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1. NOTATION

[a, b] ⊂ R; J ⊂ R; M⊂ R2; meas J - the Lebesgue measure of J ;
C[a, b] - the Banach space of functions continuous on interval [a, b] with the norm ‖f‖C[a,b] =

max{|f(t)| : t ∈ [a, b]};
C1[a, b] - the Banach space of functions having continuous first derivatives on [a, b] with the

norm ‖f‖C1[a,b] = ‖f‖C[a,b] + ‖f ′‖C[a,b];
AC[a, b] - the set of absolutely continuous functions on [a, b];
ACloc(J) - the set of functions f ∈ AC [c, d] for each [c, d] ⊂ J ;
L[a, b] - the Banach space of functions Lebesgue integrable on [a, b] with the norm ‖f‖L[a,b] =∫ b

a
|f(t)|dt;
Lloc(J) - the set of functions f ∈ L [c, d] for each [c, d] ⊂ J ;
Car([a, b]×M) - the set of functions f : [a, b]×M→ R satisfying the Carathéodory conditions

on [a, b]×M, i.e.
f(·, x, y) : [a, b]→ R is measurable for all (x, y) ∈M;
f(t, ·, ·) : M→ R is continuous for a.e. t ∈ [a, b];
for each compact set K ⊂M there is a function mK ∈ L[a, b] such that

|f(t, x, y)| ≤ mK(t) for a.e. t ∈ [a, b] and all (x, y) ∈ K .

Car((a, b)×M) - the set of function f ∈ Car([c, d]×M) for each [c, d] ⊂ (a, b).

2. INTRODUCTION

We will study the existence of a solution of singular Dirichlet problem

(φ(u′))
′
+ f(t, u, u′) = 0 , u(0) = u(T ) = 0 , (2.1) {eq1}

where φ is an increasing odd homeomorphism with φ (R) = R, T ∈ (0,∞) and where f can have
singularities in all its variables.

In particular, we assume that A1,A2 ⊂ R are closed intervals containing 0 and
f ∈ Car((0, T )×D) , where D = (A1 \ {0})× (A2 \ {0}) ,
f may have time singularities at t = 0 and at t = T ,

f may have space singularities at x = 0 and at y = 0 .

(2.2) {f1}

Definition 2.1. A function f has a time singularity at t = 0 resp. t = T if there exists (x, y) ∈ D
such that ∫ ε

0

|f(t, x, y)|dt =∞ resp.

∫ T

T−ε
|f(t, x, y)|dt =∞

for any sufficiently small ε > 0.

Definition 2.2. A function f has a space singularity at x = 0 resp. y = 0 if there exists a set
J ⊂ [0, T ] with a positive Lebesgue measure such that the condition

lim sup
x→0

|f(t, x, y)| =∞ resp. lim sup
y→0

|f(t, x, y)| =∞

holds for a.e. t ∈ J and some y ∈ A2 resp. x ∈ A1.
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{def3}
Definition 2.3. A function u ∈ C1[0, T ] with φ(u′) ∈ AC[0, T ] is a solution of problem (2.1) if u
satisfies

(φ(u′(t)))
′
+ f(t, u(t), u′(t)) = 0 for a.e. t ∈ [0, T ] (2.3) {eq2}

and fulfils the boundary conditions u(0) = u(T ) = 0.

Now we bring out the definition of upper and lower function and auxiliary theorems, which we
will use in proofs.

Definition 2.4. A function σ ∈ C[0, T ] is called an upper function of problem (2.1) if there exists
a finite set Σ ⊂ (0, T ) such that

φ(σ′) ∈ ACloc([0, T ] \ Σ) , σ′(τ+) := lim
t→τ+

σ′(t) ∈ R ,

σ′(τ−) := lim
t→τ−

σ′(t) ∈ R for each τ ∈ Σ ,

(φ(σ′(t)))
′
+ g(t, σ(t), σ′(t)) ≤ 0 for a.e. t ∈ [0, T ] ,

σ(0) ≥ 0 , σ(T ) ≥ 0 , σ′(τ−) > σ′(τ+) for each τ ∈ Σ .
(2.4) {s1}

If the inequalities in (2.4) are reversed, then σ is called a lower function of problem (2.1).

