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Abstract. The paper deals with the second-order non-autonomous difference
equation

x(n+ 1) = x(n) +
(

n

n+ 1

)2 (
x(n)− x(n− 1) + h2f(x(n))

)
, n ∈ N,

where h > 0 is a parameter and f is Lipschitz continuous and has three real zeros
L0 < 0 < L.

We provide conditions for f under which for each sufficiently small h > 0 there
exists a homoclinic solution of the above equation. The homoclinic solution is a
sequence {x(n)}∞n=0 satisfying the equation and such that {x(n)}∞n=1 is increasing,
x(0) = x(1) ∈ (L0, 0) and limn→∞ x(n) = L. The problem is motivated by some
models arising in hydrodynamics.
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1 Introduction

In hydrodynamics or in the nonlinear field theory we can find differential models
which can be reduced, after some substitution, to the form

(t2u′)′ = 4λ2t2(u+ 1)u(u− ξ), (1.1)

u′(0) = 0, u(∞) = ξ, (1.2)

where λ ∈ (0,∞) and ξ ∈ (0, 1) are parameters. See e.g. [5], [6], [8], [10], [11].

Consider the following generalization of equation (1.1)

(t2u′)′ = t2f(u) (1.3)
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and construct a discretization of problem (1.3), (1.2). Choose h > 0 and a
sequence {tn}∞n=0 ⊂ [0,∞) such that

t0 = 0, tn+1 − tn = h, n ∈ N, lim
n→∞

tn =∞. (1.4)

Denote x(0) = u(0) and x(n) = u(tn) for n ∈ N. Then the discrete analogy of
problem (1.3), (1.2) has the form of the following difference problem

1

h2
∆(t2n∆x(n− 1)) = t2nf(x(n)), n ∈ N, (1.5)

∆x(0) = 0, lim
n→∞

x(n) = ξ. (1.6)

Here ∆x(n−1) = x(n)−x(n−1) is the forward difference operator and tn = hn,
n ∈ N.

2 Formulation of problem

Equation (1.5) has an equivalent form

x(n+ 1) = x(n) +
(

n

n+ 1

)2 (
x(n)− x(n− 1) + h2f(x(n))

)
, n ∈ N. (2.1)

We will investigate equation (2.1) under the assumption that f fulfils

L0 < 0 < L, f ∈ Liploc(R), f(L0) = f(0) = f(L) = 0, (2.2)

xf(x) < 0 for x ∈ (L0, L) \ {0}, (2.3)

∃B̄ ∈ (L0, 0) such that
∫ L

B̄
f(z) dz = 0. (2.4)

Let us note that f ∈ Liploc(R) means that for each [A0, A] ⊂ R there exists
K > 0 such that |f(x) − f(y)| ≤ K|x − y| for all x, y ∈ [A0, A]. We see that
the function f(x) = 4λ2(x + 1)x(x − ξ) of equation (1.1) with λ ∈ (0,∞) and
ξ ∈ (0, 1) satisfies conditions (2.2)–(2.4) for L0 = −1 and L = ξ.

A sequence {x(n)}∞n=0 which satisfies (2.1) is called a solution of equation
(2.1). For each values B,B1 ∈ [L0,∞) there exists a unique solution {x(n)}∞n=0

of equation (2.1) satisfying the initial conditions

x(0) = B, x(1) = B1. (2.5)

Then {x(n)}∞n=0 is called a solution of problem (2.1), (2.5).
Strictly increasing solutions with just one zero play a fundamental role in

the differential models (1.1), (1.2). According to this we search for solutions
{x(n)}∞n=0 of equation (2.1) satisfying

x(0) = x(1), lim
n→∞

x(n) = L, {x(n)}∞n=1 is increasing. (2.6)
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To this aim (see Lemma 3.1) we will study solutions of problem (2.1), (2.7), where

x(0) = B, x(1) = B, B ∈ (L0, 0). (2.7)

Using our results of [17] and [18], we will prove that for each sufficiently small
h > 0 there exists at least one B ∈ (L0, 0) such that the corresponding solution
of problem (2.1), (2.7) fulfils (2.6). Note that an autonomous case of (2.1) was
studied in [16]. We mention also some recent papers investigating the solvability
of other second-order discrete boundary value problems, for example [1], [2], [9],
[13]–[15], [20].

