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CONSTRUCTIVE METHOD FOR INVESTIGATION OF SOLUTIONS TO

STATE-DEPENDENT IMPULSIVE BOUNDARY VALUE PROBLEMS

I. RACHŮNKOVÁ, A. RONTÓ, L. RACHŮNEK, AND M. RONTÓ

Abstract. In this paper we investigate the nonlinear system of differential equations

u′(t) = f(t, u(t)), a.e. t ∈ [a, b] ⊂ R,

subject to the state-dependent impulse condition

u(t+)− u(t−) = γ(u(t−)), where g(t, u(t−)) = 0,

and the linear boundary condition
Au(a) + Cu(b) = d.

Here f and γ are given continuous vector-functions, g is a continuous scalar function, A, C are constant

matrices, and d is a constant vector. The impulse instants t ∈ (a, b) are unknown and they depend
on a solution u, because they are determined by the equation g(t, u(t−)) = 0. We discuss not only
the existence of solutions of the problem but also present an approximate construction of solutions.
Note that we have found no previous numerical results for state-dependent impulsive boundary value

problems in the literature.

1. Introduction

We consider the nonlinear system of differential equations

(1.1) u′(t) = f(t, u(t)), a.e. t ∈ [a, b] ⊂ R,

with continuous f : [a, b]×R
n → R

n. Equation (1.1) is subject to the state-dependent impulse condition

(1.2) u(t+)− u(t−) = γ(u(t−)), where g(t, u(t−)) = 0.

Here γ : Rn → R
n and g : [a, b]×R

n → R are continuous, and the impulse instants t ∈ (a, b) in (1.2) are
unknown. These instants are called state-dependent because they depend on a solution u through the
equation g(t, u(t−)) = 0. Impulsive problem (1.1), (1.2) is investigated together with the linear boundary
condition

(1.3) Au(a) + Cu(b) = d,

where d is a constant vector, and A, C are constant matrices which can be singular and which satisfy

rank[A,C] = n.

For classical monographs about impulsive problems see [4, 17, 37]. Studies of real life problems with
state-dependent impulsive effects can be found in [15, 19, 20, 38, 40]. Many papers are devoted to state-
dependent impulsive initial value problems, where the existence, stability and other asymptotic properties
of solutions have been studied, e.g. [1–3, 9–11, 14, 16]. We can also refer to state-dependent impulsive
periodic problems, e.g. [5–7, 12, 18, 21]. In contrast to that there are only few papers dealing with other
types of state-dependent impulsive boundary value problems, see [8,13,22–26]. Namely, most of the results
in the literature devoted to boundary value problems concern fixed-times impulses. A reason for the lack
of results for state-dependent impulsive boundary value problems lies in the fact that state-dependent
impulses significantly change properties of boundary value problems, which is explained in more details
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in [25]. In addition, we have found no numerical results for state-dependent impulsive boundary value
problems. This is our motivation for the investigation of problem (1.1)–(1.3).

Definition 1. A left-continuous vector-function u : [a, b] → R
n is called a solution of problem (1.1)–(1.3)

if there exist p ∈ N and ti ∈ (a, b), i = 1, . . . , p, such that:

• a < t1 < t2 < . . . < tp < b,
• the restrictions u|[a,t1], u|(t1,t2], . . ., u|(tp,b] have continuous derivatives,
• u satisfies (1.1) for t ∈ [a, b], t 6= ti, i = 1, . . . , p,
• u satisfies (1.2) for t = ti, i.e. u(ti+)− u(ti) = γ(u(ti)), g(ti, u(ti)) = 0, i = 1, . . . , p,
• u fufils the boundary conditions (1.3).

The set

(1.4) G = {(t, x) ∈ [a, b]× R
n : g(t, x) = 0}

is called a barrier.

Wee see that if u satisfies condition (1.2) for t = ti ∈ (a, b), then u has an intersection point (ti, u(ti))
with the barrier G, and in addition, u has a jump of the size γ(u(ti)) at the point ti.

We focus our attention to the case where p = 1, that is u has a unique intersection point with the barrier
G, and then we use the technique suggested in [27], which makes possible to discuss the solvability of
problem (1.1)–(1.3) as well as to find approximate solutions. This approach is based on a construction of
two simple parametrized model problems (3.3), (3.4) and (3.5), (3.6). We give conditions which guarantee
that if the parameters t1, z, λ, η belong to some bounded sets (cf. Section 3), then solutions of these
parametrized model problems can be obtained as limits of uniformly convergent sequences of successive
approximations (3.8) and (3.17). Equations in the parametrized model problems contain functional
perturbation terms which essentially depend on the parameters and which together with the original
boundary conditions (1.3) and the barrier (1.4) generate a system of algebraic determining equations
(4.2). Numerical values of the parameters should be found from (4.2) in the bounded sets mentioned
above. A solution of problem (1.1)–(1.3) is then constructed (see (4.1)) by means of such solutions of
problems (3.3), (3.4) and (3.5), (3.6) which have the values of parameters satisfying (4.2). Consequently,
the infinite-dimensional problem (1.1)–(1.3) is reduced to the finite-dimensional algebraic system (4.2).

In practice, we investigate system (4.2), where explicitly determined successive approximations are
written instead of their limits (cf. (5.1)). Then the solvability of (4.2) can be checked more easily and we
get approximate solutions of problem (1.1)–(1.3) and error estimates using for example Maple 14. By our
knowledge this is the first numerical-analytic method for this type of impulsive problems. This method
can be applied on problems with linear as well as with nonlinear boundary conditions which has been
demonstrated on problems without impulses in [27–30,32–34]. In addition, we can work with barriers in
the form g(t, x) = 0. Note, that the papers [22–26] are applicable only to problems with barriers in the
form t = g(x). Example in Section 6 shows that the method provides also multiplicity results.

2. Notation and symbols

In the sequel, for any vector x = col(x1, ..., xn) ∈ R
n the obvious notation |x| = col(|x1|, ..., |xn|) is

used and inequalities between vectors are understood component-wise. The same convention is adopted
implicitly for operations ’max’ and ’min’. The symbols 1n and 0n stand respectively for the unit and
zero matrix of dimension n, and r(K) denotes the maximal, in modulus, eigenvalue of a square matrix
K.

Definition 2. For any non-negative vector ̺ ∈ R
n under a component-wise ̺-neighbourhood of a point

z ∈ R
n we understand

B(z, ̺) := {ξ ∈ R
n : |ξ − z| ≤ ̺} .
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Similarly, for a compact connected set Ω ⊂ R
n, we define its component-wise ̺-neighbourhood by putting

B(Ω, ̺) := ∪
ξ∈Ω

B (ξ, ̺) .

