt.

By (3.7) we have ∫ T
2

0
tg1(t, α(t))dt <∞.

The assumption that g1 is continuous on J × (0,∞) and has integrable disconti-
nuities at t = si, si ∈ (0, T ], i = 1, . . . , r yields (see p. 2) that for each compact
set K ⊂ (0,∞) there exists a function mK ∈ L[T

2
, T ] such that

|g1(t, x)| ≤ mK(t) for a.e. t ∈ [
T

2
, T ] and all x ∈ K.

Let us put K = {α(t) : t ∈ [T
2
, b]}. Then, by (3.9), K ⊂ (0,∞) and moreover K

is compact. Hence

|g1(t, α(t))| ≤ mK(t) for a.e. t ∈ [
T

2
, b].

So, ∫ b

T
2

tg1(t, α(t))dt ≤ b
∫ b

T
2

mK(t)dt <∞.

Therefore ∫ b

0
tg1(t, α(t))dt <∞,

and consequently M1 ∈ (0,∞). Further, by (3.9), (3.6), (3.15) and (3.17), we
have for k = 1, . . . , bn,

|vk| ≤
k∑

i=1

hi+1t
µ
i |f(ti, ui)| ≤ T µ−1

k∑
i=1

hi+1tig1(ti, ui) + T µ
k∑

i=1

hi+1g2(ti, ui)

≤ T µ−1
bn∑
i=1

hi+1tig1(ti, ui) + T µ
bn∑
i=1

hi+1g2(ti, ui)

≤ T µ−1M1 + T µM2 =:M3.

Since z[n](t) of (3.5) is a continuous piece-wise linear function and z[n](tk) = vk,
k = 1, . . . , n, z[n](t) = 0 on [t0, t1], we get

max{|z[n](t)|: t ∈ [0, b]} ≤M3, n ∈ N, n ≥ n0. (3.19)

Moreover, by (3.9), there exists M4 ∈ (0,∞) such that

max{|z[n](t)|: t ∈ [0, b]} ≤M4, n ∈ N, n∗ ≤ n ≤ n0. (3.20)
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We have proved that the sequence {y[n]} is bounded on [0, T ] and the sequence

{z[n]} is bounded on [0, b] for each b ∈
(

T
2
, T
)
.

Step 2. Equicontinuity of sequences {y[n]} and {z[n]}.
Consider n ∈ N, n ≥ n∗, b ∈

(
T
2
, T
)

and bn satisfying (3.17). Choose arbitrary

τ1, τ2 ∈ [0, b], τ1 < τ2. Then we can find k, ` ∈ {1, . . . , bn}, k ≤ `, such that
τ1 ∈ [tk−1, tk), τ2 ∈ (t`−1, t`] and, due to (3.5), (3.6) and (3.13),

|z[n](τ2)− z[n](τ1)|

≤
`−1∑

i=k+1

∣∣∣∣∆vi−1

hi

∣∣∣∣ (ti − ti−1) +
∣∣∣∣∆vk−1

hk

∣∣∣∣ (tk − τ1) +
∣∣∣∣∆v`−1

h`

∣∣∣∣ (τ2 − t`−1)

=
`−1∑

i=k+1

tµi−1|f(ti−1, ui−1)|(ti − ti−1) + tµk−1|f(tk−1, uk−1)|(tk − τ1)

+tµ`−1|f(t`−1, u`−1)|(τ2 − t`−1)

≤
`−1∑

i=k+1

tµi−1

(
g1(ti−1, ui−1) + g2(ti−1, ui−1)

)
hi

+tµk−1

(
g1(tk−1, uk−1) + g2(tk−1, uk−1)

)
(tk − τ1)

+tµ`−1

(
g1(t`−1, u`−1) + g2(t`−1, u`−1)

)
(τ2 − t`−1).

If k + 1 > `− 1, we put
∑`−1

i=k+1 = 0. By (3.7), (3.18) and µ ≥ 2, for each ε > 0,
there exists nε ≥ n∗ such that for each n ≥ nε,

|z[n](τ2)− z[n](τ1)| ≤
∫ τ2

τ1
tµ
(
g1(t, α(t)) + m̃(t)

)
dt+ ε.

Moreover there exists δ > 0 such that if τ2 − τ1 < δ, then |z[n](τ2)− z[n](τ1)| < ε
for n = n∗, . . . , nε, and ∫ τ2

τ1
tµ
(
g1(t, α(t)) + m̃(t)

)
dt < ε.