Theorem 2.5 (Lower and upper functions method, [20]). Consider a problem {t25}

(φ(u′))′ + g(t, u, u′) = 0 , u(0) = u(T ) = 0 , (2.5) {eq3}

where g ∈ Car([0, T ] × R2). Let σ1 and σ2 be a lower function and an upper function of problem
(2.5) and σ1(t) ≤ σ2(t) for t ∈ [0, T ]. Assume that there exists a function m ∈ L[0, T ] such that

|g(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all x ∈ [σ1(t), σ2(t)] , y ∈ R .

Then problem (2.5) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ] .

A systematic study of the solvability of Dirichlet problems having both time and space singular-
ities was initiated by Taliaferro [25]. Now, we can find a large group of works which focused their
attention on the existence of w-solutions, that is on the existence of functions u satisfying (2.3)
and u(0) = u(T ) = 0 but do not belonging to C1[0, T ]. We can refer to the papers [1]–[4], [10]–[16].
There exists a less number of works which provide also conditions for the existence of solutions
in the sense of Definition 2.3, e.g. [5], [7], [9], [17]–[22], [25]–[27]. All the above works deal with
differential equations where the nonlinearity f(t, x, y) has a space singularity at x = 0 and/or time
singularities at t = 0, t = T . The first existence result for the Dirichlet problem where f(t, x, y) has
singularities at both variables x and y was reached by Staněk [21]. He assumed that f is strictly
positive and its behaviour on a right neighbourhood of the singular point x = 0 is controlled by a
function ω0(x) which is integrable. Then we say that f has a weak space singularity at x = 0.

In this paper we generalize and extend the existence results for the Dirichlet problem (2.1),
which has been studied in the papers [1], [10], [19], [20] and [22]. Our methods of proofs are similar
to those in [19] and [20]. In [19] we study the Dirichlet problem without φ-Laplacian. The function
f(t, x, y) can have a strong or weak singularity in x and a weak singularity in y. Note that f has a
strong space singularity at x = 0 if it is controlled near the point x = 0 by a nonintegrable function
ω0(x). Similarly for y = 0. Moreover f can have a sublinear growth in x, y or a linear growth with
small coefficients. In [20] we have the Dirichlet problem with φ-Laplacian, with singularities in t,
x (weak or strong) and in y (only weak). The function f can have a quadratic growth in variable
y and an arbitrary growth in x.
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In this paper we also solve the Dirichlet problem with φ-Laplacian. We modify an existence
principle of [20]. By means of this modified principle (Theorem 3.1) we prove Theorem 4.1 which
yields the existence of a solution of (2.1) with f(t, x, y), which can have time singularities in t = 0
and t = T and weak or strong singularities in x and y. In addition, the function f can have an
arbitrary growth in x and y.

Let us add some other recent results for singular Dirichlet problems. Extremal solutions for the
equation u′′ = p(t)(f(t, u, u′)− r(t)) have been investigated in [23]. Variational methods leadinag
to the existence of one or two positive solutions of problems with the equation −u′′ = λf(t, u) have
been used in [24] and for λ = 1 in [6]. By means of the fixed point theorem on cones the paper [8]
has got multiplicity results for problems with the equation u′′ + q(t)f(t, u) + e(t) = 0. Note that
conditions which guarantee the existence of infinitely many solutions can be found in [24].

3. EXISTENCE PRINCIPLE

We define a sequence of auxiliary regular problems:

(φ(u′))
′
+ fn(t, u, u′) = 0 , u(0) = u(T ) = 0 , (3.1) {eq4}

where fn ∈ Car([0, T ]× R2).

Theorem 3.1 (Existence principle). Assume (2.2). Let εn > 0, ηn > 0 for n ∈ N and assume {t31}
that {a311}

1.
fn(t, x, y) = f(t, x, y) for a.e. t ∈ ∆n and each (x, y) ∈ A1 ×A2 ,

|x| ≥ εn, |y| ≥ ηn, n ∈ N, where ∆n =

[
1

n
, T − 1

n

]
∩ [0, T ] ,

lim
n→∞

εn = 0 , lim
n→∞

ηn = 0 ;