3 Four types of solutions

Lemma 3.1 shows that it suffices to consider B ∈ (L0, 0) in order to find a solution
fulfilling (2.6).

Lemma 3.1 Let B ∈ [L0, L] and {x(n)}∞n=0 be the corresponding solution of
equation (2.1) satisfying x(0) = x(1) = B. If B /∈ (L0, 0), then {x(n)}n0

n=1 is not
increasing for any n0 ∈ N, n0 > 1.

Proof. Due to (2.1), {x(n)}∞n=0 fulfils

∆x(n) =
(

n

n+ 1

)2 (
∆x(n− 1) + h2f(x(n))

)
, n ∈ N. (3.1)

(i) Let B ∈ (0, L). By (2.3) and (2.7) we have f(x(1)) = f(B) < 0, and (3.1)
yields ∆x(1) < 0. Hence x(1) > x(2) and {x(n)}n0

n=1 is not increasing for any
n0 > 1.

(ii) Let B ∈ {L0, 0, L}. Then (2.1) and (2.2) imply that {x(n)}∞n=0 is the
constant sequence with x(n) = B, n ∈ N. Hence {x(n)}n0

n=1 is not increasing for
any n0 > 1. �

Definition 3.2 Let {x(n)}∞n=0 be a solution of problem (2.1), (2.7) such that

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = 0. (3.2)

Then {x(n)}∞n=0 is called a damped solution.

Remark 3.3 The differential equation (1.3) for t ∈ (0,∞) corresponds to the
difference equation (2.1). If we consider equation (1.3) for t ∈ (−∞, 0), then its
discrete analogy can have the form (compare with (1.5))

1

h2
∆(t2−n−1∆x(−n− 1)) = t2−nf(x(−n)), n ∈ N, (3.3)
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where ∆x(−n− 1) = x(−n− 1)− x(−n), t−n = −hn, n ∈ N. Then (3.3) has an
equivalent form

x(−n− 1) = x(−n) +
(

n
n+1

)2 (
x(−n)− x(−n+ 1)

+h2f(x(−n))
)
, n ∈ N.

(3.4)

Assume that B∗ ∈ (L0, 0) is such that the solution {x∗(n)}∞n=0 of problem (2.1),
(2.7) with B = B∗ satisfies limn→∞ x

∗(n) = L. Now, consider the sequence
{x∗(−n)}∞n=0 which fulfils (3.4) and x∗(−1) = x∗(0) = B∗. Comparing (2.1) and
(3.4) we see that x∗(n) = x∗(−n) for n ∈ N. Therefore

lim
n→∞

x∗(−n) = lim
n→∞

x∗(n) = L. (3.5)

Motivated by (3.5) we will use the following definition.

Definition 3.4 Let {x(n)}∞n=0 be a solution of problem (2.1), (2.7) which fulfils

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = L. (3.6)

Then {x(n)}∞n=0 is called a homoclinic solution.

Lemma 3.7 needs next two definitions.

Definition 3.5 Let {x(n)}∞n=0 be a solution of problem (2.1), (2.7). Assume that
there exists b ∈ N, such that {x(n)}b+1

n=1 is increasing and

x(b) ≤ L < x(b+ 1). (3.7)

Then {x(n)}∞n=0 is called an escape solution.

Definition 3.6 Let {x(n)}∞n=0 be a solution of problem (2.1), (2.7). Assume that
there exists b ∈ N, b > 1, such that {x(n)}bn=1 is increasing and

0 < x(b) < L, x(b+ 1) ≤ x(b). (3.8)

Then {x(n)}∞n=0 is called a non-monotonous solution.

We present some results of [17] and [18] which we use in next sections.

Lemma 3.7 [17] (On four types of solutions)
Let {x(n)}∞n=0 be a solution of problem (2.1), (2.7). Then {x(n)}∞n=0 is just one
of the following four types:

(I) {x(n)}∞n=0 is an escape solution;

(II) {x(n)}∞n=0 is a homoclinic solution;

(III) {x(n)}∞n=0 is a damped solution;

(IV) {x(n)}∞n=0 is a non-monotonous solution.
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Lemma 3.8 [17] (On the existence of non-monotonous or damped solutions)
Let B ∈ (B̄, 0), where B̄ is defined by (2.4). There exists hB > 0 such that if
h ∈ (0, hB], then the corresponding solution {x(n)}∞n=0 of problem (2.1), (2.7) is
non-monotonous or damped.