We have proved that the sequence {z[n]} is equicontinuous on [0, b].
Choose an arbitrary a ∈ (0, b). By (3.8), there is n0 ∈ N, n0 ≥ n∗, such that

for each n ∈ N, n ≥ n0, there is an ∈ {1, . . . , n} such that

tan ∈ (0, a), lim
n→∞

tan = a. (3.21)

Choose arbitrary τ1, τ2 ∈ [a, b], τ1 < τ2. By (3.16) and (3.21), we find k, ` ∈
{an, . . . , bn}, k ≤ `, such that τ1 ∈ [tk−1, tk), τ2 ∈ (t`−1, t`] and, due to (3.4),
(3.3), (3.19) and (3.20),

|y[n](τ2)− y[n](τ1)|
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≤
`−1∑

i=k+1

∣∣∣∣∣vi

tµi

∣∣∣∣∣ (ti − ti−1) +

∣∣∣∣∣vk

tµk

∣∣∣∣∣ (tk − τ1) +

∣∣∣∣∣v`

tµ`

∣∣∣∣∣ (τ2 − t`−1)

<
1

aµ
(M3 +M4)(τ2 − τ1).

Having in mind that each function y[n] is continuous on [a, b] for n = n∗, . . . , n0,
we have proved that the sequence {y[n]} is equicontinuous on [a, b].

Step 3. Convergence of sequences {y[n]} and {z[n]}.
Choose arbitrary b ∈

(
T
2
, T
)

and a ∈ (0, b). By Steps 1, 2 and the Arzelà-Ascoli

theorem we can choose subsequences {y[m]} ⊂ {y[n]} and {z[m]} ⊂ {z[n]} such
that

lim
m→∞

y[m](t) = y(t) uniformly on [a, b],

lim
m→∞

z[m](t) = z(t) uniformly on [0, b].

Since a, b ∈ (0, T ) are arbitrary, we use the diagonalization theorem (see e.g.
[13]) and get that these subsequences can be chosen in such a way that they fulfil
(3.10) and (3.11). Consequently,

y ∈ C(0, T ), z ∈ C[0, T ), z(0) = 0. (3.22)

Now choose c ∈ (0, T ). By (3.8) there is a sequence {tcm} ⊂ (0, T ) which fulfils
limm→∞ tcm = c. By (3.9) we have for m ∈ N, m ≥ n∗,

α(tcm) ≤ y[m](tcm) = ucm ≤ β(tcm),

and letting m→∞ we obtain α(c) ≤ y(c) ≤ β(c). Having in mind that c ∈ (0, T )
is arbitrary, we get

α(t) ≤ y(t) ≤ β(t), t ∈ (0, T ). (3.23)

Step 4. Properties of limits y and z.
By (3.14) and (3.15), we get

y[m](tk) = y[m](0) +
k∑

i=1

hi
z[m](ti)

tµi
, k = 1, . . . ,m, (3.24)

z[m](tk+1) = −
k∑

i=1

hi+1t
µ
i f(ti, y

[m](ti)), k = 1, . . . ,m− 1. (3.25)

Assume that 0 < a∗ < a < b < b∗ < T . By (3.17) and (3.21), am ∈ (a∗, a),
bm ∈ (b, b∗) for each sufficiently large m. According to Step 3, conditions (3.10)
and (3.11) are satisfied, and we have

lim
m→∞

y[m](tam−1) = y(a), lim
m→∞

y[m](tbm) = y(b),

12



lim
m→∞

z[m](tam) = z(a), lim
m→∞

z[m](tbm+1) = z(b).

Denote
%m = max{|z[m](ti)− z(ti)|: i = am, . . . , bm}.

Then, by (3.11), the equality limm→∞ %m = 0 holds. Using (3.24), we get

y[m](tbm) = y[m](tam−1) +
bm∑

i=am

hi
z(ti)

tµi
+

bm∑
i=am

hi

tµi
(z[m](ti)− z(ti)),

and letting m→∞, we obtain

y(b) = y(a) +
∫ b

a

z(τ)

τµ
dτ.

For i = 1, . . . ,m− 1, let us put

f̃m(t) = tµi f(ti, y
[m](ti)), t ∈ [ti, ti+1).

By (3.6) and (3.18), we have for each sufficiently large m ∈ N,

|f̃m(t)| ≤ tµ
(
g1(t, α(t)) + m̃(t) + 1

)
for t ∈ J.

Further, using (3.10), we obtain

lim
m→∞

f̃m(t) = tµf(t, y(t)) for t ∈ J.