Definition 3. For two compact connected sets Da ⊂ R
n and Db ⊂ R

n, introduce the set

(2.1) Da,b := (1− θ)z + θη, z ∈ Da, η ∈ Db, θ ∈ [0, 1] ,

and its component-wise ̺-neighbourhood

(2.2) D := B(Da,b, ̺) .

For a compact set D ⊂ R
n, a closed interval [a, b] ⊂ R , a continuous function f : [a, b]×D → R

n, and
an n× n matrix K with non-negative entires, we write

(2.3) f ∈ Lip(K,D),

if the inequality
|f(t, u)− f(t, v)| ≤ K |u− v|

holds for all u, v ∈ D and t ∈ [a, b] . In addition, we introduce the vector

(2.4) δ[a,b],D(f) :=
1

2

[
max

(t,x)∈[a,b]×D
f(t, x)− min

(t,x)∈[a,b]×D
f(t, x)

]
.

We recall some subsidary statements which are needed below. Let us put α0(t; a, b) = 1 for t ∈ [a, b],
and for m ∈ N, define

(2.5) αm(t; a, b) =

(
1−

t− a

b− a

)∫ t

a

αm−1(s; a, b) ds+
t− a

b− a

∫ b

t

αm−1(s; a, b) ds, t ∈ [a, b].

Clearly

(2.6) α1(t; a, b) = 2 (t− a)

(
1−

t− a

b− a

)
, |α1(t; a, b)| ≤

b− a

2
, t ∈ [a, b].

Lemma 4. ( [29], Lemma 3.16). Functions αm from (2.5) are positive, continuous and fulfil the estimate

(2.7) αm(t; a, b) ≤
10

9

(
3(b− a)

10

)m−1

α1(t; a, b), t ∈ [a, b], m ∈ N.

Lemma 5. ( [29], Lemma 3.13). Let f̃ : [a, b] → R
n be a continuous function. Then

(2.8)

∣∣∣∣∣∣

t∫

a


f̃(τ)−

1

b− a

b∫

a

f̃(s) ds


 dτ

∣∣∣∣∣∣
≤

1

2
α1(t; a, b)

(
max
s∈[a,b]

f̃(s)− min
s∈[a,b]

f̃(s)

)
, t ∈ [a, b].

3. Parametrized model problems

Consider a parameter t1 ∈ (a, b), choose compact convex sets Da, Dt1− , Db ⊂ R
n, and define the set

Dt1+ :=
{
x+ γ(x) : x ∈ Dt1−

}
.

Note, that the set Dt1+ is obtained from Dt1− by a ”shift” using the given vector of ”jump” γ from (1.2).
According to (2.1) and (2.2) we introduce the set

Da,t1− := (1− θ) z + θλ, z ∈ Da, λ ∈ Dt1− , θ ∈ [0, 1] ,

and its component-wise ̺x-neighbourhood

(3.1) Dx := B(Da,t1− , ̺
x).

Similarly we introduce the set

Dt1+,b := (1− θ) (λ+ γ(λ)) + θη, (λ+ γ(λ)) ∈ Dt1+ , η ∈ Db, θ ∈ [0, 1] ,
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and its component-wise ̺y-neighbourhood

(3.2) Dy := B(Dt1+,b, ̺
y).

Now, we consider the scalar parameter t1 ∈ (a, b) together with vector parameters z ∈ Da, λ ∈ Dt1− ,
η ∈ Db, and instead of the impulsive boundary value problem (1.1)–(1.3) we will study the following two
auxiliary parametrized boundary value problems on the intervals [a, t1] and [t1, b] , respectively:

(3.3) x′(t) = f (t, x(t)) +
1

t1 − a


λ− z −

t1∫

a

f(s, x(s)) ds


 ,

(3.4) x(a) = z, x(t1) = λ,

and

(3.5) y′(t) = f (t, y(t)) +
1

b− t1


η − (λ+ γ(λ))−

b∫

t1

f(s, y(s)) ds


 ,

(3.6) y(t1) = λ+ γ(λ), y(b) = η.

Definition 6. A vector function x ∈ C1[a, t1] is called a solution of problem (3.3), (3.4), if x is a solution
of the initial value problem

Eq. (3.3) for t ∈ [a, t1], x(a) = z,

and in addition x satisfies x(t1) = λ. A vector function y ∈ C1[t1, b] is called a solution of problem (3.5),
(3.6), if y is a solution of the initial value problem

Eq. (3.5) for t ∈ [t1, b], y(t1) = λ+ γ(λ),

and in addition y satisfies y(b) = η.

I. Let us connect problem (3.3), (3.4) with the parametrized sequence of functions

(3.7) x0(t; t1, z, λ) =

(
1−

t− a

t1 − a

)
z +

t− a

t1 − a
λ, t ∈ [a, t1] ,

(3.8) xm(t; t1, z, λ) = z +

t∫

a

f(s, xm−1(s; t1, z, λ)) ds

−
t− a

t1 − a

t1∫

a

f(s, xm−1(s; t1, z, λ)) ds+
t− a

t1 − a
(λ− z) , t ∈ [a, t1] , m ∈ N.

The following statement establishes the uniform convergence of sequence (3.8) to some parametrized
limit function x∞(t; t1, z, λ).

Theorem 7. Assume that:

(i) Kx and Qx are matrices with non-negative elements such that

(3.9) r(Qx) < 1, Qx =
3(b− a)

10
Kx.

(ii) t1 ∈ (a, b), z ∈ Da and λ ∈ Dt1− are arbitrary fixed parameters.

(iii) There exists a non-negative vector ̺x such that f ∈ Lip(Kx, D
x), where Dx is from (3.1).

(iv) ̺x satisfies the inequality

(3.10) ̺x ≥
b− a

2
δ[a,b],Dx(f),

where δ[a,b],Dx(f) is from (2.4) with Dx in place of D.
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Then the following assertions are valid:

1. The functions xm in (3.8) are continuously differentiable on [a, t1], they have values in the domain

Dx and satisfy the two-point separated boundary conditions (3.4).
2. The sequence of functions xm in (3.8) converges uniformly on [a, t1] to the limit function x∞:

(3.11) x∞ (t; t1, z, λ) = lim
m→∞

xm(t; t1, z, λ).

3. The limit function x∞ is a unique solution of problem (3.3), (3.4).
4. The following error estimate holds:

|x∞ (t; t1, z, λ)− xm (t; t1, z, λ)|

(3.12) 6
10

9
α1(t; a, t1)Q

m (1n −Q)
−1

δ[a,b],Dx(f), t ∈ [a, t1] , m ∈ N,

where α1(t; a, t1) is from (2.6) with t1 in place of b.