Remark 3.9 Our main task is to prove the existence of B ∈ (L0, 0) such that
{x(n)}∞n=0 a homoclinic solution of problem (2.1), (2.7) with this B. Such solution
fulfils L0 < B ≤ x(n) < L for n ∈ N ∪ {0}. Therefore we may assume without
loss of generality that

f(x) = 0 for x ∈ (−∞, L0) ∪ (L,∞). (3.9)

By Remark 3.9, we assume that, in addition to (2.2)–(2.4), f fulfils moreover
(3.9) in Lemma 3.10.

Lemma 3.10 [18] (On the existence of escape solutions)
There exists h∗ > 0 such that for any h ∈ (0, h∗] there exists an escape solution
{x`(n)}∞n=0 of problem (2.1), (2.7) for some B = B` ∈ (L0, B̄).

4 Estimates of solutions

In this section, f is supposed to fulfil (2.2)–(2.4) and (3.9).

Lemma 4.1 Let {x(n)}∞n=0 be an escape solution of problem (2.1), (2.7). Then
{x(n)}∞n=1 is increasing and

lim
n→∞

x(n) ∈ (L,∞). (4.1)

Proof. According to Definition 3.5 there exists b ∈ N, such that {x(n)}b+1
n=1 is

increasing and (3.7) holds. By (3.9) we get f(x(b + 1)) = 0. Consequently, by

(3.1) and (3.7), ∆x(b + 1) =
(
b+1
b+2

)2
∆x(b) > 0 and f(x(b + 2)) = 0. Similarly

∆x(b+ j) =
(

b+j
b+1+j

)2
∆x(b+ j − 1) and

∆x(b+ j) =

(
b+ 1

b+ 1 + j

)2

∆x(b), j ∈ N. (4.2)

This yields that {x(n)}∞n=1 is increasing.
Summing (4.2) for j = 1, . . . , k, we obtain

x(b+ k + 1) = x(b+ 1) + (b+ 1)2∆x(b)
k∑
j=1

1

(b+ 1 + j)2
, k ∈ N.
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Consequently

lim
n→∞

x(n) = x(b+ 1) + (b+ 1)2∆x(b)
∞∑
j=1

1

(b+ 1 + j)2
.

We have
∑∞
n=1

1
(b+1+n)2

<∞ and (4.1) follows. �

Lemma 4.2 [18] Let {x(n)}∞n=0 be a solution of problem (2.1), (2.7). Then there
exists a maximal b ∈ N ∪ {∞} satisfying

x(n) ∈ [B,L) for n = 1, . . . , b, (4.3)

and, if moreover b > 1, then

{x(n)}bn=1 is increasing. (4.4)

In addition

∆x(n) < h
√

(L− 2L0)M0 + h2M0, n = 1, . . . , b− 1, (4.5)

where
M0 = max{|f(x)|: x ∈ [L0, L]}. (4.6)

Corollary 4.3 Let h ∈ (0, 1). If {x(n)}∞n=0 is a damped solution of problem
(2.1), (2.7), then

∆x(n)

h
<
√

2|L0|M0, n ∈ N. (4.7)

If {x(n)}∞n=0 is an escape solution of problem (2.1), (2.7), then

∆x(n)

h
<
√

(L− 2L0)M0 + 2M0, n ∈ N. (4.8)

Proof. Equation (2.1) has an equivalent form

∆x(n)−∆x(n− 1) +
2n+ 1

n2
∆x(n) = h2f(x(n)), n ∈ N. (4.9)

Multiplying (4.9) by ∆x(n) + ∆x(n− 1), we obtain

(∆x(n))2 − (∆x(n− 1))2 +
2n+ 1

n2
∆x(n)(∆x(n) + ∆x(n− 1))

= h2f(x(n))(x(n+ 1)− x(n− 1)), n ∈ N.
(4.10)

Summing (4.10) from 1 to n ∈ N, we have

(∆x(n))2 +
n∑
j=1

2j + 1

j2
∆x(j)(∆x(j) + ∆x(j − 1))

= h2
n∑
j=1

f(x(j))(x(j + 1)− x(j − 1)), n ∈ N.
(4.11)
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If {x(n)}∞n=0 is a damped solution of problem (2.1), (2.7), then by (3.2) and (4.6)
we get

∆x(n) < h
√

2|B|M0 < h
√

2|L0|M0, n ∈ N. (4.12)