{a312}
2. there exists a bounded set Ω ⊂ C1[0, T ] such that for each n ∈ N, problem (3.1) has a solution

un ∈ Ω and (un(t), u′n(t)) ∈ A1 ×A2 for t ∈ [0, T ].
Then there exist u ∈ C[0, T ] and a subsequence {uk} ⊂ {un} such that

lim
k→∞

uk(t) = u(t) uniformly on [0, T ] . (3.2) {lim1}

Assume in addition that {a313}
3. there exists a finite set S = {s1, · · · sζ} ⊂ (0, T ) such that on each interval [a, b] ⊂ (0, T ) \ S

the sequence {φ(u′k)} is equicontinuous.
Then u ∈ C1((0, T ) \ S) and

lim
k→∞

u′k(t) = u′(t) locally uniformly on (0, T ) \ S . (3.3) {lim2}

Assume moreover that {a314}
4. the set S has the form S = {s ∈ (0, T ) : u(s) = 0 or u′(s) = 0 or u′(s) does not exist }; {a315}
5. there exist η ∈

(
0, T2

)
, λ0, µ0, λ1, µ1, · · · , λζ+1, µζ+1 ∈ {−1, 1}, k0 ∈ N and ψ ∈ L[0, T ] such

that
λifk (t, uk(t), u′k(t)) ≥ ψ(t) for a.e. t ∈ (si − η, si) ∩ (0, T ) ,

µifk(t, uk(t), u′k(t)) ≥ ψ(t) for a.e. t ∈ (si, si + η) ∩ (0, T ) ,

for all i ∈ {0, · · · , ζ + 1} , k ∈ N , k ≥ k0 .
(3.4) {e34}

Here s0 = 0 and sζ+1 = T .
Then φ(u′) ∈ AC[0, T ] and u is a solution of (2.1) satisfying (u(t), u′(t)) ∈ A1 ×A2 for t ∈ [0, T ].
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Proof. By assumption 2, there exists r > 0 and a sequence {un} of solutions of (3.1) such that

‖un‖C1[0,T ] ≤ r for each n ∈ N . (3.5) {e35}

Therefore the sequence {un} is bounded in C[0, T ]. Moreover, the Lagrange mean value theorem
yields that the sequence {un} is equicontinuous on [0, T ]. By the Arzelà - Ascoli theorem we can
choose a subsequence {u`} such that

lim
`→∞

u`(t) = u(t) uniformly on [0, T ] , u ∈ C[0, T ] . (3.6) {lim3}

Now choose an arbitrary interval [a, b] ⊂ [0, T ] \ S. Then, by assumption 3, the sequence {φ(u′`)}
is equicontinuous on [a, b]. By (3.5) the sequence {u′`} is bounded in C[a, b]. Since φ is homeomor-
phism, the sequence {φ(u′`)} is bounded in C[a, b] too. The Arzelà - Ascoli theorem guarantees
that we can choose a subsequence {φ(uk)} ⊂ {φ(u`}) such that

lim
k→∞

φ(u′k(t)) = φ(u′(t)) uniformly on [a, b]

and consequently we get
lim
k→∞

u′k(t) = u′(t) uniformly on [a, b] .

By virtue of (3.6) the sequence {uk} satisfies (3.2). Using the diagonalization method we can choose
such sequence {uk} that

lim
k→∞

u′k(t) = u′(t) locally uniformly on (0, T ) \ S (3.7) {lim4}

holds, as well. Therefore u ∈ C1((0, T ) \ S). For k ∈ N it holds uk(0) = uk(T ) = 0 and, by (3.2), u
satisfies u(0) = u(T ) = 0.

Define sets
V = {t ∈ (0, T ) : f(t, ·, ·) : D → R is not continuous} ,

U = (0, T ) \ (S ∪ V ) .

We see that
meas(S ∪ V ) = 0 . (3.8) {e38}

Choose an arbitrary t ∈ U . Then there exists k0 ∈ N, such that for each k ∈ N, k ≥ k0:

t ∈ ∆k , |uk(t)| > εk , |u′k(t)| > ηk .

By assumption 1,
fk(t, uk(t), u′k(t)) = f(t, uk(t), u′k(t)) for a.e. t ∈ ∆k .

