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1. INTRODUCTION, NOTATION

Let X be the Banach space of C°-functions on J = [0, 1] with the sup norm |- ||. Denote by D
the set of all operators K: X — X which are continuous and bounded (i.e. K(Q) is bounded for
any bounded Q C X).

In the paper we study boundary value problems at resonance for the second order functional
differential equation

x"(t) = f(t, x(t), Fx)(1), x'(t), (Hx')(?)), te], )

where f: J x R* - R and F, H € D. We will consider both the classical and the Carathéodory
case, i.e. f is supposed to be continuous on J X R* and a solution of (1) is found in C*(J) or
f satisfies the local Carathéodory conditions on J x R* (f € Car(J x R*) for short) and a
solution of (1) is a function x € AC!(J) (having the absolutely continuous first derivative on J)
satisfying (1) a.e. on J.

The special case of (1) is the differential equation

x" = h(t, x, x'), @

where & € C°(J x R?) or h e Car(J x R?).
We show sufficient conditions for the existence of solutions of (1) satisfying one of the
following boundary conditions

x'(0) =0, x'(1) =0, (Neumann conditions), 3
or
x(0) = x(1), x'(0) = x'(1), (periodic conditions). 4)

We prove the existence results provided f satisfies only sign conditions. Let us note that the
existence results with strict sign conditions for the periodic problem were proved also in [1], but
there h was continuous. Here, moreover, under an appropriate combination of sign conditions
we get multiplicity results as well.

This paper is a continuation of the authors paper [2] and it has been motivated by the recent
paper [3], in which, by the topologial transversality method (see, e.g. [4]) the author considered
the differential equation (g): x" = q(¢, x, x'), g € C%J x R?) together with the Neumann
conditions. His existence result is formulated only by sign conditions in the following theorem.

T Supported by grant no. 201/93/2311 of the Grant Agency of Czech Republic.
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Tueorem [3, theorem 5.1]. Let there exist M,L;eR (j=1,...,4) such that M =0,
Ly>L,=2M, -M=1L,>L,and

(i) xq(t, x,0) > 0 for |x| > M,

(ii) q(¢, x,y) does not change its sign for (¢, x,y) e J X [-M,M] x [L,,L,] and for
(t,x,y) e J X [-M, M] x [Ls, L,].
Then BVP (g), (3) has at least one solution in C%(J).

We shall generalize this result in the following directions:

(a) sign condition (i) is replaced by a weaker sign condition (24);

(b) “‘intervals’’ in sign condition (ii) for the variable y are replaced by ‘“points’’ (see (25));

(c) there are considered the Carathéodory solutions;

(d) nonlinearity f depends also on the continuous bounded operators which are applicated to
a solution and its derivative.

Moreover, our existence results include also the case of sign condition (i) with the inverse sign
of inequality (see theorems 2, 4 and corollaries 2, 4).

The proofs of our results are based on the Mawhin continuation theorem. (See, e.g. [5]
or [6].)

Let Y, Z be real Banach spaces, L: dom L C Y — Z a Fredholm map of index zero and
P:Y > Y, O:Z — Z continuous projectors such that ImP = Ker L, KerQ = Im L and
Y=KerL ®KerP, Z=ImL ® Im Q. Denote by Lp:Im L — Ker PN dom L the general-
ized inverse (to L) and J: Im Q — Ker L an isomorphism of Im Q onto Ker L.

THEOREM (continuation theorem [5, p. 40]). Let Q C Y be an open bounded set and N: Y — Z
be a continuous operator which is L-compact on Q (i.e. ON: Q = Z and Kp(/ - QN: Q —» Y
are compact). Assume
(I) for each A € (0, 1), every solution x of Lx = ANx is such that x & 9Q,
(II) ONx # 0 for each x € Ker L N 9Q2,
(III) the Brouwer degree d[§ON, Q NKer L, 0] # 0.
Then the operator equation Lx = Nx has at least one solution in dom L N Q.

Notation. For each constants r,,r, € R, r; <r,, operator F € 3, nonnegative Lebesgue
integrable (on J) function ¢ and bounded set Q C X we set

p(F, Q)

sup(||Fx| | x € Q
(r,nx =IxlxeX, rp<x(t)<r,forteldi
(ri, 13 F)y = (e, W) [ (u, w) € R2, Jul < p(F, (g, ro)x))s
(1.1 F)g = u, 0, W) | O, u, v, Wy e R, ry < x < 1y, lul < p(F, (ry, ra)x)
and foreach a,b, Ly, L, e R,a<b, L, <0< L,,and F, H € D we set
(@,b,Ly, Ly; F, H), = {(u, ) | (u, w) € R, |u| < p(F, (a, bly), || = p(H, (Ly, Ly)x)}
@b, L,Ly; F,H)y = {(x,u,w) | (x,u, w) e R}, a < x < b, |u| < p(F, (a, b)),
lwl < p(H, (Ly, Lx)}-