Let {x(n)}∞n=0 be an escape solution. By Definition 3.5, {x(n)}∞n=1 is increasing
and there exists b ∈ N such that x(b) ≤ L < x(b+ 1). By (4.5) we have

∆x(b− 1) < h
√

(L− 2L0)M0 + h2M0, (4.13)

and, by (3.1) and (4.6),

∆x(b) =

(
b

b+ 1

)2 (
∆x(b− 1) + h2f(x(b))

)
< ∆x(b− 1) + h2M0. (4.14)

Further, x(n) > L for n ≥ b+ 1 and hence, due to (3.9), f(x(n)) = 0. Therefore

∆x(n) =
(
n− 1

n

)2

∆x(n− 1) < ∆x(n− 1), n ≥ b+ 1. (4.15)

Consequently (4.13)–(4.15) give (4.8). �

Lemma 4.4 [18] Choose an arbitrary % > 0. Let B1, B2 ∈ (L0, 0) and let
{x(n)}∞n=0 and {y(n)}∞n=0 be solutions of problem (2.1), (2.7) with B = B1 and
B = B2, respectively. Let K by the Lipschitz constant for f on [L0, L]. Then

|x(n)− y(n)| ≤ |B1 −B2|e%
2K , (4.16)∣∣∣∣∣∆x(n)−∆y(n)

h

∣∣∣∣∣ ≤ |B1 −B2|%K e%
2K , (4.17)

where n ∈ N, n ≤ %
h

.

Corollary 4.5 Let the assumptions of Lemma 4.4 be fulfilled and let b0 ∈ N,
b0 > 1, h ∈ (0, 1). Then for n ∈ N, n ≤ b0, the following inequalities hold:

|x(n)− y(n)| ≤ |B1 −B2|eb
2
0K , (4.18)∣∣∣∣∣∆x(n)−∆y(n)

h

∣∣∣∣∣ ≤ |B1 −B2|b0K eb
2
0K , (4.19)

∣∣∣∆x(n)
h
· ∆x(n)+∆x(n−1)

2h
− ∆y(n)

h
· ∆y(n)+∆y(n−1)

2h

∣∣∣
≤ |B1 −B2|Λ,

(4.20)

where

Λ = 2
(√

(L− 2L0)M0 +M0

)
b0K eb

2
0K . (4.21)
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Proof. Inequalities (4.18) and (4.19) follow directly from (4.16) and (4.17).
Inequality (4.20) is based on (4.7), (4.8), (4.19) and on the inequality∣∣∣∣∣∆x(n)

h
· ∆x(n) + ∆x(n− 1)

2h
− ∆y(n)

h
· ∆y(n) + ∆y(n− 1)

2h

∣∣∣∣∣
≤
∣∣∣∣∣∆x(n)−∆y(n)

h

∣∣∣∣∣ ·
∣∣∣∣∣∆y(n) + ∆y(n− 1)

2h

∣∣∣∣∣
+

∣∣∣∣∣∆x(n)

h

∣∣∣∣∣ ·
∣∣∣∣∣∆x(n)−∆y(n)

2h

∣∣∣∣∣+
∣∣∣∣∣∆x(n)

h

∣∣∣∣∣ ·
∣∣∣∣∣∆x(n− 1)−∆y(n− 1)

2h

∣∣∣∣∣ .
�

5 Further properties of solutions

In order to prove the existence of a homoclinic solution we will need the following
lemmas. Here f fulfils (2.2)–(2.4) and (3.9).

Lemma 5.1 Let {x](n)}∞n=0 be a non-monotonous (an escape) solution of prob-
lem (2.1), (2.7) with B = B] ∈ (L0, 0). Then there exists ε > 0 such that for each
B ∈ (B]− ε, B] + ε) the corresponding solution {x(n)}∞n=0 of problem (2.1), (2.7)
is also a non-monotonous (an escape) solution.

Proof. Let K be the Lipschitz constant for f on [L0, L] and let {x(n)}∞n=0 be
a solution of problem (2.1), (2.7) with B 6= B]. For b ∈ N put % = h(b + 2).
According to Lemma 4.4,

|x](n)− x(n)| ≤ |B] −B|e%
2K , n ≤ b+ 2. (5.1)

(i) Assume that {x](n)}∞n=0 is a non-monotonous solution. By Definition 3.6
there exists b ∈ N, b > 1, such that {x](n)}bn=1 is increasing and

0 < x](b) < L, x](b+ 1) ≤ x](b).

