Homoclinic solutions of non-autonomous difference equations arising in hydrodynamics

Lukáš Rachůnek and Irena Rachůnková

Department of Mathematics, Faculty of Science, Palacký University, tř. 17. listopadu 12, 77146 Olomouc, Czech Republic, e-mail: rachunko@inf.upol.cz

Abstract

The paper deals with the second-order non-autonomous difference equation

$$
x(n+1)=x(n)+\left(\frac{n}{n+1}\right)^{2}\left(x(n)-x(n-1)+h^{2} f(x(n))\right), \quad n \in \mathbb{N}
$$

where $h>0$ is a parameter and f is Lipschitz continuous and has three real zeros $L_{0}<0<L$.

We provide conditions for f under which for each sufficiently small $h>0$ there exists a homoclinic solution of the above equation. The homoclinic solution is a sequence $\{x(n)\}_{n=0}^{\infty}$ satisfying the equation and such that $\{x(n)\}_{n=1}^{\infty}$ is increasing, $x(0)=x(1) \in\left(L_{0}, 0\right)$ and $\lim _{n \rightarrow \infty} x(n)=L$. The problem is motivated by some models arising in hydrodynamics.

Keywords. Non-autonomous second-order difference equation, homoclinic solutions, strictly increasing solutions.

Mathematics Subject Classification 2000. 39A11, 39A12, 39A70

1 Introduction

In hydrodynamics or in the nonlinear field theory we can find differential models which can be reduced, after some substitution, to the form

$$
\begin{gather*}
\left(t^{2} u^{\prime}\right)^{\prime}=4 \lambda^{2} t^{2}(u+1) u(u-\xi) \tag{1.1}\\
u^{\prime}(0)=0, \quad u(\infty)=\xi \tag{1.2}
\end{gather*}
$$

where $\lambda \in(0, \infty)$ and $\xi \in(0,1)$ are parameters. See e.g. [5], [6], [8], [10], [11].
Consider the following generalization of equation (1.1)

$$
\begin{equation*}
\left(t^{2} u^{\prime}\right)^{\prime}=t^{2} f(u) \tag{1.3}
\end{equation*}
$$

and construct a discretization of problem (1.3), (1.2). Choose $h>0$ and a sequence $\left\{t_{n}\right\}_{n=0}^{\infty} \subset[0, \infty)$ such that

$$
\begin{equation*}
t_{0}=0, \quad t_{n+1}-t_{n}=h, n \in \mathbb{N}, \quad \lim _{n \rightarrow \infty} t_{n}=\infty \tag{1.4}
\end{equation*}
$$

Denote $x(0)=u(0)$ and $x(n)=u\left(t_{n}\right)$ for $n \in \mathbb{N}$. Then the discrete analogy of problem (1.3), (1.2) has the form of the following difference problem

$$
\begin{gather*}
\frac{1}{h^{2}} \Delta\left(t_{n}^{2} \Delta x(n-1)\right)=t_{n}^{2} f(x(n)), n \in \mathbb{N}, \tag{1.5}\\
\Delta x(0)=0, \quad \lim _{n \rightarrow \infty} x(n)=\xi . \tag{1.6}
\end{gather*}
$$

Here $\Delta x(n-1)=x(n)-x(n-1)$ is the forward difference operator and $t_{n}=h n$, $n \in \mathbb{N}$.

2 Formulation of problem

Equation (1.5) has an equivalent form

$$
\begin{equation*}
x(n+1)=x(n)+\left(\frac{n}{n+1}\right)^{2}\left(x(n)-x(n-1)+h^{2} f(x(n))\right), \quad n \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

We will investigate equation (2.1) under the assumption that f fulfils

$$
\begin{gather*}
L_{0}<0<L, \quad f \in \operatorname{Lip}_{\mathrm{loc}}(\mathbb{R}), \quad f\left(L_{0}\right)=f(0)=f(L)=0, \tag{2.2}\\
x f(x)<0 \text { for } x \in\left(L_{0}, L\right) \backslash\{0\}, \tag{2.3}\\
\exists \bar{B} \in\left(L_{0}, 0\right) \text { such that } \int_{\bar{B}}^{L} f(z) \mathrm{d} z=0 . \tag{2.4}
\end{gather*}
$$

Let us note that $f \in \operatorname{Lip}_{\text {loc }}(\mathbb{R})$ means that for each $\left[A_{0}, A\right] \subset \mathbb{R}$ there exists $K>0$ such that $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in\left[A_{0}, A\right]$. We see that the function $f(x)=4 \lambda^{2}(x+1) x(x-\xi)$ of equation (1.1) with $\lambda \in(0, \infty)$ and $\xi \in(0,1)$ satisfies conditions $(2.2)-(2.4)$ for $L_{0}=-1$ and $L=\xi$.

A sequence $\{x(n)\}_{n=0}^{\infty}$ which satisfies (2.1) is called a solution of equation (2.1). For each values $B, B_{1} \in\left[L_{0}, \infty\right)$ there exists a unique solution $\{x(n)\}_{n=0}^{\infty}$ of equation (2.1) satisfying the initial conditions

$$
\begin{equation*}
x(0)=B, \quad x(1)=B_{1} . \tag{2.5}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a solution of problem (2.1), (2.5).
Strictly increasing solutions with just one zero play a fundamental role in the differential models (1.1), (1.2). According to this we search for solutions $\{x(n)\}_{n=0}^{\infty}$ of equation (2.1) satisfying

$$
\begin{equation*}
x(0)=x(1), \quad \lim _{n \rightarrow \infty} x(n)=L, \quad\{x(n)\}_{n=1}^{\infty} \text { is increasing } . \tag{2.6}
\end{equation*}
$$

To this aim (see Lemma 3.1) we will study solutions of problem (2.1), (2.7), where

$$
\begin{equation*}
x(0)=B, \quad x(1)=B, \quad B \in\left(L_{0}, 0\right) . \tag{2.7}
\end{equation*}
$$

Using our results of [17] and [18], we will prove that for each sufficiently small $h>0$ there exists at least one $B \in\left(L_{0}, 0\right)$ such that the corresponding solution of problem (2.1), (2.7) fulfils (2.6). Note that an autonomous case of (2.1) was studied in [16]. We mention also some recent papers investigating the solvability of other second-order discrete boundary value problems, for example [1], [2], [9], [13]-[15], [20].

