Homoclinic solutions of non-autonomous difference equations arising in hydrodynamics

Lukáš Rachůnek and Irena Rachůnková

Department of Mathematics, Faculty of Science, Palacký University, tř. 17. listopadu 12, 77146 Olomouc, Czech Republic, e-mail: rachunko@inf.upol.cz

Abstract. The paper deals with the second-order non-autonomous difference equation

$$x(n+1) = x(n) + \left(\frac{n}{n+1}\right)^2 \left(x(n) - x(n-1) + h^2 f(x(n))\right), \quad n \in \mathbb{N}$$

where h > 0 is a parameter and f is Lipschitz continuous and has three real zeros $L_0 < 0 < L$.

We provide conditions for f under which for each sufficiently small h > 0 there exists a homoclinic solution of the above equation. The homoclinic solution is a sequence $\{x(n)\}_{n=0}^{\infty}$ satisfying the equation and such that $\{x(n)\}_{n=1}^{\infty}$ is increasing, $x(0) = x(1) \in (L_0, 0)$ and $\lim_{n\to\infty} x(n) = L$. The problem is motivated by some models arising in hydrodynamics.

Keywords. Non-autonomous second-order difference equation, homoclinic solutions, strictly increasing solutions.

Mathematics Subject Classification 2000. 39A11, 39A12, 39A70

1 Introduction

In hydrodynamics or in the nonlinear field theory we can find differential models which can be reduced, after some substitution, to the form

$$(t^{2}u')' = 4\lambda^{2}t^{2}(u+1)u(u-\xi), \qquad (1.1)$$

$$u'(0) = 0, \quad u(\infty) = \xi,$$
 (1.2)

where $\lambda \in (0, \infty)$ and $\xi \in (0, 1)$ are parameters. See e.g. [5], [6], [8], [10], [11].

Consider the following generalization of equation (1.1)

$$(t^2 u')' = t^2 f(u) \tag{1.3}$$

and construct a discretization of problem (1.3), (1.2). Choose h > 0 and a sequence $\{t_n\}_{n=0}^{\infty} \subset [0, \infty)$ such that

$$t_0 = 0, \quad t_{n+1} - t_n = h, \ n \in \mathbb{N}, \quad \lim_{n \to \infty} t_n = \infty.$$
 (1.4)

Denote x(0) = u(0) and $x(n) = u(t_n)$ for $n \in \mathbb{N}$. Then the discrete analogy of problem (1.3), (1.2) has the form of the following difference problem

$$\frac{1}{h^2}\Delta(t_n^2\Delta x(n-1)) = t_n^2 f(x(n)), \ n \in \mathbb{N},$$
(1.5)

$$\Delta x(0) = 0, \quad \lim_{n \to \infty} x(n) = \xi. \tag{1.6}$$

Here $\Delta x(n-1) = x(n) - x(n-1)$ is the forward difference operator and $t_n = hn$, $n \in \mathbb{N}$.

2 Formulation of problem

Equation (1.5) has an equivalent form

$$x(n+1) = x(n) + \left(\frac{n}{n+1}\right)^2 \left(x(n) - x(n-1) + h^2 f(x(n))\right), \quad n \in \mathbb{N}.$$
 (2.1)

We will investigate equation (2.1) under the assumption that f fulfils

$$L_0 < 0 < L, \quad f \in \operatorname{Lip}_{\operatorname{loc}}(\mathbb{R}), \quad f(L_0) = f(0) = f(L) = 0,$$
 (2.2)

$$xf(x) < 0 \text{ for } x \in (L_0, L) \setminus \{0\},$$
 (2.3)

$$\exists \bar{B} \in (L_0, 0) \text{ such that } \int_{\bar{B}}^{L} f(z) \, \mathrm{d}z = 0.$$
(2.4)

Let us note that $f \in \operatorname{Lip}_{\operatorname{loc}}(\mathbb{R})$ means that for each $[A_0, A] \subset \mathbb{R}$ there exists K > 0 such that $|f(x) - f(y)| \leq K|x - y|$ for all $x, y \in [A_0, A]$. We see that the function $f(x) = 4\lambda^2(x+1)x(x-\xi)$ of equation (1.1) with $\lambda \in (0,\infty)$ and $\xi \in (0,1)$ satisfies conditions (2.2)–(2.4) for $L_0 = -1$ and $L = \xi$.

A sequence $\{x(n)\}_{n=0}^{\infty}$ which satisfies (2.1) is called a solution of equation (2.1). For each values $B, B_1 \in [L_0, \infty)$ there exists a unique solution $\{x(n)\}_{n=0}^{\infty}$ of equation (2.1) satisfying the initial conditions

$$x(0) = B, \quad x(1) = B_1.$$
 (2.5)

Then $\{x(n)\}_{n=0}^{\infty}$ is called a solution of problem (2.1), (2.5).

Strictly increasing solutions with just one zero play a fundamental role in the differential models (1.1), (1.2). According to this we search for solutions $\{x(n)\}_{n=0}^{\infty}$ of equation (2.1) satisfying

$$x(0) = x(1), \quad \lim_{n \to \infty} x(n) = L, \quad \{x(n)\}_{n=1}^{\infty} \text{ is increasing.}$$
(2.6)

To this aim (see Lemma 3.1) we will study solutions of problem (2.1), (2.7), where

$$x(0) = B, \quad x(1) = B, \quad B \in (L_0, 0).$$
 (2.7)

Using our results of [17] and [18], we will prove that for each sufficiently small h > 0 there exists at least one $B \in (L_0, 0)$ such that the corresponding solution of problem (2.1), (2.7) fulfils (2.6). Note that an autonomous case of (2.1) was studied in [16]. We mention also some recent papers investigating the solvability of other second-order discrete boundary value problems, for example [1], [2], [9], [13]–[15], [20].