Proof. We can argue similarly as in [27]. Assume that t1 ∈ (a, b), z ∈ Da and λ ∈ Dt1− are fixed. It is
easy to see from (3.7) that x0(t; t1, z, η) belongs to Da,t1− for t ∈ [a, t1] as a convex combination of z and
η. We use estimate (2.8) of Lemma 5 with t1 in place of b. Then (3.8) for m = 0 implies that

|x1 (t; t1, z, λ)− x0 (t; t1, z, λ)|

(3.13) ≤
1

2
α1(t; a, t1)

[
max

s∈[a,t1]
f(s, x0 (s; t1, z, λ))− min

s∈[a,t1]
f(s, x0 (s; t1, z, λ))

]

≤ α1(t; a, t1)δ[a,b],Dx(f) ≤
b− a

2
δ[a,b],Dx(f), t ∈ [a, t1],

which means, according to (3.1) and (3.10), that x1 (t; t1, z, λ) belongs to Dx for t ∈ [a, t1]. Using this
and arguing by induction we can establish that

|xm (t; t1, z, λ)− x0 (t; t1, z, λ)| ≤
b− a

2
δ[a,b],Dx(f), t ∈ [a, t1], m ∈ N,

which yields that all functions in (3.8) are contained in the domain Dx.
Introduce the notation

(3.14) rm+1(t; t1, z, λ) = |xm+1 (t; t1, z, λ)− xm (t; t1, z, λ)| , t ∈ [a, t1], m ∈ N.

Then, by (3.8),

r2(t; t1, z, λ) =

∣∣∣∣
(
1−

t− a

t1 − a

)∫ t

a

(f(s, x1(s; t1, z, λ))− f(s, x0(s; t1, z, λ))) ds

−
t− a

t1 − a

∫ t1

t

(f(s, x1(s; t1, z, λ))− f(s, x0(s; t1, z, λ))) ds

∣∣∣∣ , t ∈ [a, t1].

Using the recurrence relation (2.5) with t1 in place of b, the assumption f ∈ Lip(Kx, D
x) and inequalities

(2.7), (3.13), we get

r2(t; t1, z, λ) ≤ Kx



(
1−

t− a

t1 − a

)∫ t

a

α1(s; a, t1) ds+
t− a

t1 − a

t1∫

t

α1(s; a, t1) ds


 δ[a,b],Dx(f)

≤ Kxα2(t; a, t1)δ[a,b],Dx(f) ≤
10

9
Qxα1(t; a, t1)δ[a,b],Dx(f), t ∈ [a, t1].

By induction we can establish that

rm+1(t; t1, z, λ) ≤ Km
x αm+1(t; a, t1)δ[a,b],Dx(f)

≤
10

9
Qm

x α1(t; a, t1)δ[a,b],Dx(f), t ∈ [a, t1], m ∈ N.

Therefore, in view of (3.14), choosing j ∈ N, we have

(3.15) |xm+j(t; t1, z, λ)− xm(t; t1, z, λ)|
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≤

j∑

i=1

rm+i(t; t1, z, λ) ≤
10

9
α1(t; a, t1)

j∑

i=1

Qm+i−1
x δ[a,b],Dx(f)

=
10

9
α1(t; a, t1)Q

m
x

j−1∑

i=0

Qi
xδ[a,b],Dx(f), t ∈ [a, t1], m ∈ N.

Since, due to (3.9), the maximum eigenvalue of the matrix Qx does not exceed the unity, we have

j−1∑

i=0

Qi
x ≤ (1n −Qx)

−1
, lim

m→∞

Qm
x = 0n.

Therefore, we conclude from (3.15) that the sequence {xm (t; t1, z, λ)}
∞

m=0 from (3.8) uniformly converges
in the domain (t, t1, z, λ) ∈ [a, t1]×[a, b]×Da ×Dt1− to the limit function x∞ (t; t1, z, λ). Since all functions
of sequence (3.8) satisfy the boundary conditions (3.4) for all values of the introduced parameters, the
limit function x∞ (t; t1, z, λ) also satisfies these conditions. Passing to the limit as m → ∞ in equality
(3.8) we see that the limit function x∞ satisfies on [a, t1] the integral equation

x(t) = z +

t∫

a

f(s, x(s)) ds−
t− a

t1 − a

t1∫

a

f(s, x(s)) ds+
t− a

t1 − a
(λ− z) .

Consequently, x∞ is a solution of problem (3.3), (3.4). Since x∞ is a solution on [a, t1] of the initial value
problem (3.3), x(a) = z, the uniqueness follows from f ∈ Lip(Kx, D

x). Passing to the limit as j → ∞
in (3.15) we get estimation (3.12). �

II. Let us connect problem (3.5), (3.6) with the parametrized sequence of functions

(3.16) y0(t; t1, λ, η) =

(
1−

t− t1
b− t1

)
(λ+ γ(λ)) +

t− t1
b− t1

η, t ∈ [t1, b] ,

(3.17) ym(t; t1, λ, η) = (λ+ γ(λ)) +

t∫

t1

f(s, ym−1(s; t1, λ, η)) ds

−
t− t1
b− t1

b∫

t1

f(s, ym−1(s; t1, λ, η)) ds+
t− t1
b− t1

(η − (λ+ γ(λ)) , t ∈ [t1, b] , m ∈ N.

By analogy with Theorem 7 we establish the uniform convergence of sequence (3.17) to some parametrized
limit function y∞(t; t1, λ, η).

Theorem 8. Assume that:

(i) Ky and Qy are matrices with non-negative elements such that

r(Qy) < 1, Qy =
3(b− a)

10
Ky.

(ii) t1 ∈ (a, b), λ ∈ Dt1− and η ∈ Db are arbitrary fixed parameters.

(iii) There exists a non-negative vector ̺y such that f ∈ Lip(Ky, D
y), where Dy is from (3.2).

(iv) ̺y satisfies the inequality

̺y ≥
b− a

2
δ[a,b],Dy (f),

where δ[a,b],Dy (f) is from (2.4) with Dy in place of D.

Then the following assertions are valid:

1. The functions ym in (3.17) are continuously differentiable on [t1, b], they have values in the domain

Dy and satisfy the two-point separated boundary conditions (3.6).
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2. The sequence of functions ym in (3.17) converges uniformly on [t1, b] to the limit function y∞

(3.18) y∞ (t; t1, λ, η) = lim
m→∞

ym(t; t1, λ, η).

3. The limit function y∞ is a unique solution of problem (3.5), (3.6).
4. The following error estimate holds:

|y∞ (t; t1, λ, η)− ym (t; t1, λ, η)|

(3.19) 6
10

9
α1(t; t1, b)Q

m
y (1n −Qy)

−1
δ[a,b],Dy (f), t ∈ [t1, b] , m ∈ N,

where α1(t; t1, b) is from (2.6) with t1 in place of a.

Proof. We argue similarly as in the proof of Theorem 7. In particular, we show that the limit function
y∞ satisfies on [t1, b] the integral equation

y(t) = (λ+ γ(λ)) +

t∫

t1

f(s, y(s))ds−
t− t1
b− t1

b∫

t1

f(s, y(s))ds+
t− t1
b− t1

(η − (λ+ γ(λ))) .

