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Preface

The topic of singular boundary value problems has been of substantial and
rapidly growing interest for many scientists and engineers. This book is de-
voted to singular boundary value problems for ordinary differential equations.
It presents existence theory for a variety of problems having unbounded non-
linearities in regions where their solutions are searched for. The importance
of thorough investigation of analytical solvability is emphasized by the fact
that numerical simulations of solutions to such problems usually break down
near singular points.

The contents of the monograph is mainly based on results obtained by
the authors during the last few years. Nevertheless, most of the more ad-
vanced results achieved to date in this field can be found here. Besides, some
known results are presented in a new way. The selection of topics reflects
the particular interests of the authors.

The book is addressed to researchers in related areas, to graduate students
or advanced undergraduates and, in particular, to those interested in singular
and nonlinear boundary value problems. It can serve as a reference book on
the existence theory for singular boundary value problems of ordinary differ-
ential equations as well as a textbook for graduate or undergraduate classes.
The readers need basic knowledge of real analysis, linear and nonlinear func-
tional analysis, theory of Lebesgue measure and integral, theory of ordinary
differential equations (including the Carathédory theory and boundary value
problems) on the graduate level.

The monograph deals with boundary value problems which are consid-
ered in the frame of the Carathéodory theory. If nonlinearities in differential
equations fulfil the Carathéodory conditions, the boundary value problems
are called regular, while, if the Carathéodory conditions are not fulfilled on
the whole region, the problems are called singular. Two types of singular-
ities are distinguished – time and space ones. For singular boundary value
problems we introduce notions of a solution and of a w-solution. Solutions of
n – th order differential equations are understood as functions having abso-
lutely continuous derivatives up to order n− 1 on the whole basic compact
interval. On the other hand, w-solutions have these derivatives only locally
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absolutely continuous on a noncompact subset of the basic interval. The main
attention is paid to the existence of solutions of singular problems. The proofs
are mostly based on regularization and sequential technique. The impact of
our theoretical results is demonstrated by illustrative examples.

Essentially, the book is divided into two parts and an appendices.

Part I consists of 6 chapters and is devoted to scalar higher order singu-
lar boundary value problems. In Chapter 1, time and space singularities are
defined, three existence principles for problems with time singularities and
two for problems with space singularities are formulated and proved. Chap-
ter 2 presents existence results for focal problems with a time singularity
and for focal problems having space singularities in all variables. Chap-
ters 3–6 investigate other higher order boundary value problems having only
space singularities which appear most frequently in literature. They provide
existence results for (n, p) – problems, conjugate problems, Sturm-Liouville
problems and for Lidstone problems.

Part II consists of Chapters 7–11 and deals with scalar second order singu-
lar boundary value problems with one-dimensional φ –Laplacian. The expo-
sition is focused mainly on Dirichlet and periodic problems which are consid-
ered in Chapter 7 and 8, respectively. Section 7.1 is fundamental for further
investigation. The operator representation of the regular Dirichlet problem
with φ – Laplacian is derived here and the methods of a priori estimates
and lower and upper functions are developed. In Sections 7.2–7.4 three exis-
tence principles are presented. These principles together with the principles
of Chapter 1 are then specialized to important particular cases and exis-
tence theorems and criteria extending and supplementing earlier results are
obtained. Section 7.2 deals with time singularities, Section 7.3 with space
singularities and Section 7.4 with mixed singularities, i.e. both time and
space ones. In Chapter 8 we consider the existence of periodic solutions.
We start with the method of lower and upper functions and with its rela-
tionship to the Leray-Schauder degree in Section 8.1. Section 8.2 is devoted
to problems with a nonlinearity having an attractive singularity in its first
space variable. Sections 8.3 and 8.4 deal with problems with strong and weak
repulsive space singularities, respectively. An existence theorem for periodic
problems with time singularities is given in the last section of Chapter 8.
In Chapter 9 we study two singular mixed boundary value problems. The
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latter arises in the theory of shallow membrane caps and we discuss its solv-
ability in dependence on parameters which appear in the differential equa-
tion. In Chapter 10 we treat problems which may have singularities in space
variables. Boundary conditions under discussion are generally nonlinear and
nonlocal. We present general principles for solvability of regular and singu-
lar nonlocal problems and show some of their applications. Chapter 11 is
devoted to a class of problems having singularities in space variables. Imple-
mentation of a parameter into the equation enables us to prove solvability of
problems with three independent (generally nonlocal) boundary conditions.
We deliver an existence principle and its specialization to the problem with
given maximal values for positive solutions.

Appendices give an overview of some basic classical theorems and asser-
tions which are used in Chapters 1–11. Appendix A presents several crite-
ria for uniform integrability or equicontinuity. Some convergence theorems
are given in Appendix B. In particular, we recall the Lebesgue dominated
convergence theorem, the Fatou lemma, the Vitali convergence theorem for
integrable functions and the Arzelà-Ascoli theorem and the diagonalization
theorem for differentiable functions. Appendix C contains the Schauder fixed
point theorem, the Leray-Schauder degree theorem, the Borsuk antipodal
theorem and the Fredholm type existence theorem. Appendix D collects
some useful facts from half-linear analysis which are needed in Chapter 8.





List of notation

Let J ⊂ R, [a, b] ⊂ R, k ∈N, p∈ (1,∞), M⊂ Rk. Then we will write:

• L∞(J) for the set of functions essentially bounded and (Lebesgue)
measurable on J ; the corresponding norm is

‖u‖∞ = sup ess{|u(t)| : t∈ J}.

• L1(J) for the set of functions (Lebesgue) integrable on J ; the corre-
sponding norm is ‖u‖1 =

∫
J
|u(t)| dt.

• Lloc(J) for the set of functions (Lebesgue) integrable on each compact
interval I ⊂ J.

• Lp(J) for the set of functions whose p- th powers of modulus are

integrable on J ; the corresponding norm is ‖u‖p =
(∫

J
|u(t)|p dt

) 1
p .

• C(J) and Ck(J) for the sets of functions continuous on J and having
continuous k - th derivatives on J, respectively.

• AC(J) and ACk(J) for the sets of functions absolutely continuous
on J and having absolutely continuous k - th derivatives on J, re-
spectively.

• ACloc(J) and ACk
loc(J) for the sets of functions absolutely continuous

on each compact interval I ⊂ J and having absolutely continuous k -
th derivatives on each compact interval I ⊂ J, respectively.

• Car([a, b] ×M) for the set of functions satisfying the Carathéodory
conditions on [a, b]×M. If J ⊂ [a, b] and J 6= J, then f ∈Car(J ×
M) will denote that f ∈Car(I×M) for each compact interval I⊂J.

If J = [a, b], we will simply write C[a, b] instead of C([a, b]) and similarly
for other types of intervals and other functional sets defined above.
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x List of notation

If u∈L∞[a, b]∩C[a, b], then max{|u(t)| : t∈[a, b]}= sup ess{|u(t)| : t∈[a, b]}.
Therefore the norms in C[a, b] and Ck[a, b] will be denoted by

‖u‖∞ = max{|u(t)| : t∈ [a, b]} and ‖u‖Ck =
k∑

i=0

‖u(i)‖∞,

respectively.

M will denote the closure of M, ∂M the boundary of M and meas (M)
the Lebesgue measure of M.

The symbol deg(I − F , Ω) stands for the Leray-Schauder degree of I − F
with respect to Ω, where I denotes the identity operator.