Since (3.25) yields

z[m](tbm+1) = z[m](tam)−
bm∑

i=am

hi+1t
µ
i f(ti, y

[m](ti)),

we get for m→∞, due to (3.7) and the Lebesgue dominated convergence theo-
rem,

z(b) = z(a)−
∫ b

a
τµf(τ, y(τ))dτ.

Since a, b ∈ (0, T ) are arbitrary, we can write

y(t) = y(a) +
∫ t

a

z(τ)

τµ
dτ, t ∈ (0, T ), (3.26)

z(t) = z(a)−
∫ t

a
τµf(τ, y(τ))dτ, t ∈ (0, T ). (3.27)

Equality (3.26) gives y′(t) = z(t)/tµ for t ∈ (0, T ), and then equality (3.27) can
be written in the form

tµy′(t) = aµy′(a)−
∫ t

a
τµf(τ, y(τ))dτ, t ∈ (0, T ).

13



Due to (3.22), we have limt→0+ t
µy′(t) = 0, and hence,

tµy′(t) = −
∫ t

0
τµf(τ, y(τ))dτ for t ∈ [0, T ). (3.28)

We have proved that y ∈ AC1(0, T ) fulfils equation (1.1) for a.e. t ∈ (0, T ) and
satisfies the first condition in (1.2). If we integrate equation (3.28), we get for
t ∈ (0, a)

y(t) = y(a) +
∫ a

t

1

τµ

∫ τ

0
sµf(s, y(s))dsdτ.

Denote

h̃(τ) =
1

τµ

∫ τ

0
sµf(s, y(s))ds.

Due to (3.6) and (3.7), we see that h̃ ∈ L[0, a] and so y ∈ C[0, T ). Since α, β ∈
C[0, T ] and α(T ) = β(T ) = 0, we get by (3.23), limt→T− y(t) = 0. Therefore,
putting y(T ) = 0 yields that y ∈ C[0, T ] satisfies the second condition in (1.2).
Finally, by (3.9) and (3.23), y(t) > 0 for t ∈ (0, T ). We have proved that y is a
positive solution of problem (1.1), (1.2). �

In the next theorem, we consider a simplier case, where A > 0 and
f ∈ C(J × (0,∞)) may have integrable discontinuities
at t = 0, t = si, i = 1, . . . , r,
f may have a singularity at x = 0.

(3.29)

In Remark 3.4 we explain a choice of the time scale (1.6) for n ∈ N.

Remark 3.4 If (3.29) holds, we find a function g1 ∈ C(J × (0,∞)) with inte-
grable discontinuities at t = 0, t = si, i = 1, . . . , r, which is unbounded if t→ si,
i = 1, . . . , r, x ∈ (0,∞), and fulfils

|f(t, x)| ≤ g1(t, x) for t ∈ J, x ∈ (0,∞).

Then, for n ∈ N, we choose points (1.6) satisfying (1.7) and (3.1) for j = 1.

The next theorem states that under (3.29) the convergence interval for {y[m]}
and {z[m]} can be extended to T .

Theorem 3.5 Let A > 0 and (3.29) hold. Assume that conditions (3.2) and
(3.8) are fulfilled for j = 1 and g1 of Remark 3.4. Further assume that there
exist functions α, β ∈ C[0, T ] satisfying (3.9) and α(0) > 0. Then the following
approximation principle is valid:

Let the sequences {y[n]} and {z[n]} be given by (3.4) and (3.5). Then there
exist their subsequences {y[m]} and {z[m]} such that

lim
m→∞

y[m](t) = y(t) locally uniformly on (0, T ], (3.30)

14



lim
m→∞

z[m](t) = tµy′(t) locally uniformly on [0, T ], (3.31)

and y is a positive solution of the singular differential problem (1.1), (1.2) satis-
fying (3.12). Moreover y ∈ AC 1(0, T ].

Proof. For t ∈ J , put m̃(t) = sup{|f(t, x)|:x ∈ [α(t), β(t)]}. Since α(t) > 0
on [0, T ), we get by (3.29) that m̃ ∈ L[0, T ]. We argue similarly as in Steps 1
and 2 of the proof of Theorem 3.3 and get that the sequences {y[n]} and {z[n]}
are bounded on [0, T ]. Moreover, {y[n]} is equicontinuous on (0, T ] and {z[n]}
on [0, T ]. Therefore, we can find their subsequences {y[m]} and {z[m]} which
fulfil (3.30) and (3.31). Consequently, y ∈ C(0, T ], z ∈ C[0, T ], y(T ) = A,
z(0) = 0. The arguments of Steps 3 and 4 of the proof of Theorem 3.3 yield
α(t) ≤ y(t) ≤ β(t) for t ∈ (0, T ], and

tµy′(t) = −
∫ t

0
τµf(τ, y(τ))dτ, t ∈ [0, T ].