�

4. System of algebraic determining equations

Let us find a relationship between the limit functions x∞ (t; t1, z, λ), y∞ (t; t1, z, λ) from Theorem 7
and Theorem 8 and a solution of the original impulsive boundary value problem (1.1)–(1.3).

Theorem 9. Let the assumptions of Theorem 7 and Theorem 8 be fulfilled and let x∞ (t; t1, z, λ) and

y∞ (t; t1, z, λ) be the limit functions given by (3.11) and (3.18), respectively. Then the function

(4.1) u(t) =

{
x∞ (t; t1, z, λ) if t ∈ [a, t1] ,
y∞ (t; t1, λ, η) if t ∈ (t1, b] ,

is a solution of problem (1.1)–(1.3) with exactly one impulse point t1, if the parameters t1, z, λ, η satisfy

the system of algebraic ”determining” equations

(4.2)





λ− z −
t1∫
a

f(s, x∞ (s; t1, z, λ)) ds = 0,

(η − (λ+ γ(λ)))−
b∫

t1

f(s, y∞ (s; t1, λ, η)) ds = 0,

Az + Cη = d,
g(t1, λ) = 0,

and in addition

(4.3) g(t, y∞ (t; t1, λ, η)) 6= 0, t ∈ (t1, b].

Proof. Let u be given by (4.1). Assume that the parameters t1 ∈ (a, b), z ∈ Da, λ ∈ Dt1− and η ∈ Db

satisfy (4.2). Then, according to Theorems 7 and 8, equations (3.3), (3.5) and by the first two equations
in (4.2), we get that the restrictions u|[a,t1], u|(t1,b] have continuous derivatives and

u′(t) = f(t, u(t)), t ∈ [a, b], t 6= t1.

Further, (3.4) and (3.6) yield

u(a) = z, u(t1−) = u(t1) = λ, u(t1+) = λ+ γ(λ), u(b) = η.

We see that u(t1+) − u(t1−) = γ(u(t1−)), where g(t1, u(t1−)) = 0 due to the fourth equation in (4.2).
Hence, u satisfies the impulse conditions (1.2) for t = t1. Further, by the third equation in (4.2), u fulfils
the boundary conditions (1.3). Finally, (4.3) implies that u has exactly one intersection point (t1, u(t1))
with barrier (1.4). We have proved that u is a solution of (1.1)–(1.3) with p = 1 in Definition 1. �
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Note that system (4.2) consists of 3n + 1 scalar equations for 3n + 1 scalar unknown parameters t1,
z1, . . . , zn, λ1, . . . , λn, η1, . . . , ηn.

Now, let the assumptions of Theorem 7 and Theorem 8 be fulfilled and let a vector-function u be a
solution of problem (1.1)–(1.3) with p = 1 in Definition 1. Then there exists a unique point t1 ∈ (a, b)
such that the restrictions u|[a,t1], u|(t1,b] have continuous derivatives and u has a unique jump at t1

u(t1+)− u(t1) = γ(u(t1)).

Therefore u can be written as

u(t) =

{
x(t) if t ∈ [a, t1],
y(t) if t ∈ (t1, b],

where x is a solution of the initial value problem

x′(t) = f(t, x(t)) for t ∈ [a, t1], x(a) = u(a),

and y is a solution of the initial value problem

y′(t) = f(t, y(t)) for t ∈ [t1, b], y(t1) = u(t1) + γ(u(t1)).

If u satisfies

(4.4) u(a) ∈ Da, u(t1) ∈ Dt1− , u(b) ∈ Db,

we get from Theorems 7, 8 and 9 that

x(t) = x∞(t; t1, z, λ), t ∈ [a, t1], y(t) = y∞(t; t1, λ, η), t ∈ [t1, b],

provided the parameters t1 ∈ (a, b), z ∈ Da, λ ∈ Dt1− and η ∈ Db satisfy (4.2). Therefore the following
assertion is valid.

Theorem 10. Under the assumptions of Theorems 7 and 8 system (4.2) determines all possible solutions

u of problem (1.1)–(1.3) having exactly one impulse point and satisfying (4.4).

Remark 11. The simpliest way for choosing parameter sets is to take a compact convex set Da ⊂ R
n

and then put

(4.5) Db = {x+ γ(x) : x ∈ Da}, Dt1− = Da, Dt1+ = Db.

Then the convex linear combination Da,t1− of vectors z ∈ Da and λ ∈ Dt1− (see (2.1)) is equal to Da.
Similarly Dt1+,b = Db.

Suppose that (4.5) holds and the assumptions of Theorems 7 and 8 are satisfied. Further assume that
system (4.2) has two different solutions in the set (a, b)×Da ×Da ×Db. The first solution consists of t∗1
and the triplet of vectors z∗, λ∗, η∗ and and the second solution consists of t̃1 and the triplet of vectors
z̃, λ̃, η̃. Then we get from Theorems 7 and 8 the functions

x∞(t; t∗1, z
∗, λ∗), y∞(t; t∗1, λ

∗, η∗), x∞(t; t̃1, z̃, λ̃), y∞(t; t̃1, λ̃, η̃).

Finally assume that

g(t, y∞ (t; t∗1, λ
∗, η∗)) 6= 0, t ∈ (t∗1, b], g(t, y∞(t; t̃1, λ̃, η̃)) 6= 0, t ∈ (t̃1, b].

Then problem (1.1)–(1.3) has two different solutions u∗ and ũ

u∗(t) =

{
x∞(t; t∗1, z

∗, λ∗) if t ∈ [a, t∗1],
y∞(t; t∗1, λ

∗, η∗) if t ∈ (t∗1, b],

ũ(t) =

{
x∞(t; t̃1, z̃, λ̃) if t ∈ [a, t̃1],

y∞(t; t̃1, λ̃, η̃) if t ∈ (t̃1, b].

The solution u∗ has the unique impulse point t∗ and the solution ũ has the unique impulse point t̃. In
addition u∗(a), ũ(a) ∈ Da.
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5. Approximation of solutions

The solvability of the determining system (4.2) can be established similarly to [32] by studying its
approximate version

(5.1)





λ− z −
t1∫
a

f(s, xm (s; t1, z, λ)) ds = 0,

(η − (λ+ γ(λ)))−
b∫

t1

f(s, ym (s; t1, λ, η)) ds = 0,

Az + Cη = d,
g(t1, λ) = 0,

with

(5.2) g(t, ym (t; t1, λ, η)) 6= 0, t ∈ (t1, b],

which can be constructed explicitly for a fixed m ∈ N.