Therefore by (3.2), (3.7) and (3.8) we get

lim
k→∞

fk(t, uk(t), u′k(t)) = f(t, u(t), u′(t)) a.e. on [0, T ] . (3.9) {lim5}

Since uk is a solution of (3.1), we get

−(φ(u′k(t)))′ = fk(t, uk(t), u′k(t)) for a.e. t ∈ [0, T ] . (3.10) {e310}

Now choose an arbitrary interval [a, b] ⊂ (0, T ) \ S and integrate equation (3.10). We get

−φ(u′k(t)) + φ(u′k(a)) =

∫ t

a

fk(s, uk(s), u′k(s))ds for each t ∈ [a, b] . (3.11) {e311}
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Moreover there exists k∗ ∈ N such that for each k ∈ N, k ≥ k∗

|fk(t, uk(t), u′k(t))| ≤ m(t) for a.e. t ∈ [a, b] ,

where

m(t) = sup {|f(t, x, y)| : εk∗ ≤ |x| ≤ r; ηk∗ ≤ |y| ≤ r; x ∈ A1; y ∈ A2} ∈ L[a, b].

Since m ∈ L[a, b] we can apply the Lebesgue dominated convergence theorem on [a, b] and get
f(·, u(·), u′(·)) ∈ L[a, b]. Moreover

lim
k→∞

∫ b

a

fk(s, uk(s), u′k(s))ds =

∫ b

a

f(s, u(s), u′(s))ds . (3.12) {lim6}

It holds by (3.2), (3.7), (3.11) and (3.12)

−φ(u′(t)) + φ(u′(a)) =

∫ t

a

f(s, u(s), u′(s))ds for each t ∈ [a, b] . (3.13) {e313}

Since [a, b] is an arbitrary interval in (0, T ) \ S, we get that φ(u′) ∈ ACloc((0, T ) \ S), u satisfies
(2.3) and the boundary conditions u(0) = u(T ) = 0.

It remains to prove that φ(u′) ∈ AC[0, T ]. Choose i ∈ {0, · · · , ζ + 1} and denote (ci, di) =
(si − η, si) ∩ (0, T ). For k ∈ N and for a.e. t ∈ (ci, di) we denote

hk(t) = λifk(t, uk(t), u′k(t)) + |ψ(t)| , h(t) = λif(t, u(t), u′(t)) + |ψ(t)| .

Then hk ∈ L[ci, di] and according to (3.9) we have

lim
k→∞

hk(t) = h(t) for a.e. t ∈ [ci, di] .

Integrating (3.10) on [ci, di] we get

−φ(u′k(di)) + φ(u′k(ci)) =

∫ di

ci

fk(s, uk(s), u′k(s))ds .

Therefore, by (3.4) and (3.5)∫ di

ci

|hk(s)|ds =

∫ di

ci

hk(s)ds = λi

∫ di

ci

fk(s, uk(s), u′k(s))ds

+

∫ di

ci

|ψ(s)|ds ≤ |φ(u′k(di))|+ |φ(u′k(ci))|+
∫ di

ci

|ψ(s)|ds ≤ c ,

where c = 2φ(r) + ‖ψ‖L[0,T ]. The Fatou lemma implies that h ∈ L[ci, di] and f(·, u(·), u′(·)) ∈
L[ci, di]. If (ci, di) = (si, si + η) ∩ (0, T ) we argue similarly. Hence f(·, u(·), u′(·)) ∈ L[0, T ] and the
equality in (3.13) is fulfilled for each t ∈ [0, T ] and φ(u′) ∈ AC[0, T ]. Consequently u′ ∈ C[0, T ].
We have proved that u is a solution of (2.1). According to assumption 2 and (3.2), (3.3), we get
(u(t), u′(t)) ∈ A1 ×A2 for t ∈ [0, T ]. �

4. EXISTENCE THEOREM

Theorem 4.1 (Existence theorem). Let ν ∈
(
0, T2

)
, ε ∈

(
0, φ(ν)ν

)
, c1, c2 ∈ (ν,∞). Let assump-

{t41}
tion (2.2) hold with A1 = [0,∞), A2 = [−c1, c2]. Denote σ2(t) = min {c2t; c1(T − t)} for t ∈ [0, T ]
and assume that

f(t, σ2(t), σ′2(t)) = 0 for a.e. t ∈ [0, T ] , (4.1) {a411}
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0 ≤ f(t, x, y) for a.e. t ∈ [0, T ], ∀x ∈ (0, σ2(t)], y ∈ [−c1, c2] \ {0} , (4.2) {a412}

ε ≤ f(t, x, y) for a.e. t ∈ [0, T ], ∀x ∈ (0, σ2(t)], y ∈ [−ν, ν] \ {0} . (4.3) {a413}

Then problem (2.1) has solution u which fulfils

0 < u(t) ≤ σ2(t) ; −c1 ≤ u′(t) ≤ c2 for t ∈ (0, T ) . (4.4) {e44}

Proof. Step 1. Construction of an auxiliary problem.