3 Four types of solutions

Lemma 3.1 shows that it suffices to consider $B \in (L_0, 0)$ in order to find a solution fulfilling (2.6).

Lemma 3.1 Let $B \in [L_0, L]$ and $\{x(n)\}_{n=0}^{\infty}$ be the corresponding solution of equation (2.1) satisfying x(0) = x(1) = B. If $B \notin (L_0, 0)$, then $\{x(n)\}_{n=1}^{n_0}$ is not increasing for any $n_0 \in \mathbb{N}$, $n_0 > 1$.

Proof. Due to (2.1), $\{x(n)\}_{n=0}^{\infty}$ fulfils

$$\Delta x(n) = \left(\frac{n}{n+1}\right)^2 \left(\Delta x(n-1) + h^2 f(x(n))\right), \quad n \in \mathbb{N}.$$
(3.1)

(i) Let $B \in (0, L)$. By (2.3) and (2.7) we have f(x(1)) = f(B) < 0, and (3.1) yields $\Delta x(1) < 0$. Hence x(1) > x(2) and $\{x(n)\}_{n=1}^{n_0}$ is not increasing for any $n_0 > 1$.

(ii) Let $B \in \{L_0, 0, L\}$. Then (2.1) and (2.2) imply that $\{x(n)\}_{n=0}^{\infty}$ is the constant sequence with x(n) = B, $n \in \mathbb{N}$. Hence $\{x(n)\}_{n=1}^{n_0}$ is not increasing for any $n_0 > 1$.

Definition 3.2 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7) such that

$$\{x(n)\}_{n=1}^{\infty}$$
 is increasing, $\lim_{n \to \infty} x(n) = 0.$ (3.2)

Then $\{x(n)\}_{n=0}^{\infty}$ is called a damped solution.

Remark 3.3 The differential equation (1.3) for $t \in (0, \infty)$ corresponds to the difference equation (2.1). If we consider equation (1.3) for $t \in (-\infty, 0)$, then its discrete analogy can have the form (compare with (1.5))

$$\frac{1}{h^2}\Delta(t_{-n-1}^2\Delta x(-n-1)) = t_{-n}^2 f(x(-n)), \ n \in \mathbb{N},$$
(3.3)

where $\Delta x(-n-1) = x(-n-1) - x(-n), t_{-n} = -hn, n \in \mathbb{N}$. Then (3.3) has an equivalent form

$$x(-n-1) = x(-n) + \left(\frac{n}{n+1}\right)^2 \left(x(-n) - x(-n+1) + h^2 f(x(-n))\right), \quad n \in \mathbb{N}.$$
(3.4)

Assume that $B^* \in (L_0, 0)$ is such that the solution $\{x^*(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) with $B = B^*$ satisfies $\lim_{n\to\infty} x^*(n) = L$. Now, consider the sequence $\{x^*(-n)\}_{n=0}^{\infty}$ which fulfils (3.4) and $x^*(-1) = x^*(0) = B^*$. Comparing (2.1) and (3.4) we see that $x^*(n) = x^*(-n)$ for $n \in \mathbb{N}$. Therefore

$$\lim_{n \to \infty} x^*(-n) = \lim_{n \to \infty} x^*(n) = L.$$
(3.5)

Motivated by (3.5) we will use the following definition.

Definition 3.4 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7) which fulfils

$$\{x(n)\}_{n=1}^{\infty}$$
 is increasing, $\lim_{n \to \infty} x(n) = L.$ (3.6)

Then $\{x(n)\}_{n=0}^{\infty}$ is called a homoclinic solution.

Lemma 3.7 needs next two definitions.

Definition 3.5 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Assume that there exists $b \in \mathbb{N}$, such that $\{x(n)\}_{n=1}^{b+1}$ is increasing and

$$x(b) \le L < x(b+1). \tag{3.7}$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called an escape solution.

Definition 3.6 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Assume that there exists $b \in \mathbb{N}$, b > 1, such that $\{x(n)\}_{n=1}^{b}$ is increasing and

$$0 < x(b) < L, \quad x(b+1) \le x(b). \tag{3.8}$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a non-monotonous solution.

We present some results of [17] and [18] which we use in next sections.

Lemma 3.7 [17] (On four types of solutions) Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Then $\{x(n)\}_{n=0}^{\infty}$ is just one of the following four types:

- (I) $\{x(n)\}_{n=0}^{\infty}$ is an escape solution;
- (II) ${x(n)}_{n=0}^{\infty}$ is a homoclinic solution;
- (III) ${x(n)}_{n=0}^{\infty}$ is a damped solution;
- (IV) ${x(n)}_{n=0}^{\infty}$ is a non-monotonous solution.

Lemma 3.8 [17] (On the existence of non-monotonous or damped solutions) Let $B \in (\overline{B}, 0)$, where \overline{B} is defined by (2.4). There exists $h_B > 0$ such that if $h \in (0, h_B]$, then the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) is non-monotonous or damped.