Functional boundary value problems 273

2. EXISTENCE RESULTS FOR BOUNDED NONLINEARITY f

First we shall prove the existence of solutions for BVP (1), (3) or BVP (1), (4) (in what follows
only (1), (i), i € {3, 4], for short) with f e Car(J x R*) bounded by a Lebesgue integrable
function ¢. We shall assume that f fulfils:

(A,) f € Car(J x R*) and there exist r,, r, € R and ¢ € L,(J) such that r; < r, and

S, ri,u,0,w) <0< f(£,ry, u,0,w)
for a.e. t € J and for each (u, w) € (r|, r; F),,
| £t x, u, 0, w)| < 0(t)

for a.e. t € J and for each (x, u, v, w) € (ry, ry; F)s.
To obtain a priori estimates for BVP (1), (i), i e {3,4}, we define the functions
£, € Car(J x R*) for each n € N in the following way

( xX—r,—1/n

t,ry, 4,0, w + forx>r, + 1/n
f( 2 ) x_r2+1 2

S, ry,a, v, w) + pry, x, u, v, w forr,<x=r,+ 1l/n

f,,(t,x,u,v,w)=< f(t,x,ﬂ,U,W) forrlsxsrz (5)
S, ry, a4, v,w) — plry, x, u, v, w) forr, - 1/n<x<r
_ x—r +1/n
Lf(t’rl9u!0,w)+ﬁ forx<r1—1/n,
where
p"(rj’x’ u, v, W) = (f(t’ Tjs 4,0, W) _f(t’ Tjs i, v, wx — rj)n’ .] =12,
and

. {u for |u| < p(F, (ry, rx)

P(F, (ry, ry)x) signu for [u| > p(F, (ry, r)x).
Consider the differential equation
x"(t) = Afult, x(2), (Fx)(#), x'(t), (Hx')(#)), A €[0,1]. (6:)n

LeMMA 1 (a priori estimates). Let f satisfy (A,) and let BVP (6,),,, (i) have a solution « for some
A€ (0,1], i€ 3,4} and n € N. Then the estimates

1
rn—1n<u@t)y=<r,+ 1/n, lu'(t)| = j o(s) ds @)
0

are fulfilled for each 7 € J.

Proof. Assume r, + 1/n < max{u(t) | t € J} = u({,) for a 1, € J. Then u'(ty) = 0 which is
clear for ¢, € (0, 1) and follows from boundary conditions (3) or (4) for #, € {0, 1}. With a little



274 I. RACHUNKOVA and S. STANEK

work one can show that there is an interval («, ) C J such that w(t) > r, + 1/nfor t € (o, )
and

B
S u"(s)ds < 0. 8)

o

On the other hand, by (A,) and (5), we get

8 8

g u"(s)ds = 4 S Juls, u(s), (Fu)(s), u'(s), (Hu')(s)) ds

us) —ry — 1/n
u(s) —r, + 1

8
=2 g [f(s, ry, (Fu)(s), 0, (Hu')s)) +

«

}®>m

which contradicts (8). Similarly, for min{u(¢) | f € J} < r; — 1/n. Thus, we have proved the
first estimate in (7).

By (A,), (5) and the first estimate in (7), we can verify | f,(¢, u(t), (Fu)(t), u'(t), (Hu')))| <
@) for a.e. t € J. Since u'(t,) = 0 for a ¢, € J, integrating (6,), (with x = u) from ¢, to ¢, we
obtain the second estimate in (7). W

For using the Continuation Theorem (CT for short), we denote by Y = C'(J), Z = L,(J) the
Banach spaces with the usual norms and set for n € N, i € {3, 4}

L,': dom L,‘ - Z, X X"s
N:Y - Z,  x = [0, x(4), FX)(), X' (), (HX)(),

where dom L; = {x | x € AC!(J), x satisfies boundary conditions (i)} C Y. Then BVP (6,),, (i)
can be written in the operator form

L;(x) = AN(x), A el0,1L

LEmMa 2. L; is a Fredholm map of index 0 and N is L;-compact on Q for any open bounded
set @ C Y and each i € {3, 4].