We will say that some property holds for a.e. t∈ J (a.e. on J ) if it is fulfilled
for each t∈ J \ J0 where meas (J0) = 0.

Throughout this text we exploit the following basic theorems listed in Ap-
pendices:

Lebesgue dominated convergence theorem (Theorem B.1)
Fatou lemma (Theorem B.2)
Vitali convergence theorem (Theorem B.3)
Arzelà-Ascoli theorem (Theorem B.5)
Diagonalization theorem (Theorem B.6)
Schauder fixed point theorem (Theorem C.1)
Leray-Schauder degree theorem (Theorem C.2)
Borsuk antipodal theorem (Theorem C.3)
Fredholm type existence theorem (Theorem C.5)
Sharp Poincaré inequality (Lemma D.2)



Part I

Higher order singular problems
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Consider the boundary value problem

u(n) = f(t, u, . . . , u(n−1)), u∈B, (BVP)

where n∈N, [0, T ] ⊂ R and B ⊂ C[0, T ]. In what follows, we will inves-
tigate the solvability of problem (BVP) on the set [0, T ] ×A, where A is
a closed subset of Rn. If we impose some additional conditions on solutions
of (BVP), for example if we search for positive or for monotonous solutions,
we express this requirement in terms of the set A 6= Rn and prove the exis-
tence of a solution u such that (u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ]. On
the other hand, if there are no additional requirements on solutions, we can
assume A = Rn.

Let M⊂Rn. We say that a function f satisfies the Carathéodory condi-
tions on the set [a, b]×M ( f ∈Car([a, b]×M) ) if

(i) f(·, x0, . . . , xn−1) : [a, b]→R is measurable for all (x0, . . . , xn−1)∈M,

(ii) f(t, ·, . . . , ·) : M→ R is continuous for a.e. t∈ [a, b],

(iii) for each compact set K ⊂ M there is a function mK ∈L1[a, b] such
that

|f(t, x0, . . . , xn−1)| ≤ mK(t) for a.e. t∈ [a, b] and all (x0, . . . , xn−1)∈K.

If J ⊂ [a, b] and J 6= J, then f ∈Car(J×M) means that f ∈Car(I×M)
for each compact interval I ⊂ J.

The classical existence results are based on the assumption

f ∈Car([0, T ]×A).

In this case we will say that problem (BVP) is regular on [0, T ]×A. If
f 6∈Car([0, T ]×A) we will say that problem (BVP) is singular on [0, T ]×A.
The research of singular problems was essentially initiated by Kiguradze
in [114] and [115]. For further development see for example the monographs
Agarwal [2], Agarwal and O’Regan [12], Agarwal, O’Regan and Wong [21],
O’Regan [148], Kiguradze [116], Kiguradze and Shekhter [118], Mawhin [135],
Rach̊unková, Staněk and Tvrdý [163] and references therein.



Part I. Higher order singular problems 3

Example. In certain problems in fluid dynamics and boundary layer theory
(see e.g. Callegari and Friedman [53], Callegari and Nachman [54], [55]) the
second order differential equation

u′′ +
ψ(t)

uλ
= 0

arose. Here λ∈ (0,∞) and ψ ∈C(0, 1), ψ 6∈L1[0, 1]. This equation is known
as the generalized Emden-Fowler equation. Its solvability with the Dirichlet
boundary conditions

u(0) = u(1) = 0

was investigated by Taliaferro [190] in 1979 and subsequently by many other
authors. Since solutions positive on (0, 1) have been searched for, this
Dirichlet problem has been studied on the set [0, 1] ×A with A = [0,∞).
We can see that f(t, x) = ψ(t) x−λ does not fulfil conditions (ii) and (iii)
with [a, b] = [0, 1] and M = [0,∞). Hence the above problem is singular
on [0, 1]× [0,∞).

Example. Consider the fourth order degenerate parabolic equation

Ut + (|U |µ Uyyy)y = 0

which arises in droplets and thin viscous flows models (see e.g. Bernis,
Peletier and Williams [39] and Bertozzi, Brenner, Dupont and Kadanoff [40]).
The source-type solutions of this equation have the form

U(y, t) = t−b u(y t−b), b =
1

µ + 4
,

which leads to the study of the third order ordinary differential equation

u′′′ = b t u1−µ

on [−1, 1]. We see that f(t, x) = b t x1−µ is singular on [−1, 1]× [0,∞) if
µ > 1.

Example. Similarly to the previous example, the sixth order degenerate
equation

Ut − (|U |µ Uyyyyy)y = 0



which arises in semiconductor models ( Bernis [37], [38]) leads to the fifth
order ordinary differential equation

−u(5) =
t

uλ

which is singular for λ > 0.

Example. Consider the nonlinear elliptic partial differential equation

∆u + g(r, u) = 0 on Ω, u|Γ = 0,

where ∆ is the Laplace operator, Ω is the open unit disk in Rn centered
at the origin, Γ is its boundary and r is the radial distance from the origin.
When searching for positive radially symmetric solutions to this problem, we
get the singular problem of the form

u′′ +
n− 1

t
u′ + g(t, u) = 0, u′(0) = 0, u(1) = 0.

See Berestycki, Lions and Peletier [36] or Gidas, Ni and Nirenberg [96].

Example. Assume f ∈Car([0,∞)×R) and consider the regular boundary
value problem

u′′ = f(t, u), u(1) = 0, u(∞) = 0

on the infinite interval [1,∞). We can transform this problem to a finite
interval, e.g. on [0, 1]. Then we get the singular problem of the form

v′′ +
2

t
v′ =

1

t4
f(

1

t
, v), v(0) = v(1) = 0.



Chapter 1

Existence Principles for
Singular Problems

1.1 Formulation of the problem

For n∈N, [0, T ] ⊂ R, i∈{0, 1, . . . , n− 1} and a closed set B ⊂ Ci[0, T ]
consider the boundary value problem

u(n) = f(t, u, . . . , u(n−1)), (1.1)

u∈B. (1.2)

A decision concerning solvability for singular boundary value problems
requires an exact definition of a solution to such problems. Here, we will
work with the same definition of a solution both for the regular problems
and for the singular ones.

Definition 1.1. A function u∈ACn−1[0, T ]∩B is called a solution of prob-
lem (1.1), (1.2), if it satisfies the equality

u(n)(t) = f(t, u(t), . . . , u(n−1)(t))

for a.e. t∈ [0, T ]. If we investigate problem (1.1), (1.2) on [0, T ]×A where
A 6= Rn, we moreover require (u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ].

In literature an alternative approach to solvability of singular problems
can be found. In that approach, authors search for solutions which are defined
as functions whose (n − 1) -st derivatives can have discontinuities at some
points in [0, T ]. Here, we will call them w-solutions. According to Kiguradze
[115] or Agarwal and O’Regan [12] we define them as follows. In contrast to
our starting setting, to define w-solutions we assume (in general) that B is
a closed subset in Ci[0, T ], where i∈{0, 1, . . . , n− 2}.
Definition 1.2. We say that u is a w-solution of problem (1.1), (1.2), if
there exists a finite number of points tν ∈ [0, T ], ν = 1, 2, . . . , r, such that if

5



6 Chapter 1. Existence Principles for Singular Problems

we denote J = [0, T ]\{tν}r
ν=1, then u∈Cn−2[0, T ]∩ACn−1

loc (J)∩B satisfies

u(n)(t) = f(t, u(t), . . . , u(n−1)(t)) for a.e. t∈ [0, T ].