Let n ∈ N, 1
n < ν, n > 2

T . Choose σ1(t) ≡ 0 on [0, T ]. Put εn = min
{
σ2
(
1
n

)
;σ2

(
T − 1

n

)}
,

ηn = 1
n . For x, y ∈ R we define

αn(x) =

{
x for εn ≤ x ,
εn for x < εn ,

β(y) =


c2 for y > c2 ,

y for − c1 ≤ y ≤ c2 ,
−c1 for y < −c1 ,

γ(y) =


ε for |y| ≤ ν ,
0 for y ≤ −c1 or y ≥ c2 ,
ε c2−yc2−ν for ν < y < c2 ,

ε c1+yc1−ν for − c1 < y < −ν .

For a.e. t ∈ [0, T ], ∀x, y ∈ R we define auxiliary functions

f̃n(t, x, y) =

{
γ(y) for t ∈

[
0, 1

n

)
∩
(
T − 1

n , T
]
,

f(t, αn(x), β(y)) for t ∈
[
1
n , T −

1
n

]
,

fn(t, x, y) =

{
f̃n(t, x, y) for |y| ≥ 1

n ,
n
2

(
f̃n
(
t, x, 1

n

) (
y + 1

n

)
− f̃n

(
t, x,− 1

n

) (
y − 1

n

))
for |y| < 1

n .

Function f ∈ Car((0, T )×D) and so fn ∈ Car([0, T ]×R2). We get a sequence of auxiliary problems

(φ(u′))′ + fn(t, u, u′) = 0 , u(0) = u(T ) = 0 , (4.5) {eq5}

n ∈ N, n > 2
T .

Step 2. Existence of a solution of problem (4.5).

We define

mn(t) = sup{fn(t, x, y) : x ∈ [0, σ2(t)] ; y ∈ R} for a.e. t ∈ [0, T ] .

Then mn ∈ L[0, T ] and |fn(t, x, y)| ≤ mn(t) for a.e. t ∈ [0, T ], ∀x ∈ [0, σ2(t)], ∀y ∈ R.
In order to use Theorem 2.5, we must prove that σ1, σ2 are lower and upper functions of problem

(4.5). We have
(φ(σ′1(t)))′ + fn(t, σ1(t), σ′1(t)) = fn(t, 0, 0)

=
n

2

[
f̃n

(
t, 0,

1

n

)
1

n
− f̃n

(
t, 0,− 1

n

)(
− 1

n

)]
=

1

2

[
f̃n

(
t, 0,

1

n

)
+ f̃n

(
t, 0,− 1

n

)]
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=

{
ε > 0 for t ∈

[
0, 1

n

)
∪
(
T − 1

n , T
]
,

1
2

[
f
(
t, εn,

1
n

)
+ f

(
t, εn,− 1

n

)]
≥ 0 for a.e. t ∈

[
1
n , T −

1
n

]
,

and so σ1 ≡ 0 is a lower function of problem (4.5). Further αn(σ2(t)) = σ2(t) for t ∈
[
1
n , T −

1
n

]
.

Since σ′2(t) = −c1 or c2, we have (φ(σ′2(t)))′ = 0 on [0, T ] and, by (4.1),

(φ(σ′2(t)))′ + fn(t, σ2(t), σ′2(t)) = fn(t, σ2(t), σ′2(t))

=

{
γ(σ′2(t)) = 0 for t ∈

[
0, 1

n

)
∪
(
T − 1

n , T
]
,

f(t, σ2(t), σ′2(t)) = 0 for a.e. t ∈
[
1
n , T −

1
n

]
.

We see that σ2(t) is an upper function of problem (4.5). Functions fn, σ1, σ2,mn satisfy assumptions
of Theorem 2.5 and so there exists a solution un of problem (4.5) satisfying 0 ≤ un(t) ≤ σ2(t) for
t ∈ [0, T ].

Step 3. Estimates of a solution of problem (4.5).