Proof. Fix i€ {3,4]. Evidently, KerL;, = {x|xe€Y, x=k, keR}, ImL,={ylyelZ,
foy(s)ds = 0} is closed in Z and dim Ker L; = codim Im Z; = 1. Hence, L, is a Fredholm map
of index 0. Consider the continuous projectors

P:YYX, x = x{0},

i

Q-7 27, y»—»j ¥(s) ds.
0

Then the generalized inverse (to L;) K;p: Im L; ~ Ker P N dom L; has the form

t (s
Kip(») =& Sﬂy(r) drds,

0

1 H

Kp(y) = -—tg jsy(r) drds + S Ssy(t) dr ds.
1] 0

0 0
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Thus
ON:Y —» Z, § Ja(s, x(s5), (Fx)(s), x'(s5), (Hx')(s)) ds, 9
Kip(I — QIN:Y — Y, j g Ja(z, X(7), (FX)(7), X'(7), (Hx')(7)) dr ds
2
_E j‘ fn(ss X(S), (FX)(S), XI(S), (Hxl)(s)) dS,
and
1 -
Kl - QN:Y ~ ¥, xm X j 145, X6), (FX)(S), x'(5), (Hx')(s)) ds
0

E E ST, X(7), (Fx)(D), X'(7), (Hx')(7)) d7 ds

5 E Ja(T, (D), (Fx)(7), x'(7), (Hx')(7)) dT ds.

0Jo

Since F,He D and (cf. (5), (A) |ft,x,u,v,w)| < o) + 1 for a.e. teJ and each
(x, u,v,w) € R*, ON and K;p(I — Q)N (i € (3, 4]) are continuous by the Lebesgue theorem
and, moreover, QN(Q), K;p(I — QIN(Q) (i € {3, 4)) are relatively compact for any open
bounded set Q C Y. Hence, N is L;-compact on Q for any open bounded set Q C Y and each
ief3,4. 1

LemMa 3. Let f satisfy (A;). Then for each n € N and i € {3, 4}, BVP (6,),,, (i) has a solution
u satisfying (7).

Proof. Fix i € {3,4} and n € N. Let P, Q and K be as in the proof of lemma 2 and set
2 2 !
Q=ixlxeY, n —;<x(t)<r2 + x| < | o(s)ds + 1 for t € J¢.
0

By lemma 2, N is L;-compact on Q and then lemma 1 implies that assumption (I) of CT is
fulfilled. Suppose that x € Ker L; N dQ. Then x = r; — 2/nor x = r, + 2/n and, by (A)), (5)
and (9),

0
. -
E [f(s, r, (F(rl — —>>(s) 0, (H(0))(s)> i ] ds < 0, (10)
0
(2 2) = Laor e 2 ((+3) )
ONlrp+=) =1 fuls,rn + =, | Flr, + =) }(s), 0, (H(O))(s) ) ds
n 0 n n
. -
S [f(s, ry, <F<r2 + ))(s) 0, (H(O))(s)) ! ]ds > 0. 1)
o n+2
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Hence, condition (II) of CT is realized. Let § be an isomorphism from ImQ = {y |y € Z,
y=k, keR} onto KerL, = {x|xeY, x =k, k € R}]. Inequalities (10) and (11) imply
d[4ON, Q NKer L;, 0] # 0 and the last condition (IIT) of CT is fulfilled. The assertion of our
lemma follows from CT and lemma 1. ®

TuHEOREM 1. Let f satisfy (A,;) and 7 € {3, 4}. Then BVP (1), (i) has a solution u fulfilling

1
rn<ul®)<r,, lu'(H] < j os)ds  forteld (12)
)

Proof. Fix i € {3, 4}. For n € N let us consider the sequence of BVPs {(6,),, (1)}. By lemma
3, we get an appropriate sequence of solutions {u,} for which (7) holds (with ¥ = u,). Then, by
(5) and (7),

lug()] = | fult, un(£), Fud(@0), uit), (Hu )| < o(f)

for a.e. re€J and each » e N. Further, by the Arzela-Ascoli theorem, there exists a
subsequence {u; } of {u,} converging in CY(J) to a u. The function u satisfies (12) and, hence,
(cf. (5)) it is a solution of BVP (1), (i). W

COROLLARY 1. Let 2 € Car(J x R?) and let there exist 7,, r, € Rand ¢ € L,(J) such thatr, < r,
and

h(t,r,0)<0=<ht,r,,0), [n(t, x, »)| < o)
for a.e. t € J and each (x, y) € [r,, 2] X R. Then for each i € {3, 4] BVP (2), (i) has a solution
u satisfying (12}

Now, we shall prove analogous results as above under the inequalities which are inverse to
that in (A|). We shall assume:
(A,) fe C%J x R* and there are r,,r,, K € Rsuch that r, < r,, K > 0 and

Jit,x,u,0,w) =20 for (t,x,u,wyeJ x|, - K,nlx,—K,r, + K; F),,
J, x,u,0,w) <0 for (t,x,u,wyeJxX|r,rn+ KX, -~ K,n+ K;F);,
|ft,x,u,v,w) <K  for (t,x,u,v,wyeJx (r, — K,r, + K; F),.
Assume f e C°J x R*) and define f* € C%J x R*) by
S, x,u, v, w) = f(4 X, d, v, w), (13)
where
ry + K forx>r,+K
X={x forr,-K=<=x=nrn+KkK
r—-K forx<r, — K,
u for lu| < p(F; (ry — K, ry + K)x)
{p(F; (r; — K, r, + K)y)signu for |u| > p(F; (r, — K, r; + K)y).