3 Four types of solutions

Lemma 3.1 shows that it suffices to consider $B \in\left(L_{0}, 0\right)$ in order to find a solution fulfilling (2.6).

Lemma 3.1 Let $B \in\left[L_{0}, L\right]$ and $\{x(n)\}_{n=0}^{\infty}$ be the corresponding solution of equation (2.1) satisfying $x(0)=x(1)=B$. If $B \notin\left(L_{0}, 0\right)$, then $\{x(n)\}_{n=1}^{n_{0}}$ is not increasing for any $n_{0} \in \mathbb{N}, n_{0}>1$.

Proof. Due to (2.1), $\{x(n)\}_{n=0}^{\infty}$ fulfils

$$
\begin{equation*}
\Delta x(n)=\left(\frac{n}{n+1}\right)^{2}\left(\Delta x(n-1)+h^{2} f(x(n))\right), \quad n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

(i) Let $B \in(0, L)$. By (2.3) and (2.7) we have $f(x(1))=f(B)<0$, and (3.1) yields $\Delta x(1)<0$. Hence $x(1)>x(2)$ and $\{x(n)\}_{n=1}^{n_{0}}$ is not increasing for any $n_{0}>1$.
(ii) Let $B \in\left\{L_{0}, 0, L\right\}$. Then (2.1) and (2.2) imply that $\{x(n)\}_{n=0}^{\infty}$ is the constant sequence with $x(n)=B, n \in \mathbb{N}$. Hence $\{x(n)\}_{n=1}^{n_{0}}$ is not increasing for any $n_{0}>1$.

Definition 3.2 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7) such that

$$
\begin{equation*}
\{x(n)\}_{n=1}^{\infty} \text { is increasing, } \quad \lim _{n \rightarrow \infty} x(n)=0 . \tag{3.2}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a damped solution.
Remark 3.3 The differential equation (1.3) for $t \in(0, \infty)$ corresponds to the difference equation (2.1). If we consider equation (1.3) for $t \in(-\infty, 0)$, then its discrete analogy can have the form (compare with (1.5))

$$
\begin{equation*}
\frac{1}{h^{2}} \Delta\left(t_{-n-1}^{2} \Delta x(-n-1)\right)=t_{-n}^{2} f(x(-n)), n \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

where $\Delta x(-n-1)=x(-n-1)-x(-n), t_{-n}=-h n, n \in \mathbb{N}$. Then (3.3) has an equivalent form

$$
\begin{align*}
x(-n-1)= & x(-n)+\left(\frac{n}{n+1}\right)^{2}(x(-n)-x(-n+1) \tag{3.4}\\
& \left.+h^{2} f(x(-n))\right), \quad n \in \mathbb{N} .
\end{align*}
$$

Assume that $B^{*} \in\left(L_{0}, 0\right)$ is such that the solution $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ of problem (2.1), (2.7) with $B=B^{*}$ satisfies $\lim _{n \rightarrow \infty} x^{*}(n)=L$. Now, consider the sequence $\left\{x^{*}(-n)\right\}_{n=0}^{\infty}$ which fulfils (3.4) and $x^{*}(-1)=x^{*}(0)=B^{*}$. Comparing (2.1) and (3.4) we see that $x^{*}(n)=x^{*}(-n)$ for $n \in \mathbb{N}$. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x^{*}(-n)=\lim _{n \rightarrow \infty} x^{*}(n)=L \tag{3.5}
\end{equation*}
$$

Motivated by (3.5) we will use the following definition.
Definition 3.4 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7) which fulfils

$$
\begin{equation*}
\{x(n)\}_{n=1}^{\infty} \text { is increasing, } \quad \lim _{n \rightarrow \infty} x(n)=L \tag{3.6}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a homoclinic solution.
Lemma 3.7 needs next two definitions.
Definition 3.5 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Assume that there exists $b \in \mathbb{N}$, such that $\{x(n)\}_{n=1}^{b+1}$ is increasing and

$$
\begin{equation*}
x(b) \leq L<x(b+1) . \tag{3.7}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called an escape solution.
Definition 3.6 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Assume that there exists $b \in \mathbb{N}, b>1$, such that $\{x(n)\}_{n=1}^{b}$ is increasing and

$$
\begin{equation*}
0<x(b)<L, \quad x(b+1) \leq x(b) . \tag{3.8}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a non-monotonous solution.
We present some results of [17] and [18] which we use in next sections.
Lemma 3.7 [17] (On four types of solutions)
Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Then $\{x(n)\}_{n=0}^{\infty}$ is just one of the following four types:
(I) $\{x(n)\}_{n=0}^{\infty}$ is an escape solution;
(II) $\{x(n)\}_{n=0}^{\infty}$ is a homoclinic solution;
(III) $\{x(n)\}_{n=0}^{\infty}$ is a damped solution;
(IV) $\{x(n)\}_{n=0}^{\infty}$ is a non-monotonous solution.

Lemma 3.8 [17] (On the existence of non-monotonous or damped solutions) Let $B \in(\bar{B}, 0)$, where \bar{B} is defined by (2.4). There exists $h_{B}>0$ such that if $h \in\left(0, h_{B}\right]$, then the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) is non-monotonous or damped.