This implies that AC1(0, T ] is a positive solution of problem (1.1), (1.2). �

4 Solvability of singular membrane problems

Choose A, r0 ∈ [0,∞), assume that q ∈ L[0, T ]∩C(J), and consider the problem

(t3u′(t))′ + t3q(t)

(
1

u2(t)
− r0u(t)

)
= 0, (4.1)

lim
t→0+

t3u′(t) = 0, u(T ) = A. (4.2)

This problem is a special case of (1.1), (1.2), where µ = 3 and

f(t, x) = q(t)
(

1

x2
− r0x

)
for t ∈ J, x ∈ (0,∞). (4.3)

We see that f satisfies (3.29). Therefore, we can use Theorem 3.3 or Theorem
3.5 to get a solvability of problem (4.1), (4.2). This problem was studied in [1]
for r0 = 0, A > 0 and q ∈ C[0, 1]. It describes a behavior of symmetric circular
membranes. We prove that corresponding discretizations of this problem are
solvable. We discuss three cases:

A > 0, r0 > 0 or A > 0, r0 = 0 or A = 0, r0 ≥ 0.

Case 1.
Let A > 0, r0 > 0. Assume

q(t) ≥ 0 for t ∈ J. (4.4)
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For n ∈ N, choose points 0 = t0 < t1 < · · · < tn−1 < tn = T such that

q(tk) ∈ [0,∞), k = 1, . . . , n− 1, (4.5)

and, for hk = tk − tk−1, consider the following discretization of problem (4.1),
(4.2):

1

hk+1

∆

(
t3k
hk

∆uk−1

)
+ t3kq(tk)

(
1

u2
k

− r0uk

)
= 0, k = 1, . . . , n− 1, (4.6)

∆u0 = 0, u(T ) = A. (4.7)

Theorem 4.1 Let A > 0, r0 > 0 and (4.5) hold. Then, there are constants
0 < ν < c such that, for each n ∈ N, problem (4.6), (4.7) has a positive solution
(u0, . . . , un) satisfying (3.9), where

α(t) = ν, β(t) = c, t ∈ [0, T ]. (4.8)

Proof. Let n ∈ N be arbitrary. Choose ν ∈ (0, A], c ∈ [A,∞), and consider α,
β given by (4.8). Denote

αk = α(tk), βk = β(tk), k = 0, . . . , n. (4.9)

If ν3 ≤ 1/r0 and c3 ≥ 1/r0, we can check that, for each n ∈ N, the vectors
(α0, . . . , αn) and (β0, . . . , βn) are lower and upper functions of problem (4.6), (4.7)
and satisfy (2.13). According to (4.3), (3.29) and (4.5), we can use Theorem 2.4
and get a positive solution (u0, . . . , un) of problem (4.6), (4.7) satisfying (3.9).
�

Case 2.
Let A > 0, r0 = 0. Assume

∃K > 0: 0 ≤ q(t) ≤ K for t ∈ J. (4.10)

For n ∈ N, choose points 0 = t0 < t1 < · · · < tn−1 < tn = T such that

q(tk) ∈ [0, K], k = 1, . . . , n− 1, (4.11)

and consider the corresponding discretization (4.6), (4.7).

Theorem 4.2 Let A > 0, r0 = 0 and (4.11) hold. Then, there is a constant
c > 0 such that, for each n ∈ N, problem (4.6), (4.7) has a positive solution
(u0, . . . , un) satisfying (3.9), where

α(t) = A, β(t) = A+ c(T 2 − t2), t ∈ [0, T ]. (4.12)
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Proof. Let n ∈ N be arbitrary. Choose c > 0 and consider α, β given by (4.12)
and use (4.9). We can show that for each sufficiently large c > 0

1

hk+1

∆

(
t3k
hk

∆αk−1

)
+ t3kq(tk)

1

α2
k

= t3kq(tk)
1

A2
≥ 0, k = 1, . . . , n− 1,

1

hk+1

∆

(
t3k
hk

∆βk−1

)
+ t3kq(tk)

1

β2
k

= − c

hk+1

(t4k+1 + t3k+1tk − t4k − t3ktk−1) +
t3kq(tk)

(A+ c(T 2 − t2k))
2

≤ −ct3k
(
7− K

cA2

)
≤ 0, k = 1, . . . , n− 1.