1
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Let ¢ be a positive constant, &€ < r, — r;, ¢ € [0, 1) and consider the differential equation

K(ry — x(t) — 8))

—_— ), A 0,1

Il + O] + ¢ 0.1l
(14)\)c

LEMMa 4 (a priori estimates). Let f satisfy (A,) and let BVP (14,),, (i) have a solution for some
Ae(0,1], cel0,1)and i € {3, 4]. Then the estimates

rn—-K<u@t)<r+K, lw@)| <K forted 15)

x"(t) = l(Cf*(t, x(t), (Fx)(@), x'(1), (Hx')(1)) + (1 — ©)

hold and
r <ua)<r, (16)
for an a, € J.

Proof. Assume r, < min{u(?) | t € J} = u(t,) for a t; € J. Then u'(fy) = 0 (see the first part
of the proof of lemma 1) and u"(t,) = 0. Since

K — —
u"(te) = A(cf*(to, ), (G, O, GG + (1 = O P f;)
K(ry — u(ty) — ¢)

Tl Tut)] + e

=< Al

>

we have a contradiction. Assume r, = max{u(t) | t € J} = u(t,)) for a t; € J. Then u'(¢;) = 0,
u"(¢,) = 0 and since

K(r, — -
u(ty) = A(cf*(rl, u(t), Fu)(ty), 0, (Hu')(t) + (1 — ©) |r§?+ 13331 fg)
1
K(ry — u(t)) — €)

Nl + Tat)] + ¢

= A1 -~

b

we have a contradiction.

Hence, there exists an a, € J such that u(a,) € (ry, ), s0, (16) is valid. Since u satisfies
boundary conditions (i), there exists a b € J such that u'(b) = 0. Integrating (14,). (withx = u)
from b to ¢t and using the inequality

K(r, — u@) - 8)> < K fortelJ

(Cf*(t, u(t), (Fu)(t), v'(t), (Hu')(@)) + (1 — C)m
2

we get

4
lu'(@)| = j u"(s)ds) <K forteld.
b

Then

u(t) = u(a,) + g u'()ds < ry + K|
u(t) = u(a,) + S u's)ds>r, - K

ay

on J; hence, (15) is proved. &
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LEMMA 5. Let f satisfy (A,). Then for each i € {3, 4} and ¢ € [0, 1) BVP (14,),., (i) has a solution
u satisfying (15) and (16) with an a, € J.

Proof. Fix i € {3,4} and ¢ € {0, 1). Let L;, P, Q and K;p be as in the proof of lemma 2 with
Y = C¥(J), Z = C°J). Set
Kir, —u(") - &)

N:Y = Z,  x»- of*(,x(), Fx)(), x'C), HxY ) + (1 =) ol + e + &

and
Q={|xeY,rn-K<x(t)y<nrn+K,|x{) <Kfortell.

Let us write problem (14,).., (i) in the form L;x = AN_x and apply CT. By the same considera-
tion as in the proof of lemma 2 we get that N, is L;~compact on Q. From lemma 4 it follows
that assumption (I) of CT is fulfilled. Assume that x € Ker L; N dQ. Then x = r, — K or
x =ry + K and, by (A,), (13) and (9)

1
ON(r; - K) = S [Cf (s,r, — K, (F(ry — K)K$), 0, (H(0))(5))
0
K(ry—r+K-—¢
+(1—c)|r2|+|r1—K|+e]ds>o’ a7

1

ON(r, + K) = S [Cf (5,1, + K, (F(ry + K))5), 0, (H(0))(s))

0
1 -0 K(—K ~ ¢
Il + |+ K|+

+( }ds<0. (18)

Hence, condition (II) of CT is realized. Moreover, inequalities (17) and (18) imply
d[JON., Q N Ker L;, 0] # 0 and the last condition (I1II) of CT is fulfilled. By CT, there exists
a solution u of BVP (14,)., (i). By lemma 4, u satisfies (15) and (16) withanag, e J. M

THEOREM 2. Let f satisfy (A,) and i € {3, 4}. Then BVP (1), (i) has a solution « satisfying

n-K=<u@t)=sr,+K, lw'@) =K forteld (19)
and
rn=ua,)=<sr 20)
for an a, € J.