We can find δ1, δ2 > 0 such that

0 < x](b)− δ1, x](b) + δ1 < L, (5.2)

and for n ≤ b− 1

δ2 <
1

2
(x](n+ 1)− x](n)). (5.3)

Let x](b+ 1) = x](b). Then x](b+ 2) < x](b+ 1) because, by (3.1),

∆x](b+ 1) =

(
b+ 1

b+ 2

)2 (
∆x](b) + h2f(x](b+ 1))

)
< 0.
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We choose δ3 > 0 such that

δ3 <
1

2
(x](b+ 1)− x](b+ 2)). (5.4)

Let x](b+ 1) < x](b). Then we choose δ3 > 0 such that

δ3 <
1

2
(x](b)− x](b+ 1)). (5.5)

Now, for x](b + 1) ≤ x](b), put δ = min{δ1, δ2, δ3}, ε = e−%
2Kδ and assume

that |B] −B| < ε. Then, by (5.1), we get

|x](n)− x(n)| ≤ δ, n ≤ b+ 2. (5.6)

Therefore, by (5.2), 0 < x](b)− δ ≤ x(b) and x(b) ≤ x](b)+ δ < L. So 0 < x(b) <
L. Further, by (5.3) and (5.6), for n ≤ b− 1,

x(n) ≤ x](n) + δ < x](n+ 1)− δ ≤ x(n+ 1).

Therefore {x(n)}bn=1 is increasing.
Let x](b + 1) = x](b). If x(b + 1) ≤ x(b), we see that {x(n)}∞n=0 is non-

monotonous. So assume that x(b + 1) > x(b). Then {x(n)}b+1
n=1 is increasing.

Further, by (5.4) and (5.6),

x(b+ 2) ≤ x](b+ 2) + δ < x](b+ 1)− δ ≤ x(b+ 1).

Hence x(b+ 2) < x(b+ 1) which yields that {x(n)}∞n=0 is non-monotonous in this
case, as well.

If x](b+ 1) < x](b), we deduce by (5.5) and (5.6) that x(b+ 1) < x(b) and get
that {x(n)}∞n=0 is non-monotonous.

(ii) Assume that {x](n)}∞n=0 is an escape solution. By Definition 3.5 there exists
b ∈ N such that {x](n)}b+1

n=1 is increasing and L < x](b + 1). Then we can find
δ1, δ2 > 0 such that

L < x](b+ 1)− δ1, (5.7)

and inequality (5.3) holds for n ≤ b. Put δ = min{δ1, δ2}, ε = e−%
2Kδ and assume

that |B] − B| < ε. Then, (5.6) holds and using (5.7) and (5.3) we deduce as in
part (i) that {x(n)}b+1

n=1 is increasing and L < x(b+ 1). Consequently, {x(n)}∞n=0

is an escape solution. �

Lemma 5.2 There exists h∗ > 0 such that if h ∈ (0, h∗], B0 ∈ (L0, 0) and
{x0(n)}∞n=0 is a damped solution of problem (2.1), (2.7) with B = B0, then there
exists δB0 > 0 such that for each B 6= B0, B ∈ (B0 − δB0 , B0 + δB0) ∩ (L0, 0),
the corresponding solution {x(n)}∞n=0 of problem (2.1), (2.7) cannot be an escape
solution.
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Proof. By (2.2), f is integrable on [L0, L] and we can choose c0, ε and η∗ such
that

0 < c0 <
1

3

∣∣∣∣∣
∫ L

0
f(z) dz

∣∣∣∣∣ , 0 < ε <
c0

3
, (5.8)

|B −B0| < 2η∗ =⇒
∣∣∣∣∣
∫ B0

B
f(z) dz

∣∣∣∣∣ < ε, B,B0 ∈ [L0, 0]. (5.9)

Step 1. By (2.2) and (3.9), for each B ∈ [L0, 0] there exists δB > 0 such that
each increasing sequence {x(j)}n+1

j=1 , n ∈ N, fulfils the following implication: If

x(1) ∈ (B − δB, B + δB), x(0) = x(1), −δB < x(n+ 1) < 0,

x(j+1)−x(j−1)
2

< δB, j = 1, . . . , n,
(5.10)

then ∣∣∣∣∣∣
n∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2
−
∫ 0

x(1)
f(z) dz

∣∣∣∣∣∣ < ε. (5.11)