Let the quartet
(
t̂, ẑ, λ̂, η̂

)
∈ (a, b)×Da ×Dt̂ ×Db be a root of system (5.1) for a fixed m ∈ N. Then

the function

(5.3) û(t) =





xm

(
t; t̂, ẑ, λ̂

)
if t ∈

[
a, t̂
]
,

ym

(
t; t̂, λ̂, η̂

)
if t ∈

(
t̂, b
]
,

which satisfies (5.2) can be regarded as the m-th approximation to a solution of problem (1.1)–(1.3).

The function û has a unique impulse point t̂, where û has the jump γ(λ̂). This is justified by the next
estimates which follow directly from (3.12) and (3.19)

∣∣∣x∞(t; t̂, ẑ, λ̂)− xm(t; t̂, ẑ, λ̂)
∣∣∣ 6

6
10

9
α1(t; a, t̂)Q

m
x (1n −Qx)

−1
δ[a,b],Dx(f), t ∈

[
a, t̂
]
, m ∈ N,

∣∣∣y∞(t; t̂, λ̂, η̂)− ym(t; t̂, λ̂, η̂
∣∣∣ 6

6
10

9
α1(t; t̂, b)Q

m
y (1n −Qy)

−1
δ[a,b],Dy (f), t ∈

[
t̂, b
]
, m ∈ N,

where Qx ,Qy, δ[a,b],Dx(f) and δ[a,b],Dy (f) are given according to Theorems 7, 8.
It is worth to emphasise the role of unknown parameters whose values appearing in (5.3) are determined

from (5.1):

• the vector ẑ ∈ Da is an approximation of the initial value u(a) of the solution u of (1.1)–(1.3),

• the value t̂ ∈ (a, b) is an approximation of the impulse point t1 of u,

• the vector λ̂ ∈ Dt1− is an approximation of u(t1),

• the vector λ̂+ γ(λ̂) ∈ Dt1+ is an approximation of u(t1+),
• the vector η̂ ∈ Db is an approximation of u(b).

The solvability analysis based on properties of equations (5.1) can be carried out by analogy to [31,35]
on the base of topological degree methods, but it is not treated here.

Remark 12. The technique described above can be also applied to problem (1.1)–(1.3) with a piece-wise
right-hand side f .

Note, that the most difficult part of our approach is the construction of the functions xm(t; t1, z, λ)
and ym(t; t1, λ; , η) in (3.8) and (3.17). If the explicit integration in (3.8) and (3.17) is imposssible or
difficult, one can use suitable modifications of (3.8) and (3.17), which at the expense of a certain loss
in accuracy, lead one to iterations better suited for practical computations. In [27] it was mentioned
two natural modifications of this kind which make the scheme more constructive, namely the version of
”Frozen” parameters and the version of Polynomial interpolation used in [36].
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If the version of ”Frozen” parameters is used, then problem (1.1)–(1.3) can be solved as follows:

• Choose a compact convex set Da ⊂ R
n and put Db = {x+ γ(x) : x ∈ Da}, see Remark 11, (4.5).

Check if the assumptions of Theorem 7 and Theorem 8 are fulfilled.
• For arbitrary parameters (t1, z, λ, η) ∈ (a, b)×Da ×Da×Db find the first iterations x1(t; t1, z, λ)
and y1(t; t1, λ, η) from (3.8) and (3.17), respectively.

• Put m = 1 in system (5.1) and find its solution (t̂, ẑ, λ̂, η̂) ∈ (a, b)×Da ×Da ×Db.
• For arbitrary parameters (t1, z, λ, η) ∈ (a, b)×Da×Da×Db derive the second ”frozen” iterations

x̂2(t; t1, z, λ) and ŷ2(t; t1, λ, η) using the functions X1(t) = x1(t; t̂, ẑ, λ̂) and Y1(t) = y1(t; t̂, λ̂, η̂)
in (3.8) and (3.17) with m = 2:

(5.4) x̂2(t; t1, z, λ) = z +

t∫

a

f(s,X1(s)) ds−
t− a

t1 − a

t1∫

a

f(s,X1(s)) ds+

+
t− a

t1 − a
(λ− z), t ∈ [a, t1] ,

and

(5.5) ŷ2(t; t1, λ, η) = λ+ γ +

t∫

t1

f(s, Y1(s)) ds−
t− t1
b− t1

b∫

t1

f(s, Y1(s)(s)) ds+

+
t− t1
b− t1

(η − λ− γ), t ∈ [t1, b] .

• For m = 2 modify system (5.1) by means of the second ”frozen” iterations x̂2(t; t1, z, λ) and
ŷ2(t; t1, λ, η). Find a solution of the modified system

(5.6)





λ− z −
t1∫
a

f(s, x̂2 (s; t1, z, λ)) ds = 0,

(η − (λ+ γ(λ)))−
b∫

t1

f(s, ŷ2 (s; t1, λ, η)) ds = 0,

Az + Cη = d,
g(t1, λ) = 0.

in the set (a, b)×Da ×Da ×Db and denote it again (t̂, ẑ, λ̂, η̂).
• For arbitrary parameters (t1, z, λ, η) ∈ (a, b)×Da ×Da ×Db derive the third ”frozen” iterations

x̂3(t; t1, z, λ) and ŷ3(t; t1, λ, η) using the functions X2(t) = x2(t; t̂, ẑ, λ̂) and Y2(t) = y2(t; t̂, λ̂, η̂)
in (3.8) and (3.17) with m = 3.

• For m = 3 modify system (5.1) by means of the third ”frozen” iterations x̂3(t; t1, z, λ) and
ŷ3(t; t1, λ, η). Find a solution of the modified system in the set (a, b)×Da ×Da ×Db and denote

it again (t̂, ẑ, λ̂, η̂).
• Similarly derive further ”frozen” iterations.
• If for some m ∈ N the m-th and (m − 1)-st ”frozen” iterations are close enough, check the
inequality

(5.7) g(t, Ym(t)) 6= 0, t ∈ (t̂, b].

If (5.7) is fulfilled, then the function

û(t) =

{
Xm(t) if t ∈

[
a, t̂
]
,

Ym(t) if t ∈
(
t̂, b
]
,

can be regarded as the m-th approximation of a solution u of problem (1.1)–(1.3) having a unique
imupulse point and the initial value u(a) ∈ Da. If (5.7) is not fulfilled, then another set Da should
be chosen.
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1. iteration 2. iteration 3. iteration 4. iteration

t1 0.377367167 0.377366182 0.377366354 0.377366355
z1 −8.437535639 −8.437471330 −8.437478608 −8.437478618
z2 −3.968767820 −3.968735665 −3.968739304 −3.968739309
λ1 −2.493949925 −2.493944384 −2.493945315 −2.493945318
λ2 −3.935836303 −3.935836303 −3.935817921 −3.935817931
η1 0.007600000 0.007600000 0.007600000 0.007600002
η2 −4.024145297 −4.024123042 −4.024126787 −4.024126798

Table 1. Approximate values of parameters for the first solution of problem (6.1)–(6.3).