Proof. Fix i € {3, 4]. Let {c,} C (0, 1) be a convergent sequence lim ¢, = 1. By lemma 5,

7o

there exists a solution u, of BVP (14,). , (i) for each n € N satisfying (15) (with 4 = u,) and
r < uplay) < r,, neN

for an a, € J. Evidently, by the Arzela~Ascoli theorem and the Bolzano-Weierstrass theorem,
we can assume that lim ¢, = ¢ in C'(J) and lim a, = a. Then u is a solution of BVP (1), (i)
n—o

n—+o

satisfying (19) and (20) with g, = 2. B



Functional boundary value problems 279

Note. Clearly, if f satisfy (A,) with r, = r,, the constant function u(t) = r, is a solution of (1),
(@), i € {3, 4.
COROLLARY 2. Let & € C°(J x R?) and there exist r;, r,, K € R such that r, < r,, K > 0 and

h(t,x,0) =0 for (t,x)e Jx [r, — K, ],

h(t,x,00 <0 for (¢, x) € J X [y, r, + K],

lh(t, x, )| <K fort,x,y)eJx[r, - K, r, + K1 X R.
Then for each i € {3, 4] BVP (2), (i) has a solution « satisfying (19) and (20) with an a, € J.
3. EXISTENCE RESULTS FOR GENERALLY UNBOUNDED NONLINEARITY f,
MAIN RESULTS

In this section we shall assume that f satisfies some of the following assumptions:
(H,) fe Car(J x R*, there exist r,,r,,L,,L, € R and u,v € {—1,1} such that r, < r,,
L, =0=<L,and

fr,u, 00wy <0=<f(t,r,,u0,w
for a.e. t € J and each (u, wye (ry,1,, L, Ly; F, H),,
Vf(t,x, u9L1’w) =0 Sﬂf(t,X, u,Lz,W)

for a.e. r € J and each (x,u,w)ye (r;,r,, L, L,; F, H),.
(H,) fe C%J x R*, there exist r,,r,,L,,L, € R and p,v e {—1,1} such that r, <r,,
L, =0=<1[L,and

S, x,u,0,w) =0 for(t,x,u,wyedx[ri+L,,rIx@ry+L,rn+ L,,L,L,;F, H),
S, x,u,0,w) <0 for (t,x,u,wyeJ X [ry,ry + L) X (ry + L,,ry + Ly, L,L,; F,H),,
Vi, x,u, L, wy <0 =< uf(t,x,u,L,,w)

for (¢, x,u,wyeJxX(ri+ L,,rs +L,,L,,L,;F, H)s.

THEOREM 3. Let f satisfy (H,) and i € {3, 4}. Then BVP (1), (i) has a solution u# with

rn<ult)=r, Li=su@)=<L, forte J. 1)

Proof. Define the function f_,w € Car(J X R*) by f in the following way

_LZ
t9 ’ )L > W + - . f >L
S, x,u, Ly, w) ”U—L2+l or v 2
Sty X, u, 0, w) = { f(8, X, u, v, W) forL, <v=<1L, (22)
_ - L,
f(t)x,u)Llaw)+v forv<L1,

Ll—l)+1
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where
. {w for |w| < p(H; (L, Ly)y)
PH; Ly, Ly)y)signw  for [w| > p(H; (Ly, Ly)y).

Then f,, fulfils assumption (A,) with @(f) = 1 + supf|f(t.x, u, v, W) | Cx, u, v, w) € R,
rn=xsrn, |lul <pF;(r,n)x), LisvsL,, |wl < pH;(L;,Ly)x)} So, by theorem 1,
BVP (23), (i) (/ = 3, 4) has a solution u satisfying (12), where

x"(t) = [, (6, x(@0), F)(@), X' (¢), (Hx')?)), tel. (23)
Let us prove that u fulfils the second inequality in (21). Assume, on the contrary,
max{u'(¢t) | t € J} = u'(ty) > L,. Boundary conditions (3) (resp. (4)) imply ¢, € (0, 1) (resp.
tye J). Let ty € (0, 1). Then thereis a d > Osuch that L, < u'(f) < u'(t,) for each ¢ belonging
to the interval with the end points ¢, and ¢, + ¢d and, consequently,

(*tg+pd
\ w(s)ds = u'(fy + ud) — u'(ty) < 0.