LetM =
⋃
B∈[L0,0](B−δB, B+δB). Then [L0, 0] ⊂M and since [L0, 0] is compact,

we can choose a finite number ν of intervals (Bk − δBk
, Bk + δBk

) such that

[L0, 0] ⊂
ν⋃
k=1

(Bk − δBk
, Bk + δBk

). (5.12)

Consider M0 of (4.6) and choose hk > 0 such that

hk
√

2|L0|M0 < δBk
, k = 1, . . . , ν. (5.13)

Step 2. Consider η∗ of (5.9). By (2.2) and (3.9), for each B ∈ [L0, 0] there
exists ηB ∈ (0, η∗) such that each increasing sequence {x(j)}n+1

j=1 , n ∈ N, fulfils
the following implication: If

x(1) ∈ (B − ηB, B + ηB), x(0) = x(1), L < x(n+ 1),

x(j+1)−x(j−1)
2

< ηB, j = 1, . . . , n,
(5.14)

then ∣∣∣∣∣∣
n∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2
−
∫ L

x(1)
f(z) dz

∣∣∣∣∣∣ < ε. (5.15)

As in Step 1 we deduce that there is a finite number µ of intervals (B`−ηB`
, B`+

ηB`
) such that

[L0, 0] ⊂
µ⋃
`=1

(B` − ηB`
, B` + ηB`

), (5.16)
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and we choose h̃` > 0 such that

h̃`

(√
(L− 2L0)M0 + 2M0

)
< ηB`

, ` = 1, . . . , µ. (5.17)

In what follows we assume that

h ∈ (0, h∗], h∗ = min{1, h1, . . . , hν , h̃1, . . . , h̃µ}. (5.18)

Step 3. Let B0 ∈ (L0, 0) be such that {x0(n)}∞n=0 is a damped solution of
problem (2.1), (2.7) with B = B0. By (5.12), B0 ∈ (Bk − δBk

, Bk + δBk
) for some

k ∈ {1, . . . , ν}. Therefore, by (4.7), (5.13) and (5.18), {x0(j)}n+1
j=1 , n ∈ N, satisfies

(5.10) for Bk in place of B, and consequently∣∣∣∣∣∣
n∑
j=1

f(x0(j))
x0(j + 1)− x0(j − 1)

2
−
∫ 0

B0

f(z) dz

∣∣∣∣∣∣ < ε.

Letting n→∞ we get∣∣∣∣∣∣
∞∑
j=1

f(x0(j))
x0(j + 1)− x0(j − 1)

2
−
∫ 0

B0

f(z) dz

∣∣∣∣∣∣ ≤ ε. (5.19)

Further, {x0(n)}∞n=0 satisfies (4.11) and hence

1

2

(
∆x0(n)

h

)2

+
n∑
j=1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h

=
n∑
j=1

f(x0(j))
x0(j + 1)− x0(j − 1)

2
, n ∈ N.

Letting n→∞ and having in mind that limn→∞∆x0(n) = 0, we get

∞∑
j=1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h

=
∞∑
j=1

f(x0(j))
x0(j + 1)− x0(j − 1)

2
.

This together with (5.19) give∣∣∣∣∣∣
∞∑
j=1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h
−
∫ 0

B0

f(z) dz

∣∣∣∣∣∣ ≤ ε. (5.20)

Consequently, there exists b0 ∈ N such that

∞∑
j=b0+1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h
< c0. (5.21)
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Define Λ by (4.21). By virtue of (5.16), we have B0 ∈ (B`−ηB`
, B`+ηB`

) for some
` ∈ {1, . . . , µ}. Therefore there exists δB0 ∈ (0, ηB`

) such that (B0 − δB0 , B0 +
δB0) ⊂ (B` − ηB`

, B` + ηB`
) and

δB0Λ < c0. (5.22)

Step 4. Assume on the contrary that for some B ∈ (B0−δB0 , B0+δB0)∩(L0, 0),
B 6= B0, a sequence {x(n)}∞n=0 is an escape solution of problem (2.1), (2.7). Then
{x(n)}∞n=1 is increasing and there exists b ∈ N such that x(b) ≤ L < x(b+ 1). By
(4.8), (5.17) and (5.18), we get that {x(j)}n+1

j=1 , n ≥ b, satisfies (5.14) for B` in
place of B, and consequently, inequality (5.15) holds for n ∈ N, n ≥ b.