Remark 3.9 Our main task is to prove the existence of $B \in (L_0, 0)$ such that $\{x(n)\}_{n=0}^{\infty}$ a homoclinic solution of problem (2.1), (2.7) with this B. Such solution fulfils $L_0 < B \leq x(n) < L$ for $n \in \mathbb{N} \cup \{0\}$. Therefore we may assume without loss of generality that

$$f(x) = 0 \text{ for } x \in (-\infty, L_0) \cup (L, \infty).$$
 (3.9)

By Remark 3.9, we assume that, in addition to (2.2)-(2.4), f fulfils moreover (3.9) in Lemma 3.10.

Lemma 3.10 [18] (On the existence of escape solutions) There exists $h^* > 0$ such that for any $h \in (0, h^*]$ there exists an escape solution $\{x_{\ell}(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) for some $B = B_{\ell} \in (L_0, \overline{B})$.

4 Estimates of solutions

In this section, f is supposed to fulfil (2.2)–(2.4) and (3.9).

Lemma 4.1 Let $\{x(n)\}_{n=0}^{\infty}$ be an escape solution of problem (2.1), (2.7). Then $\{x(n)\}_{n=1}^{\infty}$ is increasing and

$$\lim_{n \to \infty} x(n) \in (L, \infty).$$
(4.1)

Proof. According to Definition 3.5 there exists $b \in \mathbb{N}$, such that $\{x(n)\}_{n=1}^{b+1}$ is increasing and (3.7) holds. By (3.9) we get f(x(b+1)) = 0. Consequently, by (3.1) and (3.7), $\Delta x(b+1) = \left(\frac{b+1}{b+2}\right)^2 \Delta x(b) > 0$ and f(x(b+2)) = 0. Similarly $\Delta x(b+j) = \left(\frac{b+j}{b+1+j}\right)^2 \Delta x(b+j-1)$ and

$$\Delta x(b+j) = \left(\frac{b+1}{b+1+j}\right)^2 \Delta x(b), \quad j \in \mathbb{N}.$$
(4.2)

This yields that $\{x(n)\}_{n=1}^{\infty}$ is increasing.

Summing (4.2) for $j = 1, \ldots, k$, we obtain

$$x(b+k+1) = x(b+1) + (b+1)^2 \Delta x(b) \sum_{j=1}^k \frac{1}{(b+1+j)^2}, \quad k \in \mathbb{N}.$$

Consequently

$$\lim_{n \to \infty} x(n) = x(b+1) + (b+1)^2 \Delta x(b) \sum_{j=1}^{\infty} \frac{1}{(b+1+j)^2}.$$

We have $\sum_{n=1}^{\infty} \frac{1}{(b+1+n)^2} < \infty$ and (4.1) follows.

Lemma 4.2 [18] Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Then there exists a maximal $b \in \mathbb{N} \cup \{\infty\}$ satisfying

$$x(n) \in [B, L) \quad for \ n = 1, \dots, b, \tag{4.3}$$

and, if moreover b > 1, then

$$\{x(n)\}_{n=1}^{b} \quad is \ increasing. \tag{4.4}$$

In addition

$$\Delta x(n) < h\sqrt{(L - 2L_0)M_0} + h^2 M_0, \quad n = 1, \dots, b - 1,$$
(4.5)

where

$$M_0 = \max\{|f(x)|: x \in [L_0, L]\}.$$
(4.6)

Corollary 4.3 Let $h \in (0,1)$. If $\{x(n)\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7), then

$$\frac{\Delta x(n)}{h} < \sqrt{2|L_0|M_0}, \quad n \in \mathbb{N}.$$
(4.7)

If $\{x(n)\}_{n=0}^{\infty}$ is an escape solution of problem (2.1), (2.7), then

$$\frac{\Delta x(n)}{h} < \sqrt{(L - 2L_0)M_0} + 2M_0, \quad n \in \mathbb{N}.$$
(4.8)

Proof. Equation (2.1) has an equivalent form

$$\Delta x(n) - \Delta x(n-1) + \frac{2n+1}{n^2} \Delta x(n) = h^2 f(x(n)), \quad n \in \mathbb{N}.$$
 (4.9)

Multiplying (4.9) by $\Delta x(n) + \Delta x(n-1)$, we obtain

$$(\Delta x(n))^{2} - (\Delta x(n-1))^{2} + \frac{2n+1}{n^{2}} \Delta x(n) (\Delta x(n) + \Delta x(n-1))$$

= $h^{2} f(x(n)) (x(n+1) - x(n-1)), \quad n \in \mathbb{N}.$ (4.10)

Summing (4.10) from 1 to $n \in \mathbb{N}$, we have

$$(\Delta x(n))^{2} + \sum_{j=1}^{n} \frac{2j+1}{j^{2}} \Delta x(j) (\Delta x(j) + \Delta x(j-1))$$

$$= h^{2} \sum_{j=1}^{n} f(x(j)) (x(j+1) - x(j-1)), \quad n \in \mathbb{N}.$$
(4.11)

If $\{x(n)\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7), then by (3.2) and (4.6) we get

$$\Delta x(n) < h\sqrt{2|B|M_0} < h\sqrt{2|L_0|M_0}, \quad n \in \mathbb{N}.$$
(4.12)