By (4.2) and the construction of fn we get (φ(u′n))′ ≤ 0 for a.e. t ∈ [0, T ] and so φ(u′n) is
nonincreasing. Since φ is increasing homeomorphism, the function u′n is nonincreasing. Therefore
u′n(0) ≤ c2 implies u′n(t) ≤ c2 for t ∈ [0, T ]. Further u′n(T ) ≥ −c1 and we get u′n(t) ≥ −c1 on [0, T ].
Hence

−c1 ≤ u′n(t) ≤ c2 for t ∈ [0, T ]. (4.6) {e46}

Let tn ∈ (0, T ) be a point of maximum of un. Then u′n(tn) = 0 and u′n(t) ≥ 0 for t ∈ [0, tn],
u′n(t) ≤ 0 for t ∈ [tn, T ].

1. Let tn − ν ≥ 0. Then there exists an ∈ [0, tn) such that u′n(t) ≤ ν for t ∈ [an, tn]. Assuming
an ≤ tn − ν and integrating (4.3), we get

ε(tn − t) ≤ φ(u′n(t)) for t ∈ [tn − ν, tn] . (4.7) {e47}

If an > tn − ν and u′n(t) > ν for t ∈ [0, an), then similarly

ε(tn − t) ≤ φ(u′n(t)) for t ∈ [an, tn] .

Since ε ∈
(

0, φ(ν)ν

)
, the inequalities φ(u′n(t)) > φ(ν) > εν ≥ ε(tn− t) hold for t ∈ [tn − ν, an],

and we get estimate (4.7) again. Integration of (4.7) over [tn − ν, tn] yields the estimate

un(tn) ≥
∫ ν

0

φ−1(εs)ds = ν0 > 0 . (4.8) {e48}

2. Let tn − ν ≤ 0. Then tn + ν ≤ T and there exists bn ∈ (tn, T ] such that −u′n(t) ≤ ν for
t ∈ [tn, bn]. Assuming bn ≥ tn + ν and integrating (4.3), we obtain

ε(t− tn) ≤ −φ(u′n(t)) for t ∈ [tn, tn + ν] . (4.9) {e49}

If bn < tn + ν and −u′n(t) > ν for t ∈ (bn, T ], then similarly

ε(t− tn) ≤ −φ(u′n(t)) for t ∈ [tn, bn] .

Since -φ(u′n(t)) > φ(ν) > εν ≥ ε(t − tn) for t ∈ [bn, tn + ν], we get inequality (4.9) again.
Integration of (4.9) over [tn, tn + ν] yields estimate (4.8).
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Using this estimate and the fact that u′n is nonincreasing on [0, T ] we conclude that

α∗n(t) ≤ un(t) ≤ σ2(t) for t ∈ [0, T ] ,

where

α∗n(t) =

{
ν0
T t for t ∈ [0, tn] ,
ν0
T (T − t) for t ∈ (tn, T ] .

Step 4. Existence of a solution of singular problem (2.1).

Consider the sequence of solutions {un}, n > 2
T . Define

Ω =
{
v ∈ C1[0, T ] : 0 ≤ v(t) ≤ σ2(t); −c1 ≤ v′(t) ≤ c2 on [0, T ]

}
.

We see that εn, ηn and fn fulfil condition 1 of Theorem 3.1. Since also condition 2 of Theorem 3.1
is valid, we can choose a subsequence {un} which is uniformly converging on [0, T ] to a function
u ∈ C[0, T ]. By estimates (4.6) and (4.8) we get

0 <
ν0
c2
≤ tn , tn ≤ T −

ν0
c1

< T for n ∈ N .

So, we can choose a subsequence {uk} in such way that lim
k→∞

tk = tu ∈ (0, T ) and

α∗u(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ] , (4.10) {e410}

where

α∗u(t) =

{
ν0
T t for t ∈ [0, tu] ,
ν0
T (T − t) for t ∈ (tu, T ] .

Put S = {tu} and choose [a, b] ⊂ (0, tu). Then there exists k0 ∈ N such that for k ≥ k0 we have

|tk − tu| ≤
tu − b

2
, [a, b] ⊂

(
1

k
, tk

)
,

uk(t) ≥ ν0a

t
=: m0 , φ(u′k(t)) ≥ ε

2
(tu − b) =: m1 , t ∈ [a, b] .