Note that c does not depend on n. Moreover, ∆α0 = 0, ∆β0 = −ct21 < 0,
αn = βn = A. Hence, for each n ∈ N, the vectors (α0, . . . , αn) and (β0, . . . , βn) are
lower and upper functions of problem (4.6), (4.7) and satisfy (2.13). According to
(4.3), (3.29), (4.11) and Theorem 2.4, there exists a positive solution (u0, . . . , un)
of problem (4.6), (4.7) satisfying (3.9). �

Case 3.
Let A = 0, r0 ≥ 0. Assume

∃ε,K > 0: ε ≤ q(t) ≤ K for t ∈ J. (4.13)

For n ∈ N, choose points 0 = t0 < t1 < · · · < tn−1 < tn = T such that

q(tk) ∈ [ε,K], k = 1, . . . , n− 1, (4.14)

and consider the corresponding discretization (4.6), (4.7). Denote

ωn = min{tk+1 − tk: k = 0, . . . , n}, χn = max{tk+1 − tk: k = 0, . . . , n}.

Theorem 4.3 Let A = 0, r0 ≥ 0 and (4.14) hold. Assume

lim
n→∞

χn

ωn

= c0 ∈ (0,∞). (4.15)

Then, there are constants 0 < ν < c such that, for each n ∈ N, problem (4.6),
(4.7) has a positive solution (u0, . . . , un) satisfying (3.9), where

α(t) = ν(t+ ν)(T − t), β(t) = c
√
T 2 − t2, t ∈ [0, T ]. (4.16)

Proof. Let n ∈ N be arbitrary. Choose ν > 0, c > ν and consider α, β
given by (4.16). We use (4.9) and show that if ν is sufficiently small and c
sufficiently large, then for each n ∈ N, the vectors (α0, . . . , αn) and (β0, . . . , βn)
are lower and upper functions of problem (4.6), (4.7). We see that αn = βn = 0,
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∆β0 = c
√
T 2 − t21 − cT < 0 and, ∆α0 = νt1(T − (1 + ν)t1) > 0 if ν is sufficiently

small. Further, we get for k = 1, . . . , n− 1,

1

hk+1

∆

(
t3k
hk

∆αk−1

)
+ t3kq(tk)

(
1

α2
k

− r0αk

)

= ν

(
(T − ν − t2k)(t

2
k+1 + tk+1tk + t2k)− (tk+1 + tk)(t

2
k+1 + t2k)− t3k

tk − tk−1

tk+1 − tk

)

+t3kq(tk)

(
1

ν2(tk + ν)2(T − tk)2
− r0ν(tk + ν)(T − tk)

)
=:ϕ(tk, ν).

Let tk+1 ≤ min
{

T
4
, 1
}
. Then, for each sufficiently small ν,

ϕ(tk, ν) >
t3k

ν2(tk + ν)2(T − tk)2
(−ν3(c0 + 1)T 4 + ε− ν3Kr0T

6) ≥ 0.

Let tk > min
{

T
4
, 1
}
. Then, for each sufficiently small ν,

ϕ(tk, ν) ≥
T 3

ν2(tk + ν)2(T − tk)2

(
−ν3(c0 + 8) +

ε

43
− ν3Kr0T

6
)
> 0.

Hence, for each sufficiently small ν, the inequality ϕ(tk, ν) ≥ 0, k = 1, . . . , n− 1,
is valid. This yields that (α0, . . . , αn) is a lower function of problem (4.6), (4.7).
Finally,

1

hk+1

∆

(
t3k
hk

∆βk−1

)
+ t3kq(tk)

(
1

β2
k

− r0βk

)

= − c

hk+1

t3k+1

tk+1 + tk√
T 2 − t2k+1 +

√
T 2 − t2k

− t3k
tk + tk−1√

T 2 − t2k +
√
T 2 − t2k−1


+t3kq(tk)

(
1

c2(T 2 − t2k)
− r0c

√
T 2 − t2k

)
=:ψ(tk, c), k = 1, . . . , n.