Let $\{x(n)\}_{n=0}^{\infty}$ be an escape solution. By Definition 3.5, $\{x(n)\}_{n=1}^{\infty}$ is increasing and there exists $b \in \mathbb{N}$ such that $x(b) \leq L < x(b+1)$. By (4.5) we have

$$\Delta x(b-1) < h\sqrt{(L-2L_0)M_0} + h^2 M_0, \qquad (4.13)$$

and, by (3.1) and (4.6),

$$\Delta x(b) = \left(\frac{b}{b+1}\right)^2 \left(\Delta x(b-1) + h^2 f(x(b))\right) < \Delta x(b-1) + h^2 M_0.$$
(4.14)

Further, x(n) > L for $n \ge b + 1$ and hence, due to (3.9), f(x(n)) = 0. Therefore

$$\Delta x(n) = \left(\frac{n-1}{n}\right)^2 \Delta x(n-1) < \Delta x(n-1), \quad n \ge b+1.$$
(4.15)

Consequently (4.13)-(4.15) give (4.8).

Lemma 4.4 [18] Choose an arbitrary $\varrho > 0$. Let $B_1, B_2 \in (L_0, 0)$ and let $\{x(n)\}_{n=0}^{\infty}$ and $\{y(n)\}_{n=0}^{\infty}$ be solutions of problem (2.1), (2.7) with $B = B_1$ and $B = B_2$, respectively. Let K by the Lipschitz constant for f on $[L_0, L]$. Then

$$|x(n) - y(n)| \le |B_1 - B_2| e^{\varrho^2 K}, \tag{4.16}$$

$$\left|\frac{\Delta x(n) - \Delta y(n)}{h}\right| \le |B_1 - B_2| \varrho K e^{\varrho^2 K},\tag{4.17}$$

where $n \in \mathbb{N}$, $n \leq \frac{\varrho}{h}$.

Corollary 4.5 Let the assumptions of Lemma 4.4 be fulfilled and let $b_0 \in \mathbb{N}$, $b_0 > 1$, $h \in (0, 1)$. Then for $n \in \mathbb{N}$, $n \leq b_0$, the following inequalities hold:

$$|x(n) - y(n)| \le |B_1 - B_2| e^{b_0^2 K}, \qquad (4.18)$$

$$\left|\frac{\Delta x(n) - \Delta y(n)}{h}\right| \le |B_1 - B_2| b_0 K \,\mathrm{e}^{b_0^2 K},\tag{4.19}$$

$$\frac{\Delta x(n)}{h} \cdot \frac{\Delta x(n) + \Delta x(n-1)}{2h} - \frac{\Delta y(n)}{h} \cdot \frac{\Delta y(n) + \Delta y(n-1)}{2h} \Big|$$

$$\leq |B_1 - B_2|\Lambda,$$
(4.20)

where

$$\Lambda = 2\left(\sqrt{(L - 2L_0)M_0} + M_0\right)b_0 K \,\mathrm{e}^{b_0^2 K}.$$
(4.21)

Proof. Inequalities (4.18) and (4.19) follow directly from (4.16) and (4.17). Inequality (4.20) is based on (4.7), (4.8), (4.19) and on the inequality

$$\left|\frac{\Delta x(n)}{h} \cdot \frac{\Delta x(n) + \Delta x(n-1)}{2h} - \frac{\Delta y(n)}{h} \cdot \frac{\Delta y(n) + \Delta y(n-1)}{2h}\right|$$
$$\leq \left|\frac{\Delta x(n) - \Delta y(n)}{h}\right| \cdot \left|\frac{\Delta y(n) + \Delta y(n-1)}{2h}\right|$$
$$+ \left|\frac{\Delta x(n)}{h}\right| \cdot \left|\frac{\Delta x(n) - \Delta y(n)}{2h}\right| + \left|\frac{\Delta x(n)}{h}\right| \cdot \left|\frac{\Delta x(n-1) - \Delta y(n-1)}{2h}\right|.$$

5 Further properties of solutions

In order to prove the existence of a homoclinic solution we will need the following lemmas. Here f fulfils (2.2)–(2.4) and (3.9).

Lemma 5.1 Let $\{x_{\sharp}(n)\}_{n=0}^{\infty}$ be a non-monotonous (an escape) solution of problem (2.1), (2.7) with $B = B_{\sharp} \in (L_0, 0)$. Then there exists $\varepsilon > 0$ such that for each $B \in (B_{\sharp} - \varepsilon, B_{\sharp} + \varepsilon)$ the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) is also a non-monotonous (an escape) solution.

Proof. Let K be the Lipschitz constant for f on $[L_0, L]$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7) with $B \neq B_{\sharp}$. For $b \in \mathbb{N}$ put $\varrho = h(b+2)$. According to Lemma 4.4,

$$|x_{\sharp}(n) - x(n)| \le |B_{\sharp} - B|e^{\varrho^2 K}, \quad n \le b+2.$$
 (5.1)

(i) Assume that $\{x_{\sharp}(n)\}_{n=0}^{\infty}$ is a non-monotonous solution. By Definition 3.6 there exists $b \in \mathbb{N}$, b > 1, such that $\{x_{\sharp}(n)\}_{n=1}^{b}$ is increasing and

 $0 < x_{\sharp}(b) < L, \quad x_{\sharp}(b+1) \le x_{\sharp}(b).$

We can find $\delta_1, \delta_2 > 0$ such that

$$0 < x_{\sharp}(b) - \delta_1, \quad x_{\sharp}(b) + \delta_1 < L, \tag{5.2}$$

and for $n \leq b-1$

$$\delta_2 < \frac{1}{2} (x_{\sharp}(n+1) - x_{\sharp}(n)).$$
(5.3)