Remark 3.9 Our main task is to prove the existence of $B \in\left(L_{0}, 0\right)$ such that $\{x(n)\}_{n=0}^{\infty}$ a homoclinic solution of problem (2.1), (2.7) with this B. Such solution fulfils $L_{0}<B \leq x(n)<L$ for $n \in \mathbb{N} \cup\{0\}$. Therefore we may assume without loss of generality that

$$
\begin{equation*}
f(x)=0 \quad \text { for } x \in\left(-\infty, L_{0}\right) \cup(L, \infty) \tag{3.9}
\end{equation*}
$$

By Remark 3.9, we assume that, in addition to (2.2)-(2.4), f fulfils moreover (3.9) in Lemma 3.10.

Lemma 3.10 [18] (On the existence of escape solutions)
There exists $h^{*}>0$ such that for any $h \in\left(0, h^{*}\right]$ there exists an escape solution $\left\{x_{\ell}(n)\right\}_{n=0}^{\infty}$ of problem (2.1), (2.7) for some $B=B_{\ell} \in\left(L_{0}, \bar{B}\right)$.

4 Estimates of solutions

In this section, f is supposed to fulfil (2.2)-(2.4) and (3.9).
Lemma 4.1 Let $\{x(n)\}_{n=0}^{\infty}$ be an escape solution of problem (2.1), (2.7). Then $\{x(n)\}_{n=1}^{\infty}$ is increasing and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x(n) \in(L, \infty) \tag{4.1}
\end{equation*}
$$

Proof. According to Definition 3.5 there exists $b \in \mathbb{N}$, such that $\{x(n)\}_{n=1}^{b+1}$ is increasing and (3.7) holds. By (3.9) we get $f(x(b+1))=0$. Consequently, by (3.1) and (3.7), $\Delta x(b+1)=\left(\frac{b+1}{b+2}\right)^{2} \Delta x(b)>0$ and $f(x(b+2))=0$. Similarly $\Delta x(b+j)=\left(\frac{b+j}{b+1+j}\right)^{2} \Delta x(b+j-1)$ and

$$
\begin{equation*}
\Delta x(b+j)=\left(\frac{b+1}{b+1+j}\right)^{2} \Delta x(b), \quad j \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

This yields that $\{x(n)\}_{n=1}^{\infty}$ is increasing.
Summing (4.2) for $j=1, \ldots, k$, we obtain

$$
x(b+k+1)=x(b+1)+(b+1)^{2} \Delta x(b) \sum_{j=1}^{k} \frac{1}{(b+1+j)^{2}}, \quad k \in \mathbb{N} .
$$

Consequently

$$
\lim _{n \rightarrow \infty} x(n)=x(b+1)+(b+1)^{2} \Delta x(b) \sum_{j=1}^{\infty} \frac{1}{(b+1+j)^{2}} .
$$

We have $\sum_{n=1}^{\infty} \frac{1}{(b+1+n)^{2}}<\infty$ and (4.1) follows.
Lemma 4.2 [18] Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7). Then there exists a maximal $b \in \mathbb{N} \cup\{\infty\}$ satisfying

$$
\begin{equation*}
x(n) \in[B, L) \quad \text { for } n=1, \ldots, b \text {, } \tag{4.3}
\end{equation*}
$$

and, if moreover $b>1$, then

$$
\begin{equation*}
\{x(n)\}_{n=1}^{b} \quad \text { is increasing. } \tag{4.4}
\end{equation*}
$$

In addition

$$
\begin{equation*}
\Delta x(n)<h \sqrt{\left(L-2 L_{0}\right) M_{0}}+h^{2} M_{0}, \quad n=1, \ldots, b-1, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{0}=\max \left\{|f(x)|: x \in\left[L_{0}, L\right]\right\} . \tag{4.6}
\end{equation*}
$$

Corollary 4.3 Let $h \in(0,1)$. If $\{x(n)\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7), then

$$
\begin{equation*}
\frac{\Delta x(n)}{h}<\sqrt{2\left|L_{0}\right| M_{0}}, \quad n \in \mathbb{N} . \tag{4.7}
\end{equation*}
$$

If $\{x(n)\}_{n=0}^{\infty}$ is an escape solution of problem (2.1), (2.7), then

$$
\begin{equation*}
\frac{\Delta x(n)}{h}<\sqrt{\left(L-2 L_{0}\right) M_{0}}+2 M_{0}, \quad n \in \mathbb{N} . \tag{4.8}
\end{equation*}
$$

Proof. Equation (2.1) has an equivalent form

$$
\begin{equation*}
\Delta x(n)-\Delta x(n-1)+\frac{2 n+1}{n^{2}} \Delta x(n)=h^{2} f(x(n)), \quad n \in \mathbb{N} . \tag{4.9}
\end{equation*}
$$

Multiplying (4.9) by $\Delta x(n)+\Delta x(n-1)$, we obtain

$$
\begin{align*}
(\Delta x(n))^{2} & -(\Delta x(n-1))^{2}+\frac{2 n+1}{n^{2}} \Delta x(n)(\Delta x(n)+\Delta x(n-1)) \tag{4.10}\\
& =h^{2} f(x(n))(x(n+1)-x(n-1)), \quad n \in \mathbb{N} .
\end{align*}
$$

Summing (4.10) from 1 to $n \in \mathbb{N}$, we have

$$
\begin{align*}
& (\Delta x(n))^{2}+\sum_{j=1}^{n} \frac{2 j+1}{j^{2}} \Delta x(j)(\Delta x(j)+\Delta x(j-1)) \\
& =h^{2} \sum_{j=1}^{n} f(x(j))(x(j+1)-x(j-1)), \quad n \in \mathbb{N} \tag{4.11}
\end{align*}
$$