If A 6= Rn we require (u(t), . . . , u(n−1)(t))∈A for t∈ J.

Clearly each solution is a w-solution and each w-solution which belongs
to ACn−1[0, T ] is a solution. While only the existence of w-solutions was
proved in the works cited above, our main goal is to prove the existence of
solutions. However, in some cases, we first find w-solutions and then prove
that they are also solutions.

When studying the singular problem (1.1), (1.2), we will focus our atten-
tion on two types of singularities of the function f :

Let J ⊂ [0, T ]. We say that f : J ×A → R has singularities in its time
variable t, if J 6= J = [0, T ] and

f ∈Car(J ×A) and f 6∈Car([0, T ]×A). (1.3)

Let D ⊂ A. We say that f : [0, T ] × D → R has singularities in its space
variables x0, x1, . . . , xn−1, if D 6= D = A and

f ∈Car([0, T ]×D) and f 6∈Car([0, T ]×A). (1.4)

We will study particular cases of (1.3) and (1.4), which will be described in
Section 1.2 and Section 1.3, respectively.

1.2 Singularities in time variable

A function f has a singularity in its time variable t (in short a time sin-
gularity) if, roughly speaking, f is not integrable on [0, T ]. Let us define it
more precisely. Let k ∈N, ti ∈ [0, T ], i = 1, . . . , k, J = [0, T ]\{t1, t2 . . . , tk}
and let f ∈Car(J × A). Assume that for each i∈{1, . . . , k} there exists
(x0, . . . , xn−1)∈A such that





∫ ti+ε

ti

|f(t, x0, . . . , xn−1)| dt = ∞ or

∫ ti

ti−ε

|f(t, x0, . . . , xn−1)| dt = ∞
(1.5)
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for any sufficiently small ε > 0. Then f 6∈Car[0, T ] × A) and f has
singularities in its time variable t, namely at the values t = t1, . . . , tk. We
will call t1, . . . , tk singular points of f.

Example. Let fi : Rn → R, i = 1, 2, . . . , k, be continuous. Then the func-
tion

f(t, x0, . . . , xn−1) =
k∑

i=1

1

t− ti
fi(x0, . . . , xn−1),

has singular points t1, t2, . . . , tk.

To establish existence of a solution of a singular problem we usually in-
troduce a sequence of approximate regular problems which are solvable. So-
lutions of these regular problems are called approximate solutions. Then we
pass to the limit of the sequence of approximate solutions to get a solu-
tion of the original singular problem. Here we provide existence principles
which contain main rules for the construction of such sequences to get either
w-solutions or solutions.

Consider problem (1.1), (1.2) on [0, T ] × A. For the sake of simplicity
assume that f has only one time singularity at t = t0, t0 ∈ [0, T ]. Thus




J = [0, T ] \ {t0}, f ∈Car(J ×A) satisfies one of the conditions:

(i)

∫ t0

t0−ε

|f(t, x0, . . . , xn−1)| dt = ∞, t0 ∈ (0, T ],

(ii)

∫ t0+ε

t0

|f(t, x0, . . . , xn−1)| dt = ∞, t0 ∈ [0, T ),

for some (x0, . . . , xn−1)∈A and each sufficiently small ε > 0.

(1.6)

Further, consider a sequence of regular problems

u(n)(t) = fk(t, u(t), . . . , u(n−1)(t)), u∈B, (1.7)

where fk ∈Car([0, T ] × Rn), k ∈N. Solutions of problem (1.7) are under-
stood in the sense of Definition 1.1. The following two theorems deal with
the case

B is a closed subset in Cn−2[0, T ]. (1.8)
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Theorem 1.3 (First principle for time singularities).

Let (1.6) and (1.8) hold. Assume that the conditions





for each k ∈N and each (x0, . . . , xn−1)∈A,

fk(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1) a.e. on [0, T ] \ 4k,

where 4k = (t0 − 1
k
, t0 + 1

k
) ∩ [0, T ]

(1.9)

and



there exists a bounded set Ω ⊂ Cn−1[0, T ] such that

for each k ∈N, the regular problem (1.7) has a solution

uk ∈Ω and (uk(t), . . . , u
(n−1)
k (t))∈A for t∈ [0, T ]

(1.10)

are fulfilled.

Then
{

there exist a function u∈Cn−2[0, T ] and a subsequence

{uk`
} ⊂ {uk} such that lim`→∞ ‖uk`

− u‖Cn−2 = 0,
(1.11)

{
lim`→∞ u

(n−1)
k`

(t) = u(n−1)(t) locally uniformly on J

and (u(t), . . . , u(n−1)(t))∈A for t∈ J,
(1.12)

u∈ACn−1
loc (J) and u is a w-solution of problem (1.1), (1.2). (1.13)

Assume, moreover,





there exist ψ ∈L1[0, T ], η > 0, `0 ∈N and λ1, λ2 ∈{−1, 1}
such that

λ1 fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) ≥ ψ(t)

for all `∈N, ` ≥ `0, and for a.e. t∈ [t0 − η, t0) ⊂ [0, T ]

provided (1.6) (i) holds

and

λ2 fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) ≥ ψ(t)

for all `∈N, ` ≥ `0, and for a.e. t∈ (t0, t0 + η] ⊂ [0, T ]

provided (1.6) (ii) is true.

(1.14)
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Then u∈ACn−1[0, T ], u is a solution of problem (1.1), (1.2) and

(u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ].

Proof. Step 1. Convergence of the sequence of approximate solutions.

Condition (1.10) implies that the sequences {u(i)
k }, 0 ≤ i ≤ n − 2, are

bounded and equicontinuous on [0, T ]. By the Arzelà-Ascoli theorem, we
see that assertion (1.11) is true and u∈B ⊂ Cn−2[0, T ]. Let t0 6= 0. Since

{u(n−1)
k } is bounded on [0, T ], we get, due to (1.9), that for each τ ∈ [0, t0)

there exist kτ ∈N and hτ ∈L1[0, T ] such that for each k ≥ kτ

|fk(s, uk(s), . . . , u
(n−1)
k (s))| ≤ hτ (s) for a.e. s∈ [0, τ ]. (1.15)

Hence, by virtue of (1.7), for k ≥ kτ , t1, t2 ∈ [0, τ ], we have

|u(n−1)
k (t2)− u

(n−1)
k (t1)| ≤

∣∣∣∣
∫ t2

t1

hτ (s) ds

∣∣∣∣ ,

which implies that the sequence {u(n−1)
k } is equicontinuous on [0, τ ]. The

same holds on [τ, T ] if τ ∈ (t0, T ] and t0 6= T. The Arzelà-Ascoli theorem
implies that for each compact subset K ⊂ J = [0, T ] \ {t0} a subsequence

of {u(n−1)
k } uniformly converging to u(n−1) on K can be chosen. There-

fore, using the diagonalization theorem, we can choose a subsequence {uk`
}

satisfying both (1.11) and (1.12).

Step 2. Convergence of the sequence of approximate nonlinearities.

Let V1 be the set of all t∈ [0, T ] such that f(t, ·, . . . , ·) : Rn → R is
not continuous and let V2 be the set of all t∈ [0, T ] such that (1.9) is not
satisfied. Then meas (V1∪V2) = 0. Choose an arbitrary τ ∈ [0, T ]\(V1∪V2).
Then there exists `0 ∈N such that for ` ≥ `0

fk`
(τ, uk`

(τ), . . . , u
(n−1)
k`

(τ)) = f(τ, uk`
(τ), . . . , u

(n−1)
k`

(τ))

and, by (1.11) and (1.12),

lim
`→∞

fk`
(τ, uk`

(τ), . . . , u
(n−1)
k`

τ)) = f(τ, u(τ), . . . , u(n−1)(τ)).