6. Example

Let us apply the numerical-analytic approach described above to the system

(6.1)





u′

1 (t) = u2
2(t)−

t

5
u1(t) +

t3

100
−

t2

25
,

u′

2 (t) =
t2

10
u2(t) +

t

8
u1(t)−

21t3

800
+

t

16
+

1

5
, a.e. t ∈

[
0,

1

2

]
.

Equation (6.1) is subject to the state-dependent impulse conditions

(6.2)





u1(t+)− u1(t−) = 0.5,

u2(t+)− u2(t−) = −0.1, where

(
u1(t) +

1

2

)2

+ u2(t)−
1

25
= 0.

The impulsive problem (6.1)–(6.2) is investigated with the boundary condition

(6.3)

[
1
4 − 1

2

0 0

][
u1(0)

u2(0)

]
+

[
1
2 0
1
4 0

][
u1

(
1
2

)

u2

(
1
2

)
]
=

[
−0.1212

0.0019

]
.

We are interested in solutions of problem (6.1)–(6.3) according to Definition 1 with p = 1. Therefore
our solution is a left-continuous vector function u : [0, 1

2 ] → R
2, u = col(u1, u2), which has a unique

intersection point with a barrier G, where

(6.4) G =

{
(x1, x2) ∈ R

2 :

(
x1 +

1

2

)2

+ x2 −
1

25
= 0

}
.

Accordingly there exists a unique t1 ∈ (0, 1
2 ) satisfying

(6.5)

(
u1(t1) +

1

2

)2

+ u2(t1)−
1

25
= 0.

Further, the restrictions u|[0,t1], u|(t1,b] have continuous derivatives, u satisfies (6.1) for t ∈ [0, 1
2 ], t 6= t1,

and has a jump at t1. The size of the jump is given by the constant vector

γ = col(0.5,−0.1).

Finally, u fulfils (6.3).

We describe in detail the individual steps of our method.

Step 1. Application of Theorem 7.

For a = 0 and b = 1
2 assume that t1 ∈

(
0, 1

2

)
is a parameter and put (see Remark 11)

(6.6) D0 = Dt1− = D0,t1− = {(x1, x2) : −8.44 ≤ x1 ≤ 0.15, −4.0 ≤ x2 ≤ 0.15} .
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1. iteration 2. iteration 3. iteration 4. iteration

t1 0.181450919 0.181450845 0.181450845 0.181450846
z1 −0.492769263 −0.492769235 −0.492769235 −0.492769235
z2 0.003615368 0.003615383 0.003615383 0.003615383
λ1 −0.491120618 −0.491120590 −0.491120590 −0.491120590
λ2 0.039921157 0.039921156 0.039921156 0.039921156
η1 0.007600000 0.007600000 0.007600000 0.007600000
η2 0.010065508 0.010065542 0.010065542 0.010065542

Table 2. Approximate values of parameters for the second solution of problem (6.1)–(6.3).

0

0.38

0.5 -8.5

-2.49
-1.99

0

-4.03

-4

-3.97

-3.94

u2

x
y

t

u1

u2

Figure 1. The first solution (u1, u2) of problem (6.1)–(6.3).

To introduce the set Dx from (3.1) choose the vector

̺x = col (2.46, 0.2) .

Consequently the ̺x-neighbourhood Dx of the set Da,t1− is

Dx = {(x1, x2) : −10.9 ≤ x1 ≤ 2.61, −4.2 ≤ x2 ≤ 0.35} .

Let f = col(f1, f2), where

f1(t, x1, x2) = x2
2(t)−

t

5
x1(t) +

t3

100
−

t2

25
, f2(t, x1, x2) =

t2

10
x2(t) +

t

8
x1(t)−

21t3

800
+

t

16
+

1

5
,

and

Kx =

[
1
10

42
5

1
16

1
40

]
.
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0 0.38 0.5

-8.5

-2.49

-1.99

0

x1
y1

t

u1

0 0.38 0.5

-4.03

-4

-3.97

-3.94

u2

x2
y2

t

u2

Figure 2. Component u1 (left) and component u2 (right) of the first solution of problem
(6.1)–(6.3).

Direct computations show that f ∈ Lip(Kx, D
x) (see (2.3)). Since, according to (3.9),

Qx =
3

20
Kx =

[
3

200
63
50

3
320

3
800

]
,

the maximal (in modulus) eigenvalue of Qx satisfies the inequality in (3.9), in particular,

r(Qx) = 0.05714152202 < 1.

Moreover,

δ[0, 12 ],Dx(f) =
1

2

[
max

(t,x)∈[0, 12 ]×Dx

f(t, x)− min
(t,x)∈[0, 12 ]×Dx

f(t, x)

]
=

[
9.4955000
0.4790625

]
,

̺x =

[
2.46
0.2

]
≥

1

4
δ[0, 12 ],Dx(f) =

[
2.373875000
0.119765625

]
,

which yields (3.10). So, all conditions of Theorem 7 are fulfilled, and the sequence of parametrized
functions (3.8) for this example is convergent.

Step 2. Application of Theorem 8.

According to Remark 11 put

(6.7) D 1
2
= Dt1+ = Dt1+, 1

2
= {(y1, y2) : −7.94 ≤ y1 ≤ 0.7, −4.15 ≤ y2 ≤ 0.05} .

To introduce the set Dy from (3.2) choose the vector

̺y := col (2.63; 0.15) .

Consequently the ̺y-neighbourhood Dy of the set Dt1+, 1
2
is

Dy = {(y1, y2) : −10.57 ≤ y1 ≤ 3.33, −4.3 ≤ y2 ≤ 0.2} .

By analogy, computations give that f ∈ Lip(Ky, D
y), where

Ky =

[
1
10

43
5

1
16

1
40

]
,

Qy =
3

20
Ky =

[
3

200
129
100

3
320

3
800

]
, r(Qy) = 0.06137034234 < 1,
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0

0.38

0.5
t

-3
-2.49

1

u1

-6

-5

-4

-3

-2

-1

 0

u2

Figure 3. Barrier G : (x1+
1
2 )

2+x2−
1
25 = 0 and its intersection point (t1, u1(t1), u2(t1))

with the first solution of problem (6.1)–(6.3).

and

δ[0, 12 ],Dy (f) =
1

2

[
max

(t,y)∈[0, 12 ]×Dy

f(t, y)− min
(t,y)∈[0, 12 ]×Dy

f(t, y)

]
=

[
9.940000
0.490625

]
,

̺y =

[
2.63
0.15

]
≥

1

4
δ[0, 12 ],Dy (f) =

[
2.48500000
0.12265625

]
.

So, all conditions of Theorem 8 are fulfilled, and the sequence of functions (3.17) for this example is
convergent.