If $\{x(n)\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7), then by (3.2) and (4.6) we get

$$
\begin{equation*}
\Delta x(n)<h \sqrt{2|B| M_{0}}<h \sqrt{2\left|L_{0}\right| M_{0}}, \quad n \in \mathbb{N} . \tag{4.12}
\end{equation*}
$$

Let $\{x(n)\}_{n=0}^{\infty}$ be an escape solution. By Definition 3.5, $\{x(n)\}_{n=1}^{\infty}$ is increasing and there exists $b \in \mathbb{N}$ such that $x(b) \leq L<x(b+1)$. By (4.5) we have

$$
\begin{equation*}
\Delta x(b-1)<h \sqrt{\left(L-2 L_{0}\right) M_{0}}+h^{2} M_{0} \tag{4.13}
\end{equation*}
$$

and, by (3.1) and (4.6),

$$
\begin{equation*}
\Delta x(b)=\left(\frac{b}{b+1}\right)^{2}\left(\Delta x(b-1)+h^{2} f(x(b))\right)<\Delta x(b-1)+h^{2} M_{0} \tag{4.14}
\end{equation*}
$$

Further, $x(n)>L$ for $n \geq b+1$ and hence, due to (3.9), $f(x(n))=0$. Therefore

$$
\begin{equation*}
\Delta x(n)=\left(\frac{n-1}{n}\right)^{2} \Delta x(n-1)<\Delta x(n-1), \quad n \geq b+1 \tag{4.15}
\end{equation*}
$$

Consequently (4.13)-(4.15) give (4.8).
Lemma 4.4 [18] Choose an arbitrary $\varrho>0$. Let $B_{1}, B_{2} \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ and $\{y(n)\}_{n=0}^{\infty}$ be solutions of problem (2.1), (2.7) with $B=B_{1}$ and $B=B_{2}$, respectively. Let K by the Lipschitz constant for f on $\left[L_{0}, L\right]$. Then

$$
\begin{gather*}
|x(n)-y(n)| \leq\left|B_{1}-B_{2}\right| \mathrm{e}^{\varrho^{2} K}, \tag{4.16}\\
\left|\frac{\Delta x(n)-\Delta y(n)}{h}\right| \leq\left|B_{1}-B_{2}\right| \varrho K \mathrm{e}^{\mathrm{e}^{2} K}, \tag{4.17}
\end{gather*}
$$

where $n \in \mathbb{N}, n \leq \frac{\varrho}{h}$.
Corollary 4.5 Let the assumptions of Lemma 4.4 be fulfilled and let $b_{0} \in \mathbb{N}$, $b_{0}>1, h \in(0,1)$. Then for $n \in \mathbb{N}, n \leq b_{0}$, the following inequalities hold:

$$
\begin{gather*}
|x(n)-y(n)| \leq\left|B_{1}-B_{2}\right| \mathrm{e}^{b_{0}^{2} K}, \tag{4.18}\\
\left|\frac{\Delta x(n)-\Delta y(n)}{h}\right| \leq\left|B_{1}-B_{2}\right| b_{0} K \mathrm{e}^{b_{0}^{2} K}, \tag{4.19}\\
\left|\frac{\Delta x(n)}{h} \cdot \frac{\Delta x(n)+\Delta x(n-1)}{2 h}-\frac{\Delta y(n)}{h} \cdot \frac{\Delta y(n)+\Delta y(n-1)}{2 h}\right| \tag{4.20}\\
\leq\left|B_{1}-B_{2}\right| \Lambda,
\end{gather*}
$$

where

$$
\begin{equation*}
\Lambda=2\left(\sqrt{\left(L-2 L_{0}\right) M_{0}}+M_{0}\right) b_{0} K \mathrm{e}^{b_{0}^{2} K} \tag{4.21}
\end{equation*}
$$

Proof. Inequalities (4.18) and (4.19) follow directly from (4.16) and (4.17). Inequality (4.20) is based on (4.7), (4.8), (4.19) and on the inequality

$$
\begin{aligned}
& \left\lvert\, \frac{\Delta x(n)}{h} \cdot\right. \left.\frac{\Delta x(n)+\Delta x(n-1)}{2 h}-\frac{\Delta y(n)}{h} \cdot \frac{\Delta y(n)+\Delta y(n-1)}{2 h} \right\rvert\, \\
& \leq\left|\frac{\Delta x(n)-\Delta y(n)}{h}\right| \cdot\left|\frac{\Delta y(n)+\Delta y(n-1)}{2 h}\right| \\
&+\left|\frac{\Delta x(n)}{h}\right| \cdot\left|\frac{\Delta x(n)-\Delta y(n)}{2 h}\right|+\left|\frac{\Delta x(n)}{h}\right| \cdot\left|\frac{\Delta x(n-1)-\Delta y(n-1)}{2 h}\right| .
\end{aligned}
$$

5 Further properties of solutions

In order to prove the existence of a homoclinic solution we will need the following lemmas. Here f fulfils (2.2)-(2.4) and (3.9).

Lemma 5.1 Let $\left\{x_{\sharp}(n)\right\}_{n=0}^{\infty}$ be a non-monotonous (an escape) solution of problem (2.1), (2.7) with $B=B_{\sharp} \in\left(L_{0}, 0\right)$. Then there exists $\varepsilon>0$ such that for each $B \in\left(B_{\sharp}-\varepsilon, B_{\sharp}+\varepsilon\right)$ the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) is also a non-monotonous (an escape) solution.