Hence,




lim`→∞ fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t) = f(t, u(t), . . . , u(n−1)(t))

for a.e. t∈ [0, T ].
(1.16)
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Step 3. The function u is a w-solution of problem (1.1), (1.2).

Let t0 6= 0 and `∈N. Choose an arbitrary τ ∈ [0, t0) and integrate the
equality

u
(n)
k`

(t) = fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) for a.e. t∈ [0, T ].

We get

u
(n−1)
k`

(τ) = u
(n−1)
k`

(0) +

∫ τ

0

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds.

According to (1.15), (1.16) and the Lebesgue dominated convergence theorem
on [0, τ ] we can deduce (having in mind that τ is arbitrary) that if t0 6= 0
the limit u solves the equation





u(n−1)(t) = u(n−1)(0) +

∫ t

0

f(s, u(s), . . . , u(n−1)(s)) ds

for t∈ [0, t0).

(1.17)

Similarly, if t0 6= T the limit u solves the equation




u(n−1)(t) = u(n−1)(T )−
∫ T

t

f(s, u(s), . . . , u(n−1)(s)) ds

for t∈ (t0, T ].

(1.18)

The equalities (1.17) and (1.18) immediately yield (1.13).

Step 4. The function u is a solution of problem (1.1), (1.2).

Assume, moreover, that (1.14) and (1.6) (i) hold. Since

u
(n−1)
k`

(t)− u
(n−1)
k`

(t0 − η) =

∫ t

t0−η

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds

for t∈ (0, t0), we get due to (1.10) that there is a c∈ (0,∞) such that

λ1

∫ t0

t0−η

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds ≤ c (1.19)

for each `∈N. By the Fatou lemma, using conditions (1.16), (1.14) and
(1.19), we deduce that

f(t, u(t), . . . , u(n−1)(t))∈L1[t0 − η, t0].
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Similarly, if condition (1.6) (ii) holds, we deduce that

f(t, u(t), . . . , u(n−1)(t))∈L1[t0, t0 + η].

Hence

f(t, u(t), . . . , u(n−1)(t))∈L1([t0 − η, t0 + η] ∩ [0, T ]).

Recall that by (1.12) we have (u(t), . . . , u(n−1)(t))∈A for t∈ J and, by
(1.6), f ∈Car(J×A). Further, by virtue of (1.10) and (1.11), the functions
u, u′, . . . , u(n−2) are bounded on [0, T ] and (1.10), (1.12) imply that u(n−1)

is bounded on [0, T ] \ (t0 − η, t0 + η). Hence

f(t, u(t), . . . , u(n−1)(t))∈L1 ([0, T ] \ (t0 − η, t0 + η)) ,

which together with the above arguments yields

f(t, u(t), . . . , u(n−1)(t))∈L1[0, T ].

Therefore due to (1.17) and (1.18) we have that u∈ACn−1[0, T ], i.e. u is
a solution of problem (1.1), (1.2). Finally, since A is closed, we get

lim
t→t0

(u(t), . . . , u(n−1)(t)) = (u(t0), . . . , u
(n−1)(t0))∈A. ¤

Theorem 1.4 (Second principle for time singularities).

Let (1.6), (1.8), (1.9) and (1.10) hold. Assume that




there exist ψ ∈L1[0, T ], η > 0 and λ1, λ2 ∈{−1, 1} such that

λ1 fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) sign u
(n−1)
k`

(t) ≥ ψ(t)

for all `∈N and for a.e. t∈ [t0 − η, t0) ⊂ [0, T ]

provided (1.6) (i) holds

and

λ2 fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) sign u
(n−1)
k`

(t) ≥ ψ(t)

for all `∈N and for a.e. t∈ (t0, t0 + η] ⊂ [0, T ]

provided (1.6) (ii) is true.

(1.20)

Then there exists a function u∈ACn−1[0, T ] satisfying (1.11) and (1.12)
which is a solution of problem (1.1), (1.2) and (u(t), . . . , u(n−1)(t))∈A for
t∈ [0, T ].
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Proof. Steps 1–3 are the same as in the proof of Theorem 1.3 and guarantee
the existence of a w-solution u of problem (1.1), (1.2).

Step 4. Arguing as in Step 4 of the proof of Theorem 1.3 we see that to show
u∈ACn−1[0, T ] it suffices to prove f(t, u(t), . . . , u(n−1)(t))∈L1(I0), where
I0 = [t0 − η, t0 + η] ∩ [0, T ]. Put M = V1 ∪ V2 ∪ V3, where

V1 = {t∈ I0 : f(t, ·, . . . , ·) : Rn → R is not continuous},
V2 = {t∈ I0 : t is an isolated zero of u(n−1)},
V3 = {t∈ I0 : u(n)(t) does not exist or (1.1) is not fulfilled}.

Then meas (M) = 0. Choose an arbitrary s∈ I0 \M, s 6= t0.

a) Let u(n−1)(s) 6= 0. Assume for example sign u(n−1)(s) = 1. Then there

exists `0 ∈N such that for each ` ≥ `0 we have sign u
(n−1)
k`

(s) = 1 and so,
due to (1.9), (1.11), (1.12) and s 6∈ V1,





lim`→∞ λ1 fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) sign u
(n−1)
k`

(s)

= λ1 f(s, u(s), . . . , u(n−1)(s)) sign u(n−1)(s).
(1.21)

If sign u(n−1)(s) = −1, we get (1.21) in the same way.

b) Let s be an accumulation point of a set of zeros of u(n−1). Then there
exists a sequence {sm} ⊂ I0 such that u(n−1)(sm) = 0 and limm→∞ sm = s.
Since u(n−1) is continuous on I0 \ {t0}, we get u(n−1)(s) = 0. Further,

lim
m→∞

u(n−1)(sm)− u(n−1)(s)

sm − s
= 0

and, by virtue of s 6∈ V3, we get 0 = u(n)(s) = f(s, u(s), . . . , u(n−1)(s)).
Since s 6∈ V1, we have by (1.9), (1.11) and (1.12)

lim
`→∞

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) sign u
(n−1)
k`

(s)

= f(s, u(s), . . . , u(n−1)(s)) lim
`→∞

sign u
(n−1)
k`

(s) = 0.

So, we have proved that (1.21) is valid for a.e. s∈ I0.
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Assume that (1.6) (i) holds and t0 − η ≥ 0. Then, by (1.10), there exist
c > 0 and `0 ∈N such that for each ` ≥ `0

∫ t0

t0−η

λ1 fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) sign u
(n−1)
k`

(s) ds

= λ1

∫ t0

t0−η

|u(n−1)
k`

(s)|′ ds = λ1 (|u(n−1)
k`

(t0)| − |u(n−1)
k`

(t0 − η)|) ≤ c,

and hence, due to (1.20) and (1.21), we can use the Fatou lemma to deduce
that

λ1 f(t, u(t), . . . , u(n−1)(t)) sign u(n−1)(t)∈L1[t0 − η, t0],

which yields f(t, u(t), . . . , u(n−1)(t)∈L1[t0−η, t0]. Similarly, if (1.6) (ii) holds
and t0 + η ≤ T, we deduce that f(t, u(t), . . . , u(n−1)(t))∈L1[t0, t0 + η]. ¤

Now, we will consider the boundary conditions (1.2) which are character-
ized by the set B, where

B is a closed subset in Cn−1[0, T ]. (1.22)

Theorem 1.5 (Third principle for time singularities).