Let tk ≥ T
2
. Then, for sufficiently large c,

ψ(tk, c) ≤ − 2ct4k
hk+1

·

√
T 2 − t2k +

√
T 2 − t2k−1 −

(√
T 2 − t2k+1 +

√
T 2 − t2k

)
(√

T 2 − t2k+1 +
√
T 2 − t2k

) (√
T 2 − t2k +

√
T 2 − t2k−1

)

+
t3kK

c2(T 2 − t2k)
≤ − ct4k

hk+1

·
T 2 − t2k − (T 2 − t2k+1)

4(T 2 − t2k)
√
T 2 − t2k−1

+
t3kK

c2(T 2 − t2k)

≤ − ct3k

(T 2 − t2k)
√
T 2 − t2k−1

(
T

4
− TK

c3

)
< 0.
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Let tk ≤ T
2
. Then, for sufficiently large c,

ψ(tk, c) ≤ − 2ctk
hk+1

·
t3k+1 − t3k

2
√
T 2 − t2k

+
t3kK

c2(T 2 − t2k)

≤ −
ctk(t

2
k+1 + tk+1tk + t2k)√

T 2 − t2k
+

t3kK

c2(T 2 − t2k)
≤ −ct3k

(
3

T
− 4K

3c3T 2

)
≤ 0.

Hence, (β0, . . . , βn) is an upper function of problem (4.6), (4.7) and satisfies
(2.13). According to (4.3), (3.29), (4.14) and Theorem 2.4, there exists a positive
solution (u0, . . . , un) of problem (4.6), (4.7) satisfying (3.9). �

The main results about solvability of problem (4.1), (4.2) and about approx-
imation of its solution are contained in the next two theorems.

Theorem 4.4 Let A > 0, r0 ≥ 0. Assume that (4.4) holds if r0 > 0 and that
(4.10) holds if r0 = 0. Then there exists a sequence {y[m]} of continuous piece-
wise linear functions which converges locally uniformly on (0, T ] to a function
y ∈ AC 1(0, T ], which is a positive solution of problem (4.1), (4.2).

Proof. For n ∈ N, we choose points (1.6) by Remark 3.4 and consider the
discrete problem (4.6), (4.7), where q(tk) ∈ [0,∞) if r0 > 0, and q(tk) ∈ [0, K]
if r0 = 0, k = 1, . . . , n − 1. Moreover, the points t1, . . . , tn are chosen such that
(3.8) is valid. By Theorem 4.1 or Theorem 4.2, for each n ∈ N, problem (4.6),
(4.7) has a positive solution (u0, . . . , un) satisfying (3.9). Here α and β are of
(4.8) for r0 > 0 and of (4.12) for r0 = 0. Hence α(0) > 0. Define a sequence
{y[n]} by (3.4). Then, by Theorem 3.5, there exists a subsequence {y[m]} ⊂ {y[n]}
satisfying (3.30), where the limit y ∈ AC 1(0, T ] is a positive solution of (4.1),
(4.2). �

Theorem 4.5 Let A = 0, r0 ≥ 0. Assume that (4.13) holds. Then there exists a
sequence {y[m]} of continuous piece-wise linear functions which converges locally
uniformly on (0, T ) to a function y, which is a positive solution of problem (4.1),
(4.2).

Proof. For n ∈ N, we choose points (1.6) by Remark 3.2 and consider the discrete
problem (4.6), (4.7), where q(tk) ∈ [ε,K], k = 1, . . . , n− 1. Moreover, the points
t1, . . . , tn are chosen such that (3.8) and (4.15) are valid. By Theorem 4.3, for
each n ∈ N, problem (4.6), (4.7) has a positive solution (u0, . . . , un) satisfying
(3.9), where α and β are defined in (4.16). Hence β(T ) = 0. Further we can put

g1(t, x) =
q(t)

x2
, g2(t, x) = r0q(t)x for t ∈ J, x ∈ (0,∞).
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Then g1 ∈ C(J × (0,∞)), g2 ∈ C(J × [0,∞)), g1 and g2 have integrable discon-
tinuities at t = 0, t = si, i = 1, . . . , r, g1 is decreasing in x and∫ T/2

0
tg1(t, α(t))dt =

∫ T/2

0

tq(t)

ν2(t+ ν)2(T − t)2
dt ≤ 2K

Tν4

∫ T/2

0
t dt <∞.

According to (4.3), inequality (3.6) holds. Define a sequence {y[n]} by (3.4).
Then, by Theorem 3.3, there exists a subsequence {y[m]} ⊂ {y[n]} satisfying
(3.10), where the limit y is a positive solution of (4.1), (4.2). �
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in Boundary Value Problems for Nonlinear Ordinary Differential Equations.
In: Handbook of Differential Equations. Ordinary Differential Equations,
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