Proof. Let K be the Lipschitz constant for f on $\left[L_{0}, L\right]$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (2.1), (2.7) with $B \neq B_{\sharp}$. For $b \in \mathbb{N}$ put $\varrho=h(b+2)$. According to Lemma 4.4,

$$
\begin{equation*}
\left|x_{\sharp}(n)-x(n)\right| \leq\left|B_{\sharp}-B\right| e^{\varrho^{2} K}, \quad n \leq b+2 . \tag{5.1}
\end{equation*}
$$

(i) Assume that $\left\{x_{\sharp}(n)\right\}_{n=0}^{\infty}$ is a non-monotonous solution. By Definition 3.6 there exists $b \in \mathbb{N}, b>1$, such that $\left\{x_{\sharp}(n)\right\}_{n=1}^{b}$ is increasing and

$$
0<x_{\sharp}(b)<L, \quad x_{\sharp}(b+1) \leq x_{\sharp}(b) .
$$

We can find $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{equation*}
0<x_{\sharp}(b)-\delta_{1}, \quad x_{\sharp}(b)+\delta_{1}<L, \tag{5.2}
\end{equation*}
$$

and for $n \leq b-1$

$$
\begin{equation*}
\delta_{2}<\frac{1}{2}\left(x_{\sharp}(n+1)-x_{\sharp}(n)\right) . \tag{5.3}
\end{equation*}
$$

Let $x_{\sharp}(b+1)=x_{\sharp}(b)$. Then $x_{\sharp}(b+2)<x_{\sharp}(b+1)$ because, by (3.1),

$$
\Delta x_{\sharp}(b+1)=\left(\frac{b+1}{b+2}\right)^{2}\left(\Delta x_{\sharp}(b)+h^{2} f\left(x_{\sharp}(b+1)\right)\right)<0 .
$$

We choose $\delta_{3}>0$ such that

$$
\begin{equation*}
\delta_{3}<\frac{1}{2}\left(x_{\sharp}(b+1)-x_{\sharp}(b+2)\right) . \tag{5.4}
\end{equation*}
$$

Let $x_{\sharp}(b+1)<x_{\sharp}(b)$. Then we choose $\delta_{3}>0$ such that

$$
\begin{equation*}
\delta_{3}<\frac{1}{2}\left(x_{\sharp}(b)-x_{\sharp}(b+1)\right) . \tag{5.5}
\end{equation*}
$$

Now, for $x_{\sharp}(b+1) \leq x_{\sharp}(b)$, put $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}, \varepsilon=\mathrm{e}^{-\varrho^{2} K} \delta$ and assume that $\left|B_{\sharp}-B\right|<\varepsilon$. Then, by (5.1), we get

$$
\begin{equation*}
\left|x_{\sharp}(n)-x(n)\right| \leq \delta, \quad n \leq b+2 . \tag{5.6}
\end{equation*}
$$

Therefore, by (5.2), $0<x_{\sharp}(b)-\delta \leq x(b)$ and $x(b) \leq x_{\sharp}(b)+\delta<L$. So $0<x(b)<$ L. Further, by (5.3) and (5.6), for $n \leq b-1$,

$$
x(n) \leq x_{\sharp}(n)+\delta<x_{\sharp}(n+1)-\delta \leq x(n+1) .
$$

Therefore $\{x(n)\}_{n=1}^{b}$ is increasing.
Let $x_{\sharp}(b+1)=x_{\sharp}(b)$. If $x(b+1) \leq x(b)$, we see that $\{x(n)\}_{n=0}^{\infty}$ is nonmonotonous. So assume that $x(b+1)>x(b)$. Then $\{x(n)\}_{n=1}^{b+1}$ is increasing. Further, by (5.4) and (5.6),

$$
x(b+2) \leq x_{\sharp}(b+2)+\delta<x_{\sharp}(b+1)-\delta \leq x(b+1) .
$$

Hence $x(b+2)<x(b+1)$ which yields that $\{x(n)\}_{n=0}^{\infty}$ is non-monotonous in this case, as well.

If $x_{\sharp}(b+1)<x_{\sharp}(b)$, we deduce by (5.5) and (5.6) that $x(b+1)<x(b)$ and get that $\{x(n)\}_{n=0}^{\infty}$ is non-monotonous.
(ii) Assume that $\left\{x_{\sharp}(n)\right\}_{n=0}^{\infty}$ is an escape solution. By Definition 3.5 there exists $b \in \mathbb{N}$ such that $\left\{x_{\sharp}(n)\right\}_{n=1}^{b+1}$ is increasing and $L<x_{\sharp}(b+1)$. Then we can find $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{equation*}
L<x_{\sharp}(b+1)-\delta_{1}, \tag{5.7}
\end{equation*}
$$

and inequality (5.3) holds for $n \leq b$. Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}, \varepsilon=\mathrm{e}^{-\varrho^{2} K} \delta$ and assume that $\left|B_{\sharp}-B\right|<\varepsilon$. Then, (5.6) holds and using (5.7) and (5.3) we deduce as in part (i) that $\{x(n)\}_{n=1}^{b+1}$ is increasing and $L<x(b+1)$. Consequently, $\{x(n)\}_{n=0}^{\infty}$ is an escape solution.

Lemma 5.2 There exists $h^{*}>0$ such that if $h \in\left(0, h^{*}\right], B_{0} \in\left(L_{0}, 0\right)$ and $\left\{x_{0}(n)\right\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7) with $B=B_{0}$, then there exists $\delta_{B_{0}}>0$ such that for each $B \neq B_{0}, B \in\left(B_{0}-\delta_{B_{0}}, B_{0}+\delta_{B_{0}}\right) \cap\left(L_{0}, 0\right)$, the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (2.1), (2.7) cannot be an escape solution.