Step 3. Starting functions and first iterations

Consider parameters (t1, z, λ, η) ∈
(
0, 1

2

)
×D0 ×D0 ×D 1

2
, where

z = col(z1, z2), λ = col(λ1, λ2), η = col(η1, η2).

By (3.7) and (3.16), the starting functions x0 = col(x01, x02) and y0 = col(y01, y02) have the form

x01(t; t1, z1, λ1) =

(
1−

t

t1

)
z1 +

t

t1
λ1, t ∈ [0, t1],

x02(t; t1, z2, λ2) =

(
1−

t

t1

)
z2 +

t

t1
λ2, t ∈ [0, t1],

y01(t; t1, λ1, η1) =

(
1−

t− t1
1
2 − t1

)
(λ1 + 0.5) +

t− t1
1
2 − t1

η1, t ∈ [t1,
1

2
],

y02(t; t1, λ2, η2) =

(
1−

t− t1
1
2 − t1

)
(λ2 − 0.1) +

t− t1
1
2 − t1

η2, t ∈ [t1,
1

2
].
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The first iterations x1 = col(x11, x12) and y1 = col(y11, y12) can be found by symbolic computation on
the base of Maple 14 from (3.8) and (3.17), where m = 1, a = 0, b = 1

2 . Due to relatively complicated
expressions we present here only the function x11

x11(t; t1, z1, z2, λ1, λ2) = z1 +
1

400
t4 +

1

3

[(
−z2
t1

+
λ2

t1

)2

+
z1
5t1

−
λ1

t1
−

1

25

]
t3+

+
1

2

[
2z2

(
−z2
t1

+
λ2

t1

)
−

z1
5

]
t2 + z22t−

−
t

t1

[
1

400
t41 +

1

3

((
−z2
t1

+
λ2

t1

)2

+
z1
t1

−
λ1

5t1
−

1

25

)
t31+

+
1

2

(
2z2

(
−z2
t1

+
λ2

t1

)
−

z1
5

)
t21 + z22t1

]
+

t(λ1 − z1)

t1
, t ∈ [0, t1].

System (5.1) for m = 1 has the form

(6.8)





λ1 − z1 −

t1∫

0

f1(s;x11(s; t1, z1, z2, λ1, λ2), x12(s; t1, z1, z2, λ1, λ2)) ds = 0,

λ2 − z2 −

t1∫

0

f2(s;x11(s; t1, z1, z2, λ1, λ2), x12(s; t1, z1, z2, λ1, λ2)) ds = 0,

(η1 − (λ1 + 0.5))−

1
2∫

t1

f1(s; y11(s; t1, λ1, λ2, η1, η2), y12(s; t1, λ1, λ2, η1, η2)) ds = 0,

(η2 − (λ2 − 0.1))−

1
2∫

t1

f2(s; y11(s; t1, λ1, λ2, η1, η2), y12(s; t1, λ1, λ2, η1, η2)) ds = 0,

[
1
4 − 1

2

0 0

][
z1

z2

]
+

[
1
2 0
1
4 0

][
η1

η2

]
=

[
−0.1212

0.0019

]
,

(
λ1 +

1

2

)2

+ λ2 −
1

25
= 0.

We see that system (6.8) is well defined and it consists of seven algebraic equations with unknown variables
t1, z1, z2, λ1, λ2, η1, η2, which are searched in the domain (0, 1

2 )×Da ×Da ×Db, cf. (6.6) and (6.7). For
z1 ∈ [−8.44,−1], numerical computations give the roots which are written in the first column in Table 1.
Substituting these roots into

x11(t; t1, z1, z2, λ1, λ2), x12(t; t1, z1, z2, λ1, λ2), y11(t; t1, λ1, λ2, η1, η2), y12(t; t1, λ1, λ2, η1, η2),

we get the functions

X11(t) = −8.437535639 + 15.71336319 t+ 0.4974130077 t2 − 1.060804186 t3 + 0.0025 t4,
X12(t) = −3.968767820 + 0.200096725 t− 0.4960959775 t2 + 0.5239635733 t3 − 0.004380837 t4,
Y11(t) = −8.254109890 + 16.58414073 t+ 0.4271345180 t2 − 1.098402835 t3 + 0.0025 t4,
Y12(t) = −4.072409823 + 0.2001284496 t− 0.4783214004 t2 + 0.5443348006 t3 − 0.004179165 t4,

which are used in the next step for computation of second iterations.

Step 4. Second iterations

Assume now again that parameters (t1, z, λ, η) ∈
(
0, 1

2

)
× D0 × D0 × D 1

2
are arbitrary and using the

functions X1 = col(X11, X12) and Y1 = col(Y11, Y12) derive the second iterations x̂2 = col(x̂21, x̂22) and
ŷ2 = col(ŷ21, ŷ22) from (5.4) and (5.5), where a = 0, b = 1

2 . Then, according to (5.6), solve the system
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-2
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 0
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0

0.30
0.35

t
-0.65

-0.54

0.65

u1

-0.4

-0.2

 0

 0.2

 0.4

u2

Figure 4. Left: Barrier G : (x1 + 1
2 )

2 + x2 − 1
25 = 0 and its intersection point with

the second solution of problem (6.1)–(6.3). Right: Barrier G1 : x2
1 + x2

2 − t = 0 and its
intersection point with a solution of problem (6.1)–(6.3) with G1 and the jump
col(0.55,−0.15).

0

0.34

0.5
t

-1

-0.53

1

u1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

u2

0

0.31
0.35

t
-0.82

-0.54

-0.35

u1

-1

-0.5

 0

 0.5

 1

u2

Figure 5. Left: Barrier G2 : x2
1 + x2 − t = 0 and its intersection point with a so-

lution of problem (6.1)–(6.3) with G2 and the jump col(0.55,−0.15). Right: Barrier

G3 :
(
x1 +

1
2

)2
+ t2 − 1

10 = 0 and its intersection point with a solution of problem (6.1)–
(6.3) with G3 and the jump col(0.55,−0.15).