Thus, for a.e. t ∈ [a, b]
|fk(t, uk(t), u′k(t))| ≤ h(t) ∈ L[a, b] ,

where h(t) = sup{|f(t, x, y)| : m0 ≤ x ≤ σ2(t) ; φ−1(m1) ≤ y ≤ c2}. If we choose [a, b] ⊂ (tu, T ),
we argue similarly and obtain also a Lebesgue integrable majorant for fk, k ≥ k0, on [a, b]. So,
we have proved that condition 3 of Theorem 3.1 holds. Hence, we get u ∈ C1((0, T ) \ S) and
lim
k→∞

u′k(t) = u′(t) locally uniformly on (0, T ) \ S.

Since u′k is nonincreasing on [0, T ] for k ≥ k0, u′ is nonincreasing on (0, tu) and on (tu, T ).
Therefore, {

0 ≤ u′(t) ≤ c2 for t ∈ [0, tu) ,

−c1 ≤ u′(t) ≤ 0 for t ∈ (tu, T ] ,
(4.11) {e411}

and the limits lim
t→tu−

u′(t) and lim
t→tu+

u′(t) exist.

1. Let lim
t→tu−

u′(t) = 0. Assume that there exists t∗ ∈ (0, tu) such that u′(t∗) = 0. Then u′(t) = 0

for t ∈ [t∗, tu]. On the other hand, by (4.3), we get

0 < φ−1(ε(tu − t)) ≤ u′(t) for t ∈ ( t∗, tu ] ,

a contradiction. Similarly for lim
t→tu+

u′(t) = 0.

8



2. Let lim
t→tu−

u′(t) > 0. Since u′ is nonincreasing, we have u′(t) > 0 for t ∈ (0, tu]. Similarly for

lim
t→tu+

u′(t) < 0.

Hence, tu is the unique point in [0, T ] where either u′(tu) = 0 or u′(tu) does not exist. By
estimate (4.10), u is positive in (0, T ). Therefore S has the form as in condition 4 of Theorem
3.1. Finally , by (4.2) and the definition of fk, we have fk(t, uk(t), u′k(t)) ≥ 0 for a.e. t ∈ [0, T ],
k ∈ N, k ≥ k0. Hence, assumption 5 of Theorem 3.1 is fulfiled and u is a solution of problem (2.1).
Estimates (4.4) follow from (4.10) and (4.11). �

Example 4.2. Assume that α1, α2, β1, β2 ∈ (0,∞), and functions hi ∈ Lloc (0,∞) are nonnega-
tive, i = 1, 2, 3, 4. Let us put

f(t, x, y) = (1− y2)

(
1

2t(T − t)
+ h1(t)xα1

+h2(t)|y|α2 + h3(t)
1

xβ1
+ h4(t)

1

|y|β2

) (4.12) {e412}

for a.e. t ∈ [0, T ] and all x ∈ (0,∞), y ∈ R \ {0}. Then function f fulfils the assumptions of
Theorem 4.1 with c1 = c2 = 1, ν = min

{
T
4 ; 1

2

}
, A1 = [0,∞) and A2 = [−1, 1].

Really, we see that f ∈ Car((0, T ) × D), where D = (0,∞) × ([−1, 1] \ {0}) and that f(t, x, y)
has singularities at t = 0, t = T , x = 0, y = 0. Consequently (2.2) holds. If we put σ2(t) =
min {t; (T − t)} for t ∈ [0, T ] we get |σ′2(t)| = 1 for a.e. t ∈ [0, T ] and (4.1), (4.2) are valid. Further,
for a.e. t ∈ [0, T ] and all x ∈ (0, σ2(t)), |y| ∈ (0, ν] we have

f(t, x, y) ≥ 1− ν2

2t(T − t)
≥ 2(1− ν2)

T 2
.

Therefore if we choose a positive ε < min
{

2(1−ν2)
T 2 ; φ(ν)ν

}
we see that (4.3) holds as well. Theorem

4.1 guarantees the existence of a solution u of problem (2.1) with f given by (4.12). Moreover u
fulfils 0 < u(t) ≤ σ2(t), −1 ≤ u′(t) ≤ 1 for t ∈ (0, T ).
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20. I. Rach̊unková and J. Stryja, “Dirichlet problem with φ-Laplacian and mixed singularities,” Nonlinear
Oscillations 11(2008), 81-95.
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