Proof. By (2.2), f is integrable on $\left[L_{0}, L\right]$ and we can choose c_{0}, ε and η^{*} such that

$$
\begin{gather*}
0<c_{0}<\frac{1}{3}\left|\int_{0}^{L} f(z) \mathrm{d} z\right|, \quad 0<\varepsilon<\frac{c_{0}}{3}, \tag{5.8}\\
\left|B-B_{0}\right|<2 \eta^{*} \Longrightarrow\left|\int_{B}^{B_{0}} f(z) \mathrm{d} z\right|<\varepsilon, \quad B, B_{0} \in\left[L_{0}, 0\right] . \tag{5.9}
\end{gather*}
$$

Step 1. By (2.2) and (3.9), for each $B \in\left[L_{0}, 0\right]$ there exists $\delta_{B}>0$ such that each increasing sequence $\{x(j)\}_{j=1}^{n+1}, n \in \mathbb{N}$, fulfils the following implication: If

$$
\begin{gather*}
x(1) \in\left(B-\delta_{B}, B+\delta_{B}\right), \quad x(0)=x(1), \quad-\delta_{B}<x(n+1)<0, \tag{5.10}\\
\frac{x(j+1)-x(j-1)}{2}<\delta_{B}, \quad j=1, \ldots, n,
\end{gather*}
$$

then

$$
\begin{equation*}
\left|\sum_{j=1}^{n} f(x(j)) \frac{x(j+1)-x(j-1)}{2}-\int_{x(1)}^{0} f(z) \mathrm{d} z\right|<\varepsilon \tag{5.11}
\end{equation*}
$$

Let $\mathcal{M}=\bigcup_{B \in\left[L_{0}, 0\right]}\left(B-\delta_{B}, B+\delta_{B}\right)$. Then $\left[L_{0}, 0\right] \subset \mathcal{M}$ and since $\left[L_{0}, 0\right]$ is compact, we can choose a finite number ν of intervals ($B_{k}-\delta_{B_{k}}, B_{k}+\delta_{B_{k}}$) such that

$$
\begin{equation*}
\left[L_{0}, 0\right] \subset \bigcup_{k=1}^{\nu}\left(B_{k}-\delta_{B_{k}}, B_{k}+\delta_{B_{k}}\right) . \tag{5.12}
\end{equation*}
$$

Consider M_{0} of (4.6) and choose $h_{k}>0$ such that

$$
\begin{equation*}
h_{k} \sqrt{2\left|L_{0}\right| M_{0}}<\delta_{B_{k}}, \quad k=1, \ldots, \nu \tag{5.13}
\end{equation*}
$$

Step 2. Consider η^{*} of (5.9). By (2.2) and (3.9), for each $B \in\left[L_{0}, 0\right]$ there exists $\eta_{B} \in\left(0, \eta^{*}\right)$ such that each increasing sequence $\{x(j)\}_{j=1}^{n+1}, n \in \mathbb{N}$, fulfils the following implication: If

$$
\begin{gather*}
x(1) \in\left(B-\eta_{B}, B+\eta_{B}\right), \quad x(0)=x(1), \quad L<x(n+1), \\
\frac{x(j+1)-x(j-1)}{2}<\eta_{B}, \quad j=1, \ldots, n, \tag{5.14}
\end{gather*}
$$

then

$$
\begin{equation*}
\left|\sum_{j=1}^{n} f(x(j)) \frac{x(j+1)-x(j-1)}{2}-\int_{x(1)}^{L} f(z) \mathrm{d} z\right|<\varepsilon . \tag{5.15}
\end{equation*}
$$

As in Step 1 we deduce that there is a finite number μ of intervals $\left(B_{\ell}-\eta_{B_{\ell}}, B_{\ell}+\right.$ $\eta_{B_{\ell}}$) such that

$$
\begin{equation*}
\left[L_{0}, 0\right] \subset \bigcup_{\ell=1}^{\mu}\left(B_{\ell}-\eta_{B_{\ell}}, B_{\ell}+\eta_{B_{\ell}}\right) \tag{5.16}
\end{equation*}
$$

and we choose $\tilde{h}_{\ell}>0$ such that

$$
\begin{equation*}
\tilde{h}_{\ell}\left(\sqrt{\left(L-2 L_{0}\right) M_{0}}+2 M_{0}\right)<\eta_{B_{\ell}}, \quad \ell=1, \ldots, \mu \tag{5.17}
\end{equation*}
$$

In what follows we assume that

$$
\begin{equation*}
h \in\left(0, h^{*}\right], \quad h^{*}=\min \left\{1, h_{1}, \ldots, h_{\nu}, \tilde{h}_{1}, \ldots, \tilde{h}_{\mu}\right\} . \tag{5.18}
\end{equation*}
$$

Step 3. Let $B_{0} \in\left(L_{0}, 0\right)$ be such that $\left\{x_{0}(n)\right\}_{n=0}^{\infty}$ is a damped solution of problem (2.1), (2.7) with $B=B_{0}$. By (5.12), $B_{0} \in\left(B_{k}-\delta_{B_{k}}, B_{k}+\delta_{B_{k}}\right)$ for some $k \in\{1, \ldots, \nu\}$. Therefore, by (4.7), (5.13) and (5.18), $\left\{x_{0}(j)\right\}_{j=1}^{n+1}, n \in \mathbb{N}$, satisfies (5.10) for B_{k} in place of B, and consequently

$$
\left|\sum_{j=1}^{n} f\left(x_{0}(j)\right) \frac{x_{0}(j+1)-x_{0}(j-1)}{2}-\int_{B_{0}}^{0} f(z) \mathrm{d} z\right|<\varepsilon .
$$

Letting $n \rightarrow \infty$ we get

$$
\begin{equation*}
\left|\sum_{j=1}^{\infty} f\left(x_{0}(j)\right) \frac{x_{0}(j+1)-x_{0}(j-1)}{2}-\int_{B_{0}}^{0} f(z) \mathrm{d} z\right| \leq \varepsilon . \tag{5.19}
\end{equation*}
$$