Let (1.6), (1.9), (1.10) and (1.22) hold. Assume that

{u(n−1)
k } is equicontinuous at t0. (1.23)

Then there exist a function u∈Ω and a subsequence {uk`
} ⊂ {uk} such

that lim`→∞ ‖uk`
− u‖Cn−1 = 0, (u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ] and

u∈Cn−1[0, T ] is a w-solution of problem (1.1), (1.2).

If, in addition, (1.20) holds, then u∈ACn−1[0, T ], i.e. u is a solution
of problem (1.1), (1.2).

Proof. Step 1. Convergence of the sequence of approximate solutions {uk}.
By (1.10) there is a c > 0 such that

‖uk‖Cn−1 ≤ c for each k ∈N. (1.24)

This implies that sequences {u(i)
k }, 0 ≤ i ≤ n − 2, are equicontinuous on

[0, T ]. Let us prove that {un−1
k } is also equicontinuous on [0, T ]. Choose
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an arbitrary ε > 0. By (1.23) we can find δ0 > 0 such that for each k∈N
and each t∈ [t0 − δ0, t0 + δ0] ∩ [0, T ] the inequality

|u(n−1)
k (t)− u

(n−1)
k (t0)| < ε

holds. Therefore, for each t1, t2 ∈ [t0 − δ0, t0 + δ0] ∩ [0, T ] we have

|u(n−1)
k (t1)− u

(n−1)
k (t2)| < 2ε. (1.25)

Now, let t1, t2 ∈K where K = [0, T ] \ (t0 − δ0, t0 + δ0). Put

h(t) = sup{|f(t, x0, . . . , xn−1)| : |xi| ≤ c, i = 0, . . . , n− 1}.

Then h∈L1(K) and we can find δ1 > 0 such that

|t1 − t2| < δ1 =⇒
∣∣∣∣
∫ t2

t1

h(t) dt

∣∣∣∣ < ε.

By (1.24) we have |fk(t, uk(t), . . . , u
(n−1)
k (t))| ≤ h(t) a.e. on K for each

sufficiently large k ∈N. Hence we get

|t1 − t2| < δ1 =⇒ |u(n−1)
k (t1)− u

(n−1)
k (t2)| < ε. (1.26)

Finally, let t1 ∈ (t0 − δ0, t0 + δ0) ∩ [0, T ], t2 ∈K, t2 > t0 + δ0. Put δ =
min{δ0, δ1} and assume that |t1 − t2| < δ. Then, by (1.25) and (1.26),

|u(n−1)
k (t1) − u

(n−1)
k (t2)| < 3ε. For t2 < t0 − δ0 we argue similarly. So, we

have proved that {u(n−1)
k } is equicontinuous on [0, T ]. By the Arzelà-Ascoli

theorem there exists a function u∈Ω and a subsequence {uk`
} ⊂ {uk} such

that

lim
`→∞

‖uk`
− u‖Cn−1 = 0 and (u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ].

Moreover, u∈B ⊂ Cn−1[0, T ] and, by Theorem 1.3, u is a w-solution of
problem (1.1), (1.2).

Step 2. If we assume, in addition, that (1.20) holds, then to prove that
u∈ACn−1[0, T ] we can argue as in Step 4 of the proof of Theorem 1.4. ¤
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1.3 Singularities in space variables

A function f has a singularity in one of its space variables (in short a space
singularity) if f is not continuous in this variable on a region where f is
studied. Motivated by the equation

u′′ + ψ(t) u−λ = 0,

where λ∈ (0,∞), we will consider the following case of discontinuity. Let
Ai ⊂ R be a closed interval and let ci ∈Ai,Di = Ai\{ci}, i = 0, 1, . . . , n−1.
Let us choose j ∈{0, 1, . . . , n− 1} and assume that





lim sup
xj→cj , xj ∈Dj

|f(t, x0, . . . , xj, . . . , xn−1)| = ∞ for a.e. t∈ [0, T ]

and for some xi ∈Di, i = 0, 1, . . . , n− 1, i 6= j.
(1.27)

If we put A = A0 × · · · × An−1, we see that f is not continuous on A
(for a.e. t∈ [0, T ] ). Consequently, f has a singularity in its space variable
xj, namely at the value cj. Let u be a solution of (1.1), (1.2) and let
a point tu ∈ [0, T ] be such that u(j)(tu) = cj. Then tu is called a singular
point corresponding to the solution u. Now, let u be a w-solution of (1.1),
(1.2). Assume that a point tu ∈ [0, T ] is such that u(n−1)(tu) does not exist
or u(j)(tu) = cj. Then tu is called a singular point corresponding to the
w-solution u.

Example. Let α∈ (0,∞), h1, h2, h3 ∈L1[0, T ], h2 6= 0, h3 6= 0 a.e. on [0, T ].
Consider the Dirichlet problem

u′′ + h1(t) +
h2(t)

u(t)
+

h3(t)

|u′(t)|α = 0, u(0) = u(T ) = 0. (1.28)

Let u be a solution of (1.28). Then 0 and T are singular points corre-
sponding to u. Moreover, there exists at least one point tu ∈ (0, T ) satisfy-
ing u′(tu) = 0, which means that tu is also a singular point corresponding
to u. Note that (in contrast to the points 0 and T ) we do not know the
location of tu in (0, T ).

In accordance with this example, we will distinguish two types of singular
points corresponding to solutions or to w-solutions: singular points of type I
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, where we know their location in [0, T ], and singular points of type II whose
location is not known.

Similarly to Section 1.2 we will establish sufficient conditions for approx-
imate sequences of regular problems and of their solutions. Using the prop-
erties of those approximate solutions we will pass to a limit thus obtaining
a solution or a w-solution of the original singular problem (1.1), (1.2). Let
Ai ⊂ R, i = 0, . . . , n − 1, be closed intervals and let A = A0 × · · · × An−1.
Consider problem (1.1), (1.2) on [0, T ]×A. Denote

Di = Ai \ {ci}, i = 0, . . . , n− 1.

First, we will assume that f has one singularity at each xi, namely at the
values ci ∈Ai, i = 0, . . . , n− 2. Hence, we assume




D = D0 × · · · × Dn−2 ×An−1,

f ∈Car([0, T ]×D) satisfies (1.27) for j = 0, . . . , n− 2.
(1.29)

In the next two theorems we work with the notion of uniform integrability
which can be find in Appendix A.

Theorem 1.6 (First principle for space singularities).

(i) Let (1.8), (1.10) and (1.29) hold. Assume that




for each k ∈N, for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D
fk(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1)

if |xi − ci| ≥ 1
k
, 0 ≤ i ≤ n− 1.

(1.30)

Then assertion (1.11) is valid.

(ii) If, moreover, the set of singular points

S =
{

s∈ [0, T ] : u(i)(s) = ci for i∈{0, . . . , n− 2}
}

is finite,

then assertion (1.12) is valid for J = [0, T ] \ S and if




the sequence {fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t))}
is uniformly integrable on each interval [a, b] ⊂ J,

(1.31)



1.2. Singularities in space variables 17

then u∈ACn−1
loc (J) is a w-solution of problem (1.1), (1.2).