Jig

On the other hand {(cf. (22)),

fytud to+pd _
S u"(s)ds = g Joo(s, uls), Fu)(s), u'(s), (Hu')(s)) ds

1 Jlo

Wis) — L,
M ZFe Vo,
76 — L, + 1] >

a contradiction. Let #, € {0, 1}. Then necessarily u satisfies boundary conditions (4). Set
7, = +(1 — signy). Since u'(t,) = max{u'(t)|teJ}, there is an &>0 such that
u'(t,) =z u'(t) > L, on the interval with the end points 7, and 7, + ue. Then

P tg+ud
= U X [ﬂf(S, u(s), (Fu)(s), L,, (Hu')(s)) +

o

7“+u€
S u"($)ds = uw'(z, + ue) — u'(zr,) = 0.

T

On the other hand

~

Tyt pE * Ty HHE

} u'(s)yds = u j u(s) — L } ds > 0,

{uf(s, u(s), (Fu)(s), Ly, (Hu'}(s)) + v L+l

T

a contradiction. Hence, u'{(t) < L, on J.
Similarly, #'(#) = L, on J. Hence, (cf. (12)) u satisfies (21) and then (cf. (22)) u is a solution
of BVP (1), (i), i€ {3,4]. W

CoroLLARY 3. Let h € Car(J X R%) and let there exist r,,r,,L,, L, € R such that r; < r,,
L,i=0=xL,,
e, r, 0 =0=< ht,r,,0) fora.e. telJ (24)
and
h(t, x, Ly), h{t, x, L,) do not change their signs for
a.e. € J and each x € {ry, r,].

Then for each i € {3, 4] BVP (2), (i) has a solution u satisfying (21).

25
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THEOREM 4. Let f satisfy (H,) and i € {3, 4}. Then BVP (1), (i) has a solution u satisfying

rn+Li=ult)ysr,+1L,, Lisut)sL, for t € J. (26)

Proof. Define the function f¥% € C%(J x R*) by f as follows

f(f,f,ﬁ,Lz,W)+ul)f—zzl'—i—l forv>1L,
*{tx,u,v,w)y = { f(t, %, @, v, w) forLi=sv=<lL, 27
S % i Ly, W) + VLT”—_”ULh for v < L,,
where
rn+L, forx>r, + L,
X=1{x forn+Lisx=<r+lL,
r+ L, forx<r + L,
N u for (u| < p(F; (r; + Ly, 1y + Ly)x)
4= {p(F; (ry + Ly, ry + Ly)y)signu  for |u| > p(F; (r; + Ly, ry + Ly)y),
and

_ {w for |wl = p(H; (L, Ly)x)
w =
PUH; (L, Ly)y) sign w for |w| > p(H; (L, Lyx).

Then f} fulfils assumption (A;) (with f=/* and K =1+ max{|f(,x,u, v, w)||
G u,v,wWeJ xRy ri+Lisx<r+ Ly, lul <plFE;(r+L,rm+ L)), Lisv=L,,
|w| < p(H; (L, L,)x)}. By theorem 2, BVP (28), (i), i € {3, 4}, has a solution u satisfying (19)

and (20), where
x"(t) = fr, x(t), (Fx)(), x'(2), (Hx')#)), ted. (28)

By the same arguments as in the proof of theorem 3 we can prove that u fulfils also the second
inequality in (26). Then (cf. (20)) u satisfies the first inequality of (26); hence, (cf. 7)) uis a
solution of BVP (1), )) (€ {3,4}). B

Example 1. Consider the differential equation
x"(#) = —x(¥) + Aarctgx'(t) + p(t) + Bsin(x(a(?))), (29)

where p € C°(J), a: J = J is continuous and A, g are parameters. Let L be an arbitrary but
fixed positive constant. Applying theorem 4 (with —r, = r, = | p| + |u|, -L, = L, = L and
Fx = x - &) we can verify that for each A, u € R such that

2 L
S 2lpll + 2|gl +

Py
arctg L

y



282 I. RACHUNKOVA and S. STANEK

there exists a solution u of BVP (29), (i), i € {3, 4] and, moreover,

lull < lpll + lal + L, '] < L.

COROLLARY 4. Let 1 € C°(J x R*and letr,,r,,L,,L, € Rbesuchthatr, <r,, L, =0 < L,,
ht,x,0) <0 for (t,x) € J X [ry, ry + L,],
h(it,x,0) =0 for (¢, x) e IX[L, + ry, 1]
and A(t, x, L)), h(t, x, L;) do not change their signs for (¢,x) € J X [r; + L, r, + L,]. Then for
each i € {3, 4} BVP (2), (i) has a solution u satisfying (26).
Example 2. Consider the differential equation
x" = h(x) + p(x') + s(t), (30)
where h, p € C°(R), s € C°(J), xl—i»Tw h(x) = —&goo for each ¢ € {—1, 1} and

h"“lzgli) =a>1 with a constant £ > 1 and

h*(x) := max{|h@)|; —x < u < x) for x € [0, ).