Let n ≥ max{b0, b}. Using successively (5.15), (4.11), (4.20), (5.21), (5.22),
(5.20) and (5.9), we get

ε+
∫ L

B
f(z) dz >

n∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2
=

1

2

(
∆x(n)

h

)2

+
n∑
j=1

2j + 1

j2
· ∆x(j)

h
· ∆x(j) + ∆x(j − 1)

2h
>

b0∑
j=1

2j + 1

j2
· ∆x(j)

h
· ∆x(j) + ∆x(j − 1)

2h
≥

b0∑
j=1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h
− |B −B0|Λ =

∞∑
j=1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h
−

∞∑
j=b0+1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h
− |B −B0|Λ ≥

∞∑
j=1

2j + 1

j2
· ∆x0(j)

h
· ∆x0(j) + ∆x0(j − 1)

2h
− 2c0 ≥

∫ 0

B0

f(z) dz − ε− 2c0 >
∫ 0

B
f(z) dz − 2ε− 2c0.

Hence, ∫ L

B
f(z) dz >

∫ 0

B
f(z) dz − 3ε− 2c0,

and using (2.3) and (5.8) we get

3c0 > −
∫ L

0
f(z) dz =

∣∣∣∣∣
∫ L

0
f(z) dz

∣∣∣∣∣ > 3c0,

a contradiction. �
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6 Existence of homoclinic solutions

Now, we are ready to state and prove the main result provided f fulfils only our
basic assumptions (2.2)–(2.4).

Theorem 6.1 (On the existence of homoclinic solutions)
There exists h∗ > 0 such that for any h ∈ (0, h∗] there exists a homoclinic so-
lution {x∗(n)}∞n=0 of problem (2.1), (2.7), that is {x∗(n)}∞n=1 is increasing and
limn→∞ x

∗(n) = L.

Proof. First, consider an equation

x(n+ 1) = x(n) +
(

n

n+ 1

)2 (
x(n)− x(n− 1) + h2f ∗(x(n))

)
, n ∈ N, (6.1)

where

f ∗(x) =
{
f(x) if x ∈ [L0, L]
0 if x /∈ [L0, L]

.

Hence f ∗ fulfils (2.2)–(2.4) and (3.9). Let us choose h∗1 > 0 such that the assertion
of Lemma 5.2 is valid for problem (6.1), (2.7). By Lemma 3.8 and Lemma 3.10,
we can find h∗ ∈ (0, h∗1] such that if h ∈ (0, h∗], than for some Bes ∈ (L0, B̄),
the solution of (6.1), (2.7) with B = Bes is an escape solution, and for some
Bnd ∈ (B̄, 0), the solution of (6.1), (2.7) with B = Bnd is non-monotonous or
damped.

By Lemma 5.1, there exists ε > 0 such that for each B ∈ (Bes, Bes + ε),
the corresponding solution of (6.1), (2.7) is an escape solution. Let ε∗ be the
supremum of such epsilons and put B∗ := Bes + ε∗. Then L0 < B∗ ≤ Bnd < 0.
Denote {x∗(n)}∞n=0 the solution of (6.1), (2.7) with B = B∗.
(i) Let {x∗(n)}∞n=0 be non-monotonous. Then, by Lemma 5.1, there is ε̃1 > 0
such that for each B ∈ (B∗ − ε̃1, B

∗), the corresponding solution is also non-
monotonous. This contradicts the definition of ε∗.

(ii) Let {x∗(n)}∞n=0 be an escape solution. Then, by Lemma 5.1, there is ε̃2 > 0
such that for each B ∈ (B∗, B∗ + ε̃2), the corresponding solution is also escape.
This contradicts the maximality of ε∗.

(iii) Let {x∗(n)}∞n=0 be a damped solution. Then, by Lemma 5.2, there is ε̃3 > 0
such that for each B ∈ (B∗ − ε̃3, B

∗), the corresponding solution cannot be an
escape solution. This contradicts the definition of ε∗.

By Lemma 3.7, {x∗(n)}∞n=0 must be a homoclinic solution. Since L0 < B∗ ≤
x∗(n) < L for n ∈ N, the homoclinic solution {x∗(n)}∞n=0 of problem (6.1), (2.7)
is also a solution of problem (2.1), (2.7). �
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