(iii) If, in addition, there exists a function ψ ∈L1[0, T ] such that

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) ≥ ψ(t) for a.e. t∈ [0, T ] and all `∈N,

then u∈ACn−1[0, T ] and u is a solution of problem (1.1), (1.2).

Proof. Step 1. Convergence of the sequence of approximate solutions.

As in Step 1 of the proof of Theorem 1.3 we derive from (1.10) that
(1.11) holds and u∈B ⊂ Cn−2[0, T ]. Assume that S is finite and choose
an arbitrary [a, b] ⊂ J. Then there exist k0 ∈N and h∈L1[0, T ] such that
for each k ∈N, k ≥ k0

|u(i)
k (t)− ci| ≥ 1

k
for t∈ [a, b], i∈{0, . . . , n− 1}

and, for a.e. t∈ [a, b],

|fk(t, uk(t), . . . , u
(n−1)
k (t))| = |f(t, uk(t), . . . , u

(n−1)
k (t))| ≤ h(t).

So, for each ε> 0, there exists δ > 0 such that the implication

|t2 − t1| < δ =⇒ |u(n−1)
k (t2)− u

(n−2)
k (t1)| ≤

∣∣∣∣
∫ t2

t1

h(t) dt

∣∣∣∣ < ε

is valid for t1, t2 ∈ [a, b], k ≥ k0. Thus the sequence {u(n−1)
k } is equicontinu-

ous on [a, b]. By (1.10) the sequence {u(n−1)
k } is bounded on [0, T ]. Using

the Arzelà-Ascoli theorem and the diagonalization theorem we deduce that
the subsequence {uk`

} in (1.11) can be chosen so that it fulfils (1.12).

Step 2. Convergence of the sequence of approximate nonlinearities.

Consider the set

V1 = {t∈ [0, T ] : f(t, ·, . . . , ·) : D → R is not continuous}.
We can see that meas (V1) = 0. By (1.30), there exists V2 ⊂ [0, T ] such
that meas (V2) = 0 and for each k ∈N, each t∈ [0, T ] \ V2 and each
(x0, . . . , xn−1)∈D, the equality

fk(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1)
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holds if |xi− ci| ≥ 1
k
, 0 ≤ i ≤ n−1. Denote U = S ∪V1∪V2 and choose an

arbitrary t∈ [0, T ] \ U . By (1.11) and (1.12) there exists `0 ∈N such that
for each `∈N, ` ≥ `0,

|u(i)(t)− ci| > 1

k`

, |u(i)
k`

(t)− ci| ≥ 1

k`

for i∈{0, . . . , n− 1}.

According to (1.30) we have

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) = f(t, uk`
(t), . . . , u

(n−1)
k`

(t))

and, by (1.11), (1.12),

lim
`→∞

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) = f(t, u(t), . . . , u(n−1)(t)). (1.32)

Since meas (U) = 0, equality (1.32) holds for a.e. t∈ [0, T ].

Step 3. The function u is a w-solution of problem (1.1), (1.2).

Choose an arbitrary interval [a, b] ⊂ J. By virtue of (1.31) and (1.32) we
can use the Vitali convergence theorem to show that

f(t, u(t), . . . , u(n−1)(t))∈L1[a, b]

and that if we pass to the limit in the sequence

u
(n−1)
k`

(t) = u
(n−1)
k`

(a) +

∫ t

a

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds, t∈ [a, b],

we get

u(n−1)(t) = u(n−1)(a) +

∫ t

a

f(s, u(s), . . . , u(n−1)(s)) ds, t∈ [a, b].

Since [a, b] ⊂ J is an arbitrary interval, we conclude that u∈ACn−1
loc (J)

satisfies equation (1.1) for a.e. t∈ [0, T ].

Step 4. The function u is a solution of problem (1.1), (1.2).

Let, moreover,

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) ≥ ψ(t) for a.e. t∈ [0, T ] and all `∈N.
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Assumption (1.10) yields the existence of c > 0 such that
∫ T

0

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t))dt = u
(n−1)
k`

(T )− u
(n−1)
k`

(0) ≤ c.

Therefore, by (1.32) and the Fatou lemma, f(t, u(t), . . . , u(n−1)(t))∈L1[0, T ]
and u∈ACn−1[0, T ]. ¤

Now we will consider problem (1.1), (1.2) on [0, T ] × A provided A =
A0 × · · · × An−1 and f has space singularities at each xi, namely at the
values ci ∈Ai, i = 0, . . . , n − 1. So, we assume Di = Ai \ {ci}, i =
0, . . . , n− 1,





f ∈Car([0, T ]×D) satisfies (1.27) for j = 0, . . . , n− 1,

where D = D0 × · · · × Dn−2 ×Dn−1.
(1.33)

Theorem 1.7 (Second principle for space singularities).

Let (1.10), (1.22), (1.30) and (1.33) hold. Assume that the sequence

{fk(t, uk(t), . . . , u
(n−1)
k (t))} is uniformly integrable on [0, T ]. (1.34)

Then there exist a function u∈Ω and a subsequence {uk`
} ⊂ {uk} such

that lim`→∞ ‖uk`
− u‖Cn−1 = 0 and (u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ].

If, moreover, the functions u(i)−ci, 0 ≤ i ≤ n−1, have at most a finite
number of zeros in [0, T ], then u∈ACn−1[0, T ] is a solution of (1.1), (1.2).

Proof. Step 1. Convergence of the sequence of approximate solutions.

Assumption (1.34) yields that for each ε > 0 there exists δ > 0 such
that for each t1, t2 ∈ [0, T ] and each k ∈N the implication

|t2 − t1| < δ

=⇒ |u(n−1)
k (t2)− u

(n−1)
k (t1)| =

∣∣∣∣
∫ t2

t1

fk(t, uk(t), . . . , u
(n−1)
k (t)) dt

∣∣∣∣ < ε

is valid. Therefore the sequence {u(n−1)
k } is equicontinuous on [0, T ]. This

together with (1.10) and the Arzelà-Ascoli theorem guarantees the existence
of a subsequence {uk`

} of {uk} such that

lim
`→∞

‖uk`
− uk‖Cn−1 = 0.
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Since A is closed in Rn and B is closed in Cn−1[0, T ], we get

(u(t), . . . , u(n−1)(t))∈A for t∈ [0, T ] and u∈B.

Step 2. As in Step 2 in the proof of Theorem 1.5 we get that (1.32) is valid.

Step 3. The function u is a solution of problem (1.1), (1.2).

By virtue of (1.7) we have for `∈N

u
(n)
k`

(t) = f(t, uk`
(t), . . . , u

(n−1)
k`

(t)) for a.e. t∈ [0, T ]

and

u
(n−1)
k`

(t) = u
(n−1)
k`

(0) +

∫ t

0

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds for t∈ [0, T ].