Then for each i € {3, 4}, BVP (30), (i) has a solution.

To verify this fact set S = ||s| and suppose that r is a positive constant such that
h(x) = S — p(0) for x = —r and h(x) < —S — p(0) for x = r. Let L be a positive constant such
that L = r/(1 — k), h*(L) = 25/(a — 1) and |p(zL)/h*(kL)| = (1 + a)/2. Then

h(x) + p(0) + s(¢) < O0forx=r, h(x) + p(0) + s(¢) =0 for x < —r,

lim sup

x| =0

and
|p(£L)| = A*(KL) + (o — D)A*(KL)/2 = h*(L + (k — L) + (a — DA*(L)/2 = h*(L + r) + S.
If p(zL) > 0 for a r € {—1, 1}, then

X))+ paly +s@) =z h(x)+ P*L + D+ S+s(t)=0 forxe[-L —r,L + 7]
and if p(tL) < 0 for a T € {—1, 1}, then

h(x) + p(tL) + s) <= h(x) — h* (L + r) - S+ s(t) =0 forxe[-L —r,L +rl].
By corollary 4 (with —r, = r, = r, —L, = L, = L), BVP (30), (i), i € {3, 4}, has a solution u
satisfying

—r—-L=<ut)y<r+ 1L, -L=u(t)<L for each ¢ € J.

2n-1 |x

For example functions A(x) = —x + Y tax*, neN, n=1, p(x) =sinx-e ' satisfy

the above conditions.

4, MULTIPLICITY RESULTS

Here, combining the previous results, we get the existence of at least two or three solutions
of BVP (1), (i), i € {3, 4}.
Using theorem 3 two times, we obtain the following theorem.
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THEOREM 5 (two solutions). Assume that
(H,) f € Car(J x R*) and there exist r;, 7y, 73,74, L, L, € R and g, v € {—1, 1} such that
rn<r<r<rn,L =0<L,and

f(tarjauyoa W) = 0 Sf(tark’ u905 W)
for a.e. t € J and each (u, w)e (r,,r,,L,,L,; F,H),,j=1,3, k=2,4, and
vi(t,x,u, L, w) <0 =< uf(t, x,u, Ly, w)

for a.e. ¢ € J and each (x, u, w) € (ry,ry, L, Ly; F, H);.
Then for each i € {3, 4] BVP (1), (i) has at least two different solutions u,, u, and

rn=u(t)=<r,, r3 < u(t) <r,, Li=su@)<1L, forted, k=1,2. (3D
Proof. Fix i € {3, 4}. By theorem 3, there exists a solution #, of BVP (1), (i) satisfying (21)

(with ¥ = u,) and by the same theorem there exists a solution u, of BVP (1), (i) satisfying
nn<ul)<r,L <uj(t)<L,onJ.Sincer, <ry,wegetu #u, N

CoroOLLARY S. Let h e Car(J x R*) and there exist r,,r,, 73,7, L;,L, € R such that
ns<rn<rnsr,Li=0<lL,and

h(t, r;,0) <0< h(t,re,0) for a.e. t € J, wherej=1,3, k=2,4, 32)
and

h(t, x, L,), h(t, x, L,) do not change their signs

for a.e. # € J and each x € [r, r4]. (33)

Then for each i € {3, 4} BVP (2), (i) has at least two different solutions u,, u, satisfying (31).

Suppose f € C%J x R*). Then we can use theorem 3 together with theorem 4 and get various
multiplicity results. For example if the distance between r, and r; is long enough we can obtain
a theorem which guarantees three different solutions.

THEOREM 6 (three solutions). Assume that
(H,) f e C°%J x R*) and there exist 7,75, 73,74, L, L, € R and u, v € {—1, 1} such that
r<r,, rn—L +L,<ry=<r,, L,=0=<1L, (34)
and for each (¢t,u,w)e J x (r,,r,,L,, L,; F, H), the following inequalities are fulfilled
S ri,u,0,w)y <0< f(t,ry,u,0,w),
ft, x,u,0,w) >0 forx e (ry,r, — L],
S, x,u,0,w) <0 forxe[ry — L,, 1y,
v, x,u, Ly, w) <0 < uf(t,x,u,L,, w) for x € [ry, r4)-