Let $x_{\sharp}(b+1) = x_{\sharp}(b)$. Then $x_{\sharp}(b+2) < x_{\sharp}(b+1)$ because, by (3.1),

$$\Delta x_{\sharp}(b+1) = \left(\frac{b+1}{b+2}\right)^2 \left(\Delta x_{\sharp}(b) + h^2 f(x_{\sharp}(b+1))\right) < 0.$$

We choose $\delta_3 > 0$ such that

$$\delta_3 < \frac{1}{2} (x_{\sharp}(b+1) - x_{\sharp}(b+2)).$$
(5.4)

Let $x_{\sharp}(b+1) < x_{\sharp}(b)$. Then we choose $\delta_3 > 0$ such that

$$\delta_3 < \frac{1}{2}(x_{\sharp}(b) - x_{\sharp}(b+1)). \tag{5.5}$$

Now, for $x_{\sharp}(b+1) \leq x_{\sharp}(b)$, put $\delta = \min\{\delta_1, \delta_2, \delta_3\}$, $\varepsilon = e^{-\varrho^2 K} \delta$ and assume that $|B_{\sharp} - B| < \varepsilon$. Then, by (5.1), we get

$$|x_{\sharp}(n) - x(n)| \le \delta, \quad n \le b + 2.$$
(5.6)

Therefore, by (5.2), $0 < x_{\sharp}(b) - \delta \le x(b)$ and $x(b) \le x_{\sharp}(b) + \delta < L$. So 0 < x(b) < L. Further, by (5.3) and (5.6), for $n \le b - 1$,

$$x(n) \le x_{\sharp}(n) + \delta < x_{\sharp}(n+1) - \delta \le x(n+1).$$

Therefore $\{x(n)\}_{n=1}^{b}$ is increasing.

Let $x_{\sharp}(b+1) = x_{\sharp}(b)$. If $x(b+1) \leq x(b)$, we see that $\{x(n)\}_{n=0}^{\infty}$ is nonmonotonous. So assume that x(b+1) > x(b). Then $\{x(n)\}_{n=1}^{b+1}$ is increasing. Further, by (5.4) and (5.6),

$$x(b+2) \le x_{\sharp}(b+2) + \delta < x_{\sharp}(b+1) - \delta \le x(b+1).$$

Hence x(b+2) < x(b+1) which yields that $\{x(n)\}_{n=0}^{\infty}$ is non-monotonous in this case, as well.

If $x_{\sharp}(b+1) < x_{\sharp}(b)$, we deduce by (5.5) and (5.6) that x(b+1) < x(b) and get that $\{x(n)\}_{n=0}^{\infty}$ is non-monotonous.

(ii) Assume that $\{x_{\sharp}(n)\}_{n=0}^{\infty}$ is an escape solution. By Definition 3.5 there exists $b \in \mathbb{N}$ such that $\{x_{\sharp}(n)\}_{n=1}^{b+1}$ is increasing and $L < x_{\sharp}(b+1)$. Then we can find $\delta_1, \delta_2 > 0$ such that

$$L < x_{\sharp}(b+1) - \delta_1, \tag{5.7}$$

and inequality (5.3) holds for $n \leq b$. Put $\delta = \min\{\delta_1, \delta_2\}$, $\varepsilon = e^{-\varrho^2 K} \delta$ and assume that $|B_{\sharp} - B| < \varepsilon$. Then, (5.6) holds and using (5.7) and (5.3) we deduce as in part (i) that $\{x(n)\}_{n=1}^{b+1}$ is increasing and L < x(b+1). Consequently, $\{x(n)\}_{n=0}^{\infty}$ is an escape solution.

Lemma 5.2 There exists $h^* > 0$ such that if $h \in (0, h^*]$, $B_0 \in (L_0, 0)$ and $\{x_0(n)\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7) with $B = B_0$, then there exists $\delta_{B_0} > 0$ such that for each $B \neq B_0$, $B \in (B_0 - \delta_{B_0}, B_0 + \delta_{B_0}) \cap (L_0, 0)$, the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) cannot be an escape solution.

Proof. By (2.2), f is integrable on $[L_0, L]$ and we can choose c_0 , ε and η^* such that

$$0 < c_0 < \frac{1}{3} \left| \int_0^L f(z) \, \mathrm{d}z \right|, \quad 0 < \varepsilon < \frac{c_0}{3}, \tag{5.8}$$

$$|B - B_0| < 2\eta^* \Longrightarrow \left| \int_B^{B_0} f(z) \, \mathrm{d}z \right| < \varepsilon, \quad B, B_0 \in [L_0, 0].$$
(5.9)

Step 1. By (2.2) and (3.9), for each $B \in [L_0, 0]$ there exists $\delta_B > 0$ such that each increasing sequence $\{x(j)\}_{j=1}^{n+1}, n \in \mathbb{N}$, fulfils the following implication: If

$$x(1) \in (B - \delta_B, B + \delta_B), \quad x(0) = x(1), \quad -\delta_B < x(n+1) < 0,$$

$$\frac{x(j+1) - x(j-1)}{2} < \delta_B, \quad j = 1, \dots, n,$$
(5.10)

then

$$\left|\sum_{j=1}^{n} f(x(j)) \frac{x(j+1) - x(j-1)}{2} - \int_{x(1)}^{0} f(z) \, \mathrm{d}z\right| < \varepsilon.$$
 (5.11)