By (1.32), (1.34) and the Vitali convergence theorem we can pass to the limit
and get

u(n−1)(t) = u(n−1)(0) +

∫ t

0

f(s, u(s), . . . , u(n−1)(s)) ds for t∈ [0, T ]

with f(t, u(t), . . . , u(n−1)(t))∈L1[0, T ]. Therefore u∈ACn−1[0, T ] satisfies
equation (1.1) a.e. on [0, T ]. ¤

All the above mentioned existence principles (Theorems 1.3–1.7) require
condition (1.10) and so, in order to apply them, we need global a pri-
ori estimates for all approximate solutions uk and for all their derivatives
u

(i)
k , 1 ≤ i ≤ n − 1. We can see in literature that local a priori estimates

of u
(n−1)
k can be sufficient for the existence of w-solutions (see e.g. Kigu-

radze and Shekhter [118]). However, such existence results give w-solutions
with, in general, unbounded (n − 1) st derivative. Here, our main goal is
to prove the existence of solutions. To this purpose only w-solutions whose
(n−1) st derivatives are bounded on the set where they are defined are useful.
Therefore condition (1.10) appears in all our principles.
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Chapter 2

Focal problem

Focal problems have received large attention (see e.g. Agarwal [2]). This is
due to the fact that these types of problems are basic, in the sense that the
methods employed in their study are extendable to other types of problems.
Here we will consider the n – th order differential equation with (p, n − p)
right focal conditions

u(i)(0) = 0, 0 ≤ i ≤ p− 1, u(j)(T ) = 0, p ≤ j ≤ n− 1 (2.1)

or with (n− p, p) left focal conditions

u(i)(0) = 0, p ≤ i ≤ n− 1, u(j)(T ) = 0, 0 ≤ j ≤ p− 1, (2.2)

where n∈N, n ≥ 2 and p∈{1, . . . , n− 1} is fixed.

Using the existence principles of Chapter 1 we will investigate both the
focal problems with time singularities and the focal problems with space
singularities.

2.1 Time singularities

First, consider a (1, n− 1) left focal problem

u(n) = f(t, u, . . . , u(n−1)), (2.3)

u(n−1)(0) = 0, u(i)(T ) = 0, 0 ≤ i ≤ n− 2. (2.4)

We will assume

f ∈Car([0, T )× Rn) has a time singularity at t = T (2.5)

and prove the existence result for problem (2.3), (2.4) by means of Theo-
rem 1.5 (Third principle for time singularities). Since we impose no addi-
tional conditions on solutions of (2.3), (2.4), we have

A = Rn, B = {u∈Cn−1[0, T ] : u satisfies (2.4)}.

23
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Theorem 2.1. Assume (2.5) and let





f(t, x0, . . . , xn−1) sign xn−1 ≤ −h(t)|xn−1|+
n−1∑
j=0

hj(t)|xj|αj

for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn,

(2.6)

where αj ∈ (0, 1), hj ∈L1[0, T ], j = 0, . . . , n − 1, are nonnegative and
h∈Lloc[0, T ) is nonnegative and satisfies

∫ T

T−ε

h(s) ds = +∞ for each sufficiently small ε > 0. (2.7)

Then problem (2.3), (2.4) has a solution u∈ACn−1[0, T ].

Proof. Step 1. Approximate regular problems.

For s, ρ∈ (0,∞) put

χ(s, ρ) =





1 if s∈ [0, ρ],

2 ρ− s

ρ
if s∈ (ρ, 2 ρ),

0 if s ≥ 2ρ

Further, for k ∈N, (x0, . . . , xn−1)∈Rn and for a.e. t∈ [0, T ], define

fk(t, x0, . . . , xn−1) =





f(t, x0, . . . , xn−1) if t∈ [0, T − 1
k
],

0 if t∈ (T − 1
k
, T ]

(2.8)

and

gk(t, x0, . . . , xn−1) = χ

(
n−1∑
i=0

|xi|, ρ
)

fk(t, x0, . . . , xn−1). (2.9)

Choose a k ∈N and consider auxiliary approximate regular problems

u(n) = fk(t, u, . . . , u(n−1)), (2.4) (2.10)

and

u(n) = gk(t, u, . . . , u(n−1)), (2.4). (2.11)
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For a.e. t∈ [0, T ] define

mk(t) =





sup {|f(t, x0, . . . , xn−1)| :
n−1∑
i=0

|xi| ≤ 2ρ} if t ≤ T − 1
k
,

0 if t > T − 1
k
.

Then mk ∈L1[0, T ] and gk(t, x0, . . . , xn−1)| ≤ mk(t) for a.e. t∈ [0, T ].
Since the homogeneous problem u(n) = 0, (2.4) has only the trivial solution,
we get by the Fredholm type existence theorem that problem (2.11) has a
solution uk ∈AC(n−1)[0, T ].

Step 2. Estimates of approximate solutions uk .

Let us fix k ∈N and assume

max{|u(n−1)
k (t)| : t∈ [0, T ]} = |u(n−1)

k (b)| = r > 0.

By condition (2.4), we have b∈ (0, T ] and we can find a∈ [0, b) such that

|u(n−1)
k (a)| = 0 and |u(n−1)

k (t)| > 0 for t∈ (a, b].

Since u
(n−1)
k (t) = u

(n−1)
k (T − 1

k
) for t∈ [T − 1

k
, T ], we can assume that

b ≤ T − 1
k
. By virtue of assumption (2.6) we get for a.e. t∈ [a, b]

u
(n)
k (t) sign u

(n−1)
k (t)

= χ

(
n−1∑
i=0

|u(i)
k (t)|, ρ

)
f(t, uk(t), . . . , u

(n−1)
k (t)) sign u

(n−1)
k (t)

≤ χ

(
n−1∑
i=0

|u(i)
k (t)|, ρ

)
n−1∑
j=0

hj(t) |u(j)
k (t)|αj ≤

n−1∑
j=0

hj(t) |u(j)
k (t)|αj ,

and hence

|u(n−1)
k (t)|′ ≤

n−1∑
j=0

hj(t) |u(j)
k (t)|αj . (2.12)

Conditions (2.4) yield ‖u(j)
k ‖∞ ≤ r T n−j−1, j = 0, . . . , n − 2. Integrating

inequality (2.12) over [a, b] we obtain

r = |u(n−1)
k (b)| ≤

n−1∑
j=0

T αj(n−j−1) r αj

∫ T

0

hj(t) dt
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and

1 ≤
n−1∑
j=0

T αj(n−j−1) r αj−1‖hj‖1 =: F (r). (2.13)

We have limx→∞ F (x) = 0, which implies the existence of r∗ > 0 such that
F (x) < 1 for all x ≥ r∗. Therefore, by (2.13), the estimate r < r∗ must
be true. Since r∗ does not depend on uk (but just on T, hj, αj ), we get

‖uk‖Cn−1 < r∗
n−1∑
j=0

T n−j−1 for each k ∈N.

If we define

ρ = r∗
n−1∑
j=0

T n−j−1 and Ω = {x∈Cn−1[0, T ] : ‖x‖Cn−1 ≤ ρ},

we see that uk is a solution of (2.10) and uk ∈Ω for each k ∈N. We have
proved that conditions (1.9) and (1.10) of Theorem 1.5 are valid.

Step 3. Properties of approximate solutions.

According to (2.6) and (2.8) we get for a.e. t∈ [0, T − 1
k
]

fk(t, uk(t), . . . , u
(n−1)
k (t)) sign u

(n−1)
k (t)

≤
n−1∑
j=0

hj(t) |u(j)
k (t)|αj < (ρ + 1)

n−1∑
j=0

hj(t).

Put

ψ(t) = −(ρ + 1)
n−1∑
j=1

hj(t) for a.e. t∈ [0, T ].

Then ψ ∈L1[0, T ], ψ ≤ 0 a.e. on [0, T ], and




−fk(t, uk(t), . . . , u

(n−1)
k (t)) sign u

(n−1)
k (t) ≥ ψ(t)

for a.e. t∈ [0, T ].
(2.14)
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Due to (2.7), condition (1.6)(i) with t0 = T is satisfied.