Then for each i € {3, 4}, BVP (1), (i) has at least three different solutions u, , u,, u, fulfilling for
eachtreJ

n<u(t)=sr, nR<u@)<r, nn=ul)<r, Li=swy@®)=<L,, k=123 (35
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Proof. Fix i € (3,4]. Since fe C%J x R*), there exists £ > 0 such that r, — L, + L, +
2¢ < r3, and for each (t,u, w) e J x (r,, r4, L, Ly; F, H), the inequalities f(¢, x, #,0, w) = 0
for xe[ry,r —Ly+¢€], and f(¢t,x,u,0,w) <0 for xe[ry — L, — &, r;] are valid. By
theorem 3, there exists a solution u; of BVP (1), (i) satisfying (21) (with # = u,). Further, by
theorem 4, there exists a solution u, of BVP (1), (i) satisfying r, + e < u,(t) < r; — ¢,
L, =< uj(t) = L, for ¢t € J, and finally, by theorem 3, there exists a solution u; of BVP (1), (i)
satisfying ry < us(t) < ry, L, < uj(t) < L, for t € J. Clearly, u; # u, # u,. R

CoroLLARY 6. Let h e C°%J x R?) and there exist r,,7,,r;,7,L,, L, € R such that the
conditions (33), (34) and the inequalities
ht,r,,0) <0 < h(t, ry, 0) for each r € J,
h(t,x,0) >0 for each (¢, x) € J X (ry, r, — L],
ht,x,0)< 0 for each (¢, x) € I X [ry — L,, ry),
are satisfied.

Then for each i € {3, 4}, BVP (1), (i) has at least three different solutions u,, u,, u; fulfilling
(35).

Example 3. Consider a polynomial
iR R, x~ ¥ ax

and a continuous function g: R — R. Suppose that g(0) = 0 and p, has k different real zeros
X1, X2, ..., Xx, k € N. Then it is clear that equation x” = p,(x) + g(x') has k different constant
solutions which clearly fulfil (3) or (4) (cf. [2, example 6.4}]).

Example 4. Consider the nonautonomous equation

X" = pu(x) + g(t, x'), (36)
where g € C°(J x R).
Denote M = max{g(t,0) | f € J}, m = min{g(t,0) | t € J}.
(1) Let p, have a simple zero x; € R and
(a) p,isincreasingin x;. Then if p,(x) = M for some x > x; and p,(x) = m for some x < x|,
we can choose ry, r, € R such that (24) is fulfilled. Further, let

lim suplg(t, x)| = « on J. 37N
x| ==

Then there exist L,, L,, L, < 0 < L, such that (25) is satisfied. Therefore, by corollary 3,
problem (36), (i), i € {3, 4} has at least one solution.

(b) p, is decreasing in x,. Then the connection between p, and g has to be closer. Let
[a,, a;] C (=, xy), [by, b,] C (x,,) be such that

DPnx) = M for each x € [a,, a;], Dn(x) < m for each x € [b,, b,], (38)
and let on J X [a,, b,]

|pax) + g(t,L)| >0  forj = 1,2 and for some L, € [¢, — a,,0), L, € (0, b, — b)]. (39)
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Then we can set r, = a,, r, = b, and we see that all conditions of corollary 4 are fulfilled,
hence, BVP (36), (i), i € {3, 4}, has at least one solution.

(2) Let p, have two simple zeros x,, x, € R, x; < x,. Then we can apply corollary 3 for p,
increasing as well as for p, decreasing in x;. It is also possible to combine corollary 3 and
corollary 4 and get two solutions. This technique will be shown more precisely for the case of
three different solutions.

(3) Let p, have three different simple zeros x,, x,, x; € R, x; < x; < x3. Let p, increase in
X -

(a) Suppose that p,(x) = M for some x € (x,, x,) and some x > x; and p,(x) < m for some
x € (X2, x3) and some x < x,. Further, let condition (37) be fulfilled. Then we can choose
ry<Xx, neX,X), r;€(,,x3), 14> Xy, and L, =0 =< L, such that all conditions of
corollary S are fulfilled and problem (34), (i), i € {3, 4} has at least two different solutions.

(b) Let r; € (-, x,), ry € (x3,), [a,,a)] C [x;,x;] and [b,, b,] C [x,, x3] be such that
p.r) < m, p,(ry) = M and (38) is satisfied. Further, let (39) be fulifilled on J x [r;, ry]. Then
we can set r, = @, and r; = b, and by corollary 6 our problem has at least three different
solutions.

This occurs, e.g. for py(¥) = x> — 3x and g(¢, v) = 50> + sin 27z, Then we have x;, = —V3,
% =0,x=V3, M=1,m=-1,and wecanset r, = =2, r, = a, = =3/2, ry = b, = 3/2,
ra=2,L,=-1,L,=1,a, =—-1/2, b, = 1/2.
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