Let $\mathcal{M} = \bigcup_{B \in [L_0,0]} (B - \delta_B, B + \delta_B)$. Then $[L_0,0] \subset \mathcal{M}$ and since $[L_0,0]$ is compact, we can choose a finite number ν of intervals $(B_k - \delta_{B_k}, B_k + \delta_{B_k})$ such that

$$[L_0, 0] \subset \bigcup_{k=1}^{\nu} (B_k - \delta_{B_k}, B_k + \delta_{B_k}).$$
(5.12)

Consider M_0 of (4.6) and choose $h_k > 0$ such that

$$h_k \sqrt{2|L_0|M_0} < \delta_{B_k}, \quad k = 1, \dots, \nu.$$
 (5.13)

Step 2. Consider η^* of (5.9). By (2.2) and (3.9), for each $B \in [L_0, 0]$ there exists $\eta_B \in (0, \eta^*)$ such that each increasing sequence $\{x(j)\}_{j=1}^{n+1}$, $n \in \mathbb{N}$, fulfils the following implication: If

$$x(1) \in (B - \eta_B, B + \eta_B), \quad x(0) = x(1), \quad L < x(n+1),$$

$$\frac{x(j+1) - x(j-1)}{2} < \eta_B, \quad j = 1, \dots, n,$$
(5.14)

then

$$\left|\sum_{j=1}^{n} f(x(j)) \frac{x(j+1) - x(j-1)}{2} - \int_{x(1)}^{L} f(z) \, \mathrm{d}z\right| < \varepsilon.$$
 (5.15)

As in Step 1 we deduce that there is a finite number μ of intervals $(B_{\ell} - \eta_{B_{\ell}}, B_{\ell} + \eta_{B_{\ell}})$ such that

$$[L_0, 0] \subset \bigcup_{\ell=1}^{\mu} (B_\ell - \eta_{B_\ell}, B_\ell + \eta_{B_\ell}),$$
(5.16)

and we choose $\tilde{h}_{\ell} > 0$ such that

$$\tilde{h}_{\ell}\left(\sqrt{(L-2L_0)M_0}+2M_0\right) < \eta_{B_{\ell}}, \quad \ell = 1, \dots, \mu.$$
(5.17)

In what follows we assume that

$$h \in (0, h^*], \quad h^* = \min\{1, h_1, \dots, h_\nu, \tilde{h}_1, \dots, \tilde{h}_\mu\}.$$
 (5.18)

Step 3. Let $B_0 \in (L_0, 0)$ be such that $\{x_0(n)\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7) with $B = B_0$. By (5.12), $B_0 \in (B_k - \delta_{B_k}, B_k + \delta_{B_k})$ for some $k \in \{1, \ldots, \nu\}$. Therefore, by (4.7), (5.13) and (5.18), $\{x_0(j)\}_{j=1}^{n+1}, n \in \mathbb{N}$, satisfies (5.10) for B_k in place of B, and consequently

$$\left|\sum_{j=1}^{n} f(x_0(j)) \frac{x_0(j+1) - x_0(j-1)}{2} - \int_{B_0}^{0} f(z) \, \mathrm{d}z\right| < \varepsilon.$$

Letting $n \to \infty$ we get

$$\left|\sum_{j=1}^{\infty} f(x_0(j)) \frac{x_0(j+1) - x_0(j-1)}{2} - \int_{B_0}^0 f(z) \,\mathrm{d}z\right| \le \varepsilon.$$
(5.19)

Further, $\{x_0(n)\}_{n=0}^{\infty}$ satisfies (4.11) and hence

$$\frac{1}{2} \left(\frac{\Delta x_0(n)}{h}\right)^2 + \sum_{j=1}^n \frac{2j+1}{j^2} \cdot \frac{\Delta x_0(j)}{h} \cdot \frac{\Delta x_0(j) + \Delta x_0(j-1)}{2h}$$
$$= \sum_{j=1}^n f(x_0(j)) \frac{x_0(j+1) - x_0(j-1)}{2}, \quad n \in \mathbb{N}.$$

Letting $n \to \infty$ and having in mind that $\lim_{n\to\infty} \Delta x_0(n) = 0$, we get

$$\sum_{j=1}^{\infty} \frac{2j+1}{j^2} \cdot \frac{\Delta x_0(j)}{h} \cdot \frac{\Delta x_0(j) + \Delta x_0(j-1)}{2h}$$
$$= \sum_{j=1}^{\infty} f(x_0(j)) \frac{x_0(j+1) - x_0(j-1)}{2}.$$

This together with (5.19) give

$$\left|\sum_{j=1}^{\infty} \frac{2j+1}{j^2} \cdot \frac{\Delta x_0(j)}{h} \cdot \frac{\Delta x_0(j) + \Delta x_0(j-1)}{2h} - \int_{B_0}^0 f(z) \,\mathrm{d}z\right| \le \varepsilon.$$
(5.20)

Consequently, there exists $b_0 \in \mathbb{N}$ such that

$$\sum_{j=b_0+1}^{\infty} \frac{2j+1}{j^2} \cdot \frac{\Delta x_0(j)}{h} \cdot \frac{\Delta x_0(j) + \Delta x_0(j-1)}{2h} < c_0.$$
(5.21)