Further, $\left\{x_{0}(n)\right\}_{n=0}^{\infty}$ satisfies (4.11) and hence

$$
\begin{gathered}
\frac{1}{2}\left(\frac{\Delta x_{0}(n)}{h}\right)^{2}+\sum_{j=1}^{n} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h} \\
=\sum_{j=1}^{n} f\left(x_{0}(j)\right) \frac{x_{0}(j+1)-x_{0}(j-1)}{2}, \quad n \in \mathbb{N} .
\end{gathered}
$$

Letting $n \rightarrow \infty$ and having in mind that $\lim _{n \rightarrow \infty} \Delta x_{0}(n)=0$, we get

$$
\begin{aligned}
\sum_{j=1}^{\infty} & \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h} \\
& =\sum_{j=1}^{\infty} f\left(x_{0}(j)\right) \frac{x_{0}(j+1)-x_{0}(j-1)}{2} .
\end{aligned}
$$

This together with (5.19) give

$$
\begin{equation*}
\left|\sum_{j=1}^{\infty} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h}-\int_{B_{0}}^{0} f(z) \mathrm{d} z\right| \leq \varepsilon . \tag{5.20}
\end{equation*}
$$

Consequently, there exists $b_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{j=b_{0}+1}^{\infty} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h}<c_{0} \tag{5.21}
\end{equation*}
$$

Define Λ by (4.21). By virtue of (5.16), we have $B_{0} \in\left(B_{\ell}-\eta_{B_{\ell}}, B_{\ell}+\eta_{B_{\ell}}\right)$ for some $\ell \in\{1, \ldots, \mu\}$. Therefore there exists $\delta_{B_{0}} \in\left(0, \eta_{B_{\ell}}\right)$ such that $\left(B_{0}-\delta_{B_{0}}, B_{0}+\right.$ $\left.\delta_{B_{0}}\right) \subset\left(B_{\ell}-\eta_{B_{\ell}}, B_{\ell}+\eta_{B_{\ell}}\right)$ and

$$
\begin{equation*}
\delta_{B_{0}} \Lambda<c_{0} . \tag{5.22}
\end{equation*}
$$

Step 4. Assume on the contrary that for some $B \in\left(B_{0}-\delta_{B_{0}}, B_{0}+\delta_{B_{0}}\right) \cap\left(L_{0}, 0\right)$, $B \neq B_{0}$, a sequence $\{x(n)\}_{n=0}^{\infty}$ is an escape solution of problem (2.1), (2.7). Then $\{x(n)\}_{n=1}^{\infty}$ is increasing and there exists $b \in \mathbb{N}$ such that $x(b) \leq L<x(b+1)$. By (4.8), (5.17) and (5.18), we get that $\{x(j)\}_{j=1}^{n+1}, n \geq b$, satisfies (5.14) for B_{ℓ} in place of B, and consequently, inequality (5.15) holds for $n \in \mathbb{N}, n \geq b$.

Let $n \geq \max \left\{b_{0}, b\right\}$. Using successively (5.15), (4.11), (4.20), (5.21), (5.22), (5.20) and (5.9), we get

$$
\begin{gathered}
\varepsilon+\int_{B}^{L} f(z) \mathrm{d} z>\sum_{j=1}^{n} f(x(j)) \frac{x(j+1)-x(j-1)}{2}= \\
\frac{1}{2}\left(\frac{\Delta x(n)}{h}\right)^{2}+\sum_{j=1}^{n} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x(j)}{h} \cdot \frac{\Delta x(j)+\Delta x(j-1)}{2 h}> \\
\sum_{j=1}^{b_{0}} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x(j)}{h} \cdot \frac{\Delta x(j)+\Delta x(j-1)}{2 h} \geq \\
\sum_{j=1}^{b_{0}} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h}-\left|B-B_{0}\right| \Lambda= \\
\sum_{j=1}^{\infty} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h}- \\
\sum_{j=b_{0}+1}^{\infty} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h}-\left|B-B_{0}\right| \Lambda \geq \\
\sum_{j=1}^{\infty} \frac{2 j+1}{j^{2}} \cdot \frac{\Delta x_{0}(j)}{h} \cdot \frac{\Delta x_{0}(j)+\Delta x_{0}(j-1)}{2 h}-2 c_{0} \geq \\
\int_{B_{0}}^{0} f(z) \mathrm{d} z-\varepsilon-2 c_{0}>\int_{B}^{0} f(z) \mathrm{d} z-2 \varepsilon-2 c_{0} .
\end{gathered}
$$

Hence,

$$
\int_{B}^{L} f(z) \mathrm{d} z>\int_{B}^{0} f(z) \mathrm{d} z-3 \varepsilon-2 c_{0}
$$

and using (2.3) and (5.8) we get

$$
3 c_{0}>-\int_{0}^{L} f(z) \mathrm{d} z=\left|\int_{0}^{L} f(z) \mathrm{d} z\right|>3 c_{0}
$$

a contradiction.

6 Existence of homoclinic solutions

Now, we are ready to state and prove the main result provided f fulfils only our basic assumptions (2.2)-(2.4).

Theorem 6.1 (On the existence of homoclinic solutions)
There exists $h^{*}>0$ such that for any $h \in\left(0, h^{*}\right]$ there exists a homoclinic solution $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ of problem (2.1), (2.7), that is $\left\{x^{*}(n)\right\}_{n=1}^{\infty}$ is increasing and $\lim _{n \rightarrow \infty} x^{*}(n)=L$.