(6.9)





λ1 − z1 −

t1∫

0

f1(s; x̂21(s; t1, z1, z2, λ1, λ2), x̂22(s; t1, z1, z2, λ1, λ2)) ds = 0,

λ2 − z2 −

t1∫

0

f2(s; x̂21(s; t1, z1, z2, λ1, λ2), x̂22(s; t1, z1, z2, λ1, λ2)) ds = 0,

(η1 − (λ1 + 0.5))−

1
2∫

t1

f1(s; ŷ21(s; t1, λ1, λ2, η1, η2), ŷ22(s; t1, λ1, λ2, η1, η2)) ds = 0,

(η2 − (λ2 − 0.1))−

1
2∫

t1

f2(s; ŷ21(s; t1, λ1, λ2, η1, η2), ŷ22(s; t1, λ1, λ2, η1, η2)) ds = 0,

[
1
4 − 1

2

0 0

][
z1

z2

]
+

[
1
2 0
1
4 0

][
η1

η2

]
=

[
−0.1212

0.0019

]
,

(
λ1 +

1

2

)2

+ λ2 −
1

25
= 0.
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Note that system (6.9) for unknown values t1, z1, z2, λ1, λ2, η1, η2 has to be solved numerically and it is
considerably simpler than to solve (5.1) with m = 2. The roots of (6.9) are written in the second column
of Table 1. By putting these values into x̂2(t, t1, z, λ) and ŷ2(t, t1, λ, η), we get the functions

X21(t) =− 8.43747133 + 15.75100318 t+ 0.04961612083 t2 + 0.2650485212 t3

− 1.111749125 t4 + 0.1405463792 t5 − 0.08702093740 t6

+ 0.03984063677 t7 − 0.5738497521 · 10−3t8 + 0.213241475 · 10−5t9,

X22(t) =− 3.968735665 + 0.1999734728 t− 0.4960959774 t2 + 0.5224312056 t3

+ 0.01398407462 t4 − 0.0364420242 t5 + 0.878480955 · 10−2t6 − 0.6258338571 · 10−4t7,

Y21(t) =− 8.241206558 + 16.58434465 t+ 0.01040592499 t2 + 0.1930215965 t3

− 1.175096781 t4 + 0.1400768463 t5 − 0.08715111796 t6

+ 0.04289976329 t7 − 0.568716202 · 10−3t8 + 0.1940602001 · 10−5t9,

Y22(t) =− 4.072094611 + 0.2000007263 t− 0.4846318681 t2 + 0.5552588696 t3

+ 0.01178866493 t4 − 0.03702649888 t5 + 0.912433001 · 10−2t6 − 0.5970235357 · 10−4t7,

which are used for the computations of third iterations.

Step 5. Higher iterations

The higher iterations can be obtained by analogy. For m = 3 and m = 4 the corresponding values of
parameters are written in the third and fourth column in Table 1, respectively. If we derive the functions
X4 = col(X41(t), X42(t)) and Y4 = col(Y41(t), Y42(t)), the Maple computations show that inequality

(5.7) is fulfilled for m = 4. More precisely, for t̂ = 0.377366355 and for each t ∈ (t̂, 0.5], the value of
(Y41(t) + 1/2)2 + Y42(t) − 1/25 is strictly negative and belongs to the interval [−4,−1]. Consequently,
the function

û(t) =

{
X4(t) if t ∈

[
0, t̂
]
,

Y4(t) if t ∈
(
t̂, 1

2

]
,

is the fourth approximation of the first solution of problem (6.1)–(6.3). The graph of the solution is on
Figure 1 and its components are on Figure 2. Figure 3 shows barrier (6.4) and its intersection point with
the solution.

Note, that if we substitute the approximation û of the first solution into system (6.1), we obtain the
following residual:

max
t∈[0,t̂]

∣∣∣∣X
′

41 (t)−X2
42(t) +

t

5
X41(t)−

t3

100
+

t2

25

∣∣∣∣ = 1.1 · 10−7,

max
t∈[0,t̂]

∣∣∣∣X
′

42 (t)−
t2

10
X42(t)−

t

8
X41(t) +

21

800
t3 −

1

16
t−

1

5

∣∣∣∣ = 3.1 · 10−8,

max
t∈[t̂, 12 ]

∣∣∣∣Y
′

41 (t)− Y 2
42(t) +

t

5
Y41(t)−

t3

100
+

t2

25

∣∣∣∣ = 4.0 · 10−8,

max
t∈[t̂, 12 ]

∣∣∣∣Y
′

42 (t)−
t2

10
Y42(t)−

t

8
Y41(t) +

21

800
t3 −

1

16
t−

1

5

∣∣∣∣ = 6.6 · 10−9.

Step 6. Second solution

The Maple computations show that, for z1 ∈ [−1, 0], system (6.8) has other roots, which leads to the
second solution of problem (6.1)–(6.3). The approximate values of parameters and functions Xm, Ym,
m = 1, 2, 3, 4, can be found similarly as for the first solution. The values of parameters are written in
Table 2. We can check that inequality (5.7) is fulfilled for m = 4. More precisely, for t̂ = 0.1814508455
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and for each t ∈ (t̂, 0.5], the value of (Y41(t)+ 1/2)2 +Y42(t)− 1/25 is strictly positive and belongs to the
interval [0.16, 0.23]. Consequently, the function

û(t) =

{
X4(t) if t ∈

[
0, t̂
]
,

Y4(t) if t ∈
(
t̂, 1

2

]
,

is the fourth approximation of the second solution of problem (6.1)–(6.3). The left picture of Figure 4
shows barrier (6.4) and its intersection point with the second solution.

Note, that if we substitute the approximation û of the second solution into system (6.1), we obtain
the following residual:

max
t∈[0,t̂]

∣∣∣∣X
′

41 (t)−X2
42(t) +

t

5
X41(t)−

t3

100
+

t2

25

∣∣∣∣ = 3 · 10−11,

max
t∈[0,t̂]

∣∣∣∣X
′

42 (t)−
t2

10
X42(t)−

t

8
X41(t) +

21

800
t3 −

1

16
t−

1

5

∣∣∣∣ = 4 · 10−12,

max
t∈[t̂, 12 ]

∣∣∣∣Y
′

41 (t)− Y 2
42(t) +

t

5
Y41(t)−

t3

100
+

t2

25

∣∣∣∣ = 1 · 10−10,

max
t∈[t̂, 12 ]

∣∣∣∣Y
′

42 (t)−
t2

10
Y42(t)−

t

8
Y41(t) +

21

800
t3 −

1

16
t−

1

5

∣∣∣∣ = 1.15 · 10−10.

Step 7. Other barriers

Finally, we discuss problem (6.1)–(6.3) with the jump

γ = col(0.55,−0.15),

and with other barriers, namely

(6.10) G1 = {(x1, x2) ∈ R
2 : x2

1 + x2
2 − t = 0},

or

(6.11) G2 = {(x1, x2) ∈ R
2 : x2

1 + x2 − t = 0},

or

(6.12) G3 = {(x1, x2) ∈ R
2 : (x1 + 1/2)2 + t2 − 1/10 = 0}.

In all three cases, the third and fourth approximations of a solution are very close and inequality (5.7)
is fulfilled for m = 4. Barrier (6.10) and its intersection point with a solution of problem (6.1)–(6.3),
where G is replaced by G1 is on the right part of Figure 4. Barrier (6.11) and (6.12) and its intersection
point with a solution of problem (6.1)–(6.3), where G is replaced by G2 and G3 is on the left and right
part of Figure 4, respectively.
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