Define Λ by (4.21). By virtue of (5.16), we have $B_0 \in (B_\ell - \eta_{B_\ell}, B_\ell + \eta_{B_\ell})$ for some $\ell \in \{1, \ldots, \mu\}$. Therefore there exists $\delta_{B_0} \in (0, \eta_{B_\ell})$ such that $(B_0 - \delta_{B_0}, B_0 + \delta_{B_0}) \subset (B_\ell - \eta_{B_\ell}, B_\ell + \eta_{B_\ell})$ and

$$\delta_{B_0} \Lambda < c_0. \tag{5.22}$$

Step 4. Assume on the contrary that for some $B \in (B_0 - \delta_{B_0}, B_0 + \delta_{B_0}) \cap (L_0, 0)$, $B \neq B_0$, a sequence $\{x(n)\}_{n=0}^{\infty}$ is an escape solution of problem (2.1), (2.7). Then $\{x(n)\}_{n=1}^{\infty}$ is increasing and there exists $b \in \mathbb{N}$ such that $x(b) \leq L < x(b+1)$. By (4.8), (5.17) and (5.18), we get that $\{x(j)\}_{j=1}^{n+1}$, $n \geq b$, satisfies (5.14) for B_{ℓ} in place of B, and consequently, inequality (5.15) holds for $n \in \mathbb{N}$, $n \geq b$.

Let $n \ge \max\{b_0, b\}$. Using successively (5.15), (4.11), (4.20), (5.21), (5.22), (5.20) and (5.9), we get

$$\begin{split} \varepsilon + \int_{B}^{L} f(z) \, \mathrm{d}z > \sum_{j=1}^{n} f(x(j)) \frac{x(j+1) - x(j-1)}{2} = \\ \frac{1}{2} \left(\frac{\Delta x(n)}{h} \right)^{2} + \sum_{j=1}^{n} \frac{2j+1}{j^{2}} \cdot \frac{\Delta x(j)}{h} \cdot \frac{\Delta x(j) + \Delta x(j-1)}{2h} > \\ \sum_{j=1}^{b_{0}} \frac{2j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j) + \Delta x_{0}(j-1)}{2h} \ge \\ \sum_{j=1}^{b_{0}} \frac{2j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j) + \Delta x_{0}(j-1)}{2h} - |B - B_{0}|\Lambda = \\ \sum_{j=1}^{\infty} \frac{2j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j) + \Delta x_{0}(j-1)}{2h} - |B - B_{0}|\Lambda \ge \\ \sum_{j=1}^{\infty} \frac{2j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j) + \Delta x_{0}(j-1)}{2h} - |B - B_{0}|\Lambda \ge \\ \sum_{j=1}^{\infty} \frac{2j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j) + \Delta x_{0}(j-1)}{2h} - |B - B_{0}|\Lambda \ge \\ \int_{B_{0}}^{\infty} f(z) \, \mathrm{d}z - \varepsilon - 2c_{0} > \int_{B}^{0} f(z) \, \mathrm{d}z - 2\varepsilon - 2c_{0}. \end{split}$$

Hence,

$$\int_{B}^{L} f(z) \, \mathrm{d}z > \int_{B}^{0} f(z) \, \mathrm{d}z - 3\varepsilon - 2c_0,$$

and using (2.3) and (5.8) we get

$$3c_0 > -\int_0^L f(z) \, \mathrm{d}z = \left| \int_0^L f(z) \, \mathrm{d}z \right| > 3c_0,$$

a contradiction.

6 Existence of homoclinic solutions

Now, we are ready to state and prove the main result provided f fulfils only our basic assumptions (2.2)–(2.4).

Theorem 6.1 (On the existence of homoclinic solutions)

There exists $h^* > 0$ such that for any $h \in (0, h^*]$ there exists a homoclinic solution $\{x^*(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7), that is $\{x^*(n)\}_{n=1}^{\infty}$ is increasing and $\lim_{n\to\infty} x^*(n) = L$.

Proof. First, consider an equation

$$x(n+1) = x(n) + \left(\frac{n}{n+1}\right)^2 \left(x(n) - x(n-1) + h^2 f^*(x(n))\right), \quad n \in \mathbb{N}, \quad (6.1)$$

where

$$f^*(x) = \begin{cases} f(x) & \text{if } x \in [L_0, L] \\ 0 & \text{if } x \notin [L_0, L] \end{cases}.$$

Hence f^* fulfils (2.2)–(2.4) and (3.9). Let us choose $h_1^* > 0$ such that the assertion of Lemma 5.2 is valid for problem (6.1), (2.7). By Lemma 3.8 and Lemma 3.10, we can find $h^* \in (0, h_1^*]$ such that if $h \in (0, h^*]$, than for some $B_{\text{es}} \in (L_0, \bar{B})$, the solution of (6.1), (2.7) with $B = B_{\text{es}}$ is an escape solution, and for some $B_{\text{nd}} \in (\bar{B}, 0)$, the solution of (6.1), (2.7) with $B = B_{\text{nd}}$ is non-monotonous or damped.