Proof. First, consider an equation

$$
\begin{equation*}
x(n+1)=x(n)+\left(\frac{n}{n+1}\right)^{2}\left(x(n)-x(n-1)+h^{2} f^{*}(x(n))\right), \quad n \in \mathbb{N} \tag{6.1}
\end{equation*}
$$

where

$$
f^{*}(x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \in\left[L_{0}, L\right] \\
0 & \text { if } x \notin\left[L_{0}, L\right]
\end{array} .\right.
$$

Hence f^{*} fulfils (2.2)-(2.4) and (3.9). Let us choose $h_{1}^{*}>0$ such that the assertion of Lemma 5.2 is valid for problem (6.1), (2.7). By Lemma 3.8 and Lemma 3.10, we can find $h^{*} \in\left(0, h_{1}^{*}\right]$ such that if $h \in\left(0, h^{*}\right]$, than for some $B_{\text {es }} \in\left(L_{0}, \bar{B}\right)$, the solution of (6.1), (2.7) with $B=B_{\text {es }}$ is an escape solution, and for some $B_{\mathrm{nd}} \in(\bar{B}, 0)$, the solution of (6.1), (2.7) with $B=B_{\mathrm{nd}}$ is non-monotonous or damped.

By Lemma 5.1, there exists $\varepsilon>0$ such that for each $B \in\left(B_{\mathrm{es}}, B_{\mathrm{es}}+\varepsilon\right)$, the corresponding solution of $(6.1),(2.7)$ is an escape solution. Let ε^{*} be the supremum of such epsilons and put $B^{*}:=B_{\text {es }}+\varepsilon^{*}$. Then $L_{0}<B^{*} \leq B_{\text {nd }}<0$. Denote $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ the solution of (6.1), (2.7) with $B=B *$.
(i) Let $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ be non-monotonous. Then, by Lemma 5.1, there is $\tilde{\varepsilon}_{1}>0$ such that for each $B \in\left(B^{*}-\tilde{\varepsilon}_{1}, B^{*}\right)$, the corresponding solution is also nonmonotonous. This contradicts the definition of ε^{*}.
(ii) Let $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ be an escape solution. Then, by Lemma 5.1, there is $\tilde{\varepsilon}_{2}>0$ such that for each $B \in\left(B^{*}, B^{*}+\tilde{\varepsilon}_{2}\right)$, the corresponding solution is also escape. This contradicts the maximality of ε^{*}.
(iii) Let $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ be a damped solution. Then, by Lemma 5.2, there is $\tilde{\varepsilon}_{3}>0$ such that for each $B \in\left(B^{*}-\tilde{\varepsilon}_{3}, B^{*}\right)$, the corresponding solution cannot be an escape solution. This contradicts the definition of ε^{*}.

By Lemma 3.7, $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ must be a homoclinic solution. Since $L_{0}<B^{*} \leq$ $x^{*}(n)<L$ for $n \in \mathbb{N}$, the homoclinic solution $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ of problem (6.1), (2.7) is also a solution of problem (2.1), (2.7).

Acknowledgments

The paper was supported by the Council of Czech Government MSM 6198959214.

References

[1] A. M. Amleh, E. Camouzis, G. Ladas. On second-order rational difference equations. J. Difference Equ. Appl. 13 (2007), 969-1004.
[2] D. R. Anderson, I. Rachůnková, C. C. Tisdell. Solvability of discrete Neumann boundary value problems. J. Math. Anal. Appl. 331 (2007), 736741.
[3] H. Berestycki, P. L. Lions, L. A. Peletier. An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^{N}. Indiana University Mathematics Journal 30, 1 (1981), 141-157.
[4] D. Bonheure, J. M. Gomes, L. Sanchez. Positive solutions of a secondorder singular ordinary differential equation. Nonlinear Analysis 61 (2005), 1383-1399.
[5] G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252-1254.
[6] F. Dell'Isola, H. Gouin and G. Rotoli. Nucleation of spherical shelllike interfaces by second gradient theory: numerical simulations. Eur. J. Mech B/Fluids 15 (1996), 545-568.
[7] S. N. Elaydi. An Introduction to Difference Equations. 2nd ed. Springer, New York 1999
[8] H. Gouin, G. Rotoli. An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255-260.
[9] L. X. Hu, W. T. Li, S. Stević. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl. 14 (2008), 779797.
[10] G. Kitzhofer, O. Koch, P. Lima, E. Weinmüller. Efficient numerical solution of the density profile equation in hydrodynamics. J. Sci. Comput. 32 (2007), 411-424.
[11] P. M. Lima, N. V. Chemetov, N. B. Konyukhova, A. I. Sukov. Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260-273.
[12] A. P. Palamides, T. G. Yannopoulos. Terminal value problem for singular ordinary differential equations: theoretical analysis and numerical simulations of ground states. Boundary Value Problems, Vol. 2006 (2006), Article ID 28719, 1-28.
[13] I. Rachůnková, L. Rachưnek. Singular discrete problem arising in the theory of shallow membrane caps. J. Difference Equ. Appl. 14 (2008), 747767.
[14] I. Rachůnková, L. Rachůnek. Singular discrete and continuous mixed boundary value problems. Math. Comp. Modelling 49 (2009), 413-422.
[15] L. Rachůnek, I. Rachůnková. Approximation of differential problems with singularities and time discontinuities. Nonlinear Analysis, TMA 71 (2009), e1448-e1460.
[16] L. RachŮnek, I. RachŮnková. On a homoclinic point of some autonomous second-order difference equation. J. Difference Equ. Appl. (2009), DOI: 10.1080/10236190903257834.
[17] L. RachŮNek. On four types of solutions. Submitted.
[18] L. Rachůnek, I. Rachůnková. Strictly increasing solutions of nonautonomous difference equations arising in hydrodynamics. Advances in Difference Equations. Recent Trends in Differential and Difference Equations, Vol. 2010, Article ID 714891, 1-11.
[19] I. Rachưnková, J. Tomeček. Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Analysis, TMA (2009), doi: 10.1016/j.na.2009.10.011.
[20] B. D. Rouhani, H. Khatibzadeh. A note on the asymptotic behavior of solutions to a second order difference equation. J. Difference Equ. Appl. 14 (2008), 429-432.