By Lemma 5.1, there exists $\varepsilon > 0$ such that for each $B \in (B_{\text{es}}, B_{\text{es}} + \varepsilon)$, the corresponding solution of (6.1), (2.7) is an escape solution. Let ε^* be the supremum of such epsilons and put $B^* := B_{\text{es}} + \varepsilon^*$. Then $L_0 < B^* \leq B_{\text{nd}} < 0$. Denote $\{x^*(n)\}_{n=0}^{\infty}$ the solution of (6.1), (2.7) with $B = B^*$.

(i) Let $\{x^*(n)\}_{n=0}^{\infty}$ be non-monotonous. Then, by Lemma 5.1, there is $\tilde{\varepsilon}_1 > 0$ such that for each $B \in (B^* - \tilde{\varepsilon}_1, B^*)$, the corresponding solution is also non-monotonous. This contradicts the definition of ε^* .

(ii) Let $\{x^*(n)\}_{n=0}^{\infty}$ be an escape solution. Then, by Lemma 5.1, there is $\tilde{\varepsilon}_2 > 0$ such that for each $B \in (B^*, B^* + \tilde{\varepsilon}_2)$, the corresponding solution is also escape. This contradicts the maximality of ε^* .

(iii) Let $\{x^*(n)\}_{n=0}^{\infty}$ be a damped solution. Then, by Lemma 5.2, there is $\tilde{\varepsilon}_3 > 0$ such that for each $B \in (B^* - \tilde{\varepsilon}_3, B^*)$, the corresponding solution cannot be an escape solution. This contradicts the definition of ε^* .

By Lemma 3.7, $\{x^*(n)\}_{n=0}^{\infty}$ must be a homoclinic solution. Since $L_0 < B^* \le x^*(n) < L$ for $n \in \mathbb{N}$, the homoclinic solution $\{x^*(n)\}_{n=0}^{\infty}$ of problem (6.1), (2.7) is also a solution of problem (2.1), (2.7).

Acknowledgments

The paper was supported by the Council of Czech Government MSM 6198959214.

References

- A. M. AMLEH, E. CAMOUZIS, G. LADAS. On second-order rational difference equations. J. Difference Equ. Appl. 13 (2007), 969–1004.
- [2] D. R. ANDERSON, I. RACHŮNKOVÁ, C. C. TISDELL. Solvability of discrete Neumann boundary value problems. J. Math. Anal. Appl. 331 (2007), 736– 741.
- [3] H. BERESTYCKI, P. L. LIONS, L. A. PELETIER. An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^N . Indiana University Mathematics Journal **30**, 1 (1981), 141–157.
- [4] D. BONHEURE, J. M. GOMES, L. SANCHEZ. Positive solutions of a secondorder singular ordinary differential equation. *Nonlinear Analysis* 61 (2005), 1383–1399.
- [5] G. H. DERRICK. Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252–1254.
- [6] F. DELL'ISOLA, H. GOUIN AND G. ROTOLI. Nucleation of spherical shelllike interfaces by second gradient theory: numerical simulations. *Eur. J. Mech B/Fluids* 15 (1996), 545–568.
- [7] S. N. ELAYDI. An Introduction to Difference Equations. 2nd ed. Springer, New York 1999.
- [8] H. GOUIN, G. ROTOLI. An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. *Mech. Re*search Communic. 24 (1997), 255–260.
- [9] L. X. HU, W. T. LI, S. STEVIĆ. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl. 14 (2008), 779– 797.
- [10] G. KITZHOFER, O. KOCH, P. LIMA, E. WEINMÜLLER. Efficient numerical solution of the density profile equation in hydrodynamics. J. Sci. Comput. 32 (2007), 411–424.
- [11] P. M. LIMA, N. V. CHEMETOV, N. B. KONYUKHOVA, A. I. SUKOV. Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273.
- [12] A. P. PALAMIDES, T. G. YANNOPOULOS. Terminal value problem for singular ordinary differential equations: theoretical analysis and numerical simulations of ground states. *Boundary Value Problems*, Vol. 2006 (2006), Article ID 28719, 1–28.

- [13] I. RACHŮNKOVÁ, L. RACHŮNEK. Singular discrete problem arising in the theory of shallow membrane caps. J. Difference Equ. Appl. 14 (2008), 747– 767.
- [14] I. RACHŮNKOVÁ, L. RACHŮNEK. Singular discrete and continuous mixed boundary value problems. Math. Comp. Modelling 49 (2009), 413–422.
- [15] L. RACHŮNEK, I. RACHŮNKOVÁ. Approximation of differential problems with singularities and time discontinuities. *Nonlinear Analysis*, *TMA* 71 (2009), e1448–e1460.
- [16] L. RACHŮNEK, I. RACHŮNKOVÁ. On a homoclinic point of some autonomous second-order difference equation. J. Difference Equ. Appl. (2009), DOI: 10.1080/10236190903257834.
- [17] L. RACHŮNEK. On four types of solutions. Submitted.
- [18] L. RACHŮNEK, I. RACHŮNKOVÁ. Strictly increasing solutions of nonautonomous difference equations arising in hydrodynamics. Advances in Difference Equations. Recent Trends in Differential and Difference Equations, Vol. 2010, Article ID 714891, 1–11.
- [19] I. RACHŮNKOVÁ, J. TOMEČEK. Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. *Nonlinear Analysis*, *TMA* (2009), doi: 10.1016/j.na.2009.10.011.
- [20] B. D. ROUHANI, H. KHATIBZADEH. A note on the asymptotic behavior of solutions to a second order difference equation. J. Difference Equ. Appl. 14 (2008), 429–432.