Put λ1 = −1 and choose an arbitrary η ∈ (0, T ). Then, by (2.14), we
get (1.20). Moreover condition (2.4) yields (1.22).

Now, let us put vk(t) = u
(n−1)
k (t) for t∈ [0, T ]. Then for each k ∈N,

k > 1
η
, the function vk satisfies (A.19) with h∗ = 0 a.e. on [T − 1

k
, T ].

Since uk ∈Ω, we can find β0 ∈ (0, ρ) such that vk fulfils condition (A.17).
By (2.6) we get (A.18), where g∗(t) = (ρ + 1)

∑n−1
j=0 hj(t). Hence, by Crite-

rion A.11, the sequence {vk} is equicontinuous at T from the left. Therefore

{u(n−1)
k } satisfies (1.23) with t0 = T and, by Theorem 1.5, there exists a

solution u∈ACn−1[0, T ] of problem (2.3), (2.4). ¤

Example. Let c∈R, α∈ [1,∞). Then the function

f(t, x0, . . . , xn−1) = −xn−1

tα
+

c√
t

n−1∑
j=0

x
2
3
j

satisfies (2.5) and (2.6), where hj(t) = |c|√
t
, h(t) = 1

t α , αj = 2
3

for j =

0, . . . , n− 1. Therefore the corresponding problem (2.3), (2.4) has a solution
u∈ACn−1[0, T ].

2.2 Space singularities

Let R− = (−∞, 0) and R+ = (0,∞). We study the singular (p, n − p)
right focal problem

(−1)n−p u(n) = f(t, u, . . . , u(n−1)), (2.15)

u(i)(0) = 0, 0 ≤ i ≤ p− 1, u(j)(T ) = 0, p ≤ j ≤ n− 1, (2.16)

where f ∈Car([0, T ]×D) with

D =





Rp+1
+ × R− × R+ × R− × · · · × R+︸ ︷︷ ︸

n

if n− p is odd,

Rp+1
+ × R− × R+ × R− × · · · × R−︸ ︷︷ ︸

n

if n− p is even
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and f may be singular at the value 0 of any of its space variables. Notice
that if f is positive then the singular points corresponding to the solu-
tions of problem (2.15), (2.16) are of type I. The Green function of prob-
lem u(n) = 0, (2.16) is presented in Agarwal [1], Agarwal, O’Regan and Us-
mani [23], [24] and Agarwal, O’Regan and Wong [21].

We introduce the following assumptions:




f ∈Car([0, T ]×D) and there exist positive constants a, r

such that

a (T − t)r ≤ f(t, x0, . . . , xn−1)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D,

(2.17)





f(t, x0, . . . , xn−1) ≤ h
(
t,

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D, where

h∈Car([0, T ]× [0,∞)) is positive and nondecreasing

in the second variable,

ωj : R+ → R+ is nonincreasing for 0 ≤ j ≤ n− 1,

lim sup
v→∞

1

v

∫ T

0

h(t, V v) dt < 1, where V =

{
T n−1
T−1

if T 6= 1,

n if T = 1,

and

∫ 1

0

ωj(t
r+n−j) dt < ∞ for 0 ≤ j ≤ n− 1.

(2.18)

Substituting t = T − s in (2.15), (2.16), we get the singular (n − p, p)
left focal problem

(−1)p u(n) = f̃(s, u, . . . , u(n−1)), (2.19)

u(i)(0) = 0, p ≤ i ≤ n− 1, u(j)(T ) = 0, 0 ≤ j ≤ p− 1, (2.20)
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where f̃ ∈Car([0, T ]×D∗) fulfils

f̃(t, x0, x1, . . . , xn−1) = f(T − t, x0,−x1, . . . , (−1)n−1xn−1)

for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈D∗. Here

D∗ =





R+ × R− × R+ × · · · × R− × Rn−p
+︸ ︷︷ ︸

n

if p is even,

R+ × R− × R+ × · · · × R+ × Rn−p
−︸ ︷︷ ︸

n

if p is odd.

The corresponding assumptions for problem (2.19), (2.20) have the form:




f̃ ∈Car([0, T ]×D∗) and there exist positive constants a, r

such that

a t r ≤ f̃(t, x0, . . . , xn−1)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D∗,

(2.21)





f̃(t, x0, . . . , xn−1) ≤ h
(
t,

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D∗,
where the functions h and ωj, 0 ≤ j ≤ n− 1, have

the properties given in (2.18).

(2.22)

A priori estimates

Let us choose positive constants a and r and define the set

B(r, a) = {u∈ACn−1[0, T ] : u fulfils (2.16) and (2.24)} (2.23)

where

(−1)n−p u(n)(t) ≥ a (T − t)r for a.e. t∈ [0, T ]. (2.24)

The next two lemmas are devoted to the study of the set B(r, a). The
results obtained in this part will be used in the proofs of existence results for
auxiliary regular problems.
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Lemma 2.2. There exists c > 0 such that the inequalities

u(j)(t) ≥ c tr+n−j for 0 ≤ j ≤ p− 1, (2.25)

(−1)j−p u(j)(t) ≥ c (T − t)r+n−j for p ≤ j ≤ n− 1, (2.26)

are true for t∈ [0, T ] and each u∈B(r, a).

Proof. Put

c =
a

(r + 1)(r + 2) . . . (r + n)
.

Then, integrating inequality (2.24) and using condition (2.16), we get step
by step that (2.26) holds on [0, T ] and that

u(p−1)(t) ≥ c (T r+n−p+1 − (T − t)r+n−p+1) for t∈ [0, T ]. (2.27)

Set ν = r + n− p + 1 and consider the function ϕ(t) = T ν − (T − t)ν − tν

on [0, T ]. Since ν > 2, ϕ(0) = ϕ(T ) = 0 and ϕ is concave on [0, T ],
we have ϕ > 0 on (0, T ) and thus T r+n−p+1 − (T − t)r+n−p+1 > tr+n−p+1

holds on (0, T ), which together with inequality (2.27) yields

u(p−1)(t) ≥ c tr+n−p+1 for t∈ [0, T ]. (2.28)

Now, using (2.16) again and integrating (2.28), we successively obtain in-
equality (2.25) for t∈ [0, T ]. ¤

Lemma 2.3. Let functions h and ωj, 0 ≤ j ≤ n− 1, have the properties
given in condition (2.18). Then there exists a positive constant S such that
for each function u∈B(r, a) satisfying

(−1)n−p u(n)(t) ≤ h
(
t, n +

n−1∑
j=0

|u(j)(t)|
)

+
n−1∑
j=0

[ωj(1) + ωj(|u(j)(t)|)] (2.29)

for a.e. t∈ [0, T ], the estimate

‖u(n−1)‖∞ < S (2.30)

is valid.
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Proof. Given a function u∈B(r, a) which satisfies (2.29) a.e. on [0, T ], we
put ρ = ‖u(n−1)‖∞. Then we integrate the inequality

|u(n−1)(t)| ≤ ρ for t∈ [0, T ],

and due to condition (2.16) we successively get

‖u(j)‖ ≤ ρT n−j−1, 0 ≤ j ≤ n− 2. (2.31)

Further, we integrate (2.29) over [t, T ] ⊂ [0, T ] and in view of (2.31) we see
that the inequality





ρ ≤
∫ T

0

h
(
t, n + ρ

n−1∑
j=0

T n−j−1
)

dt

+
n−1∑
j=0

∫ T

0

ωj(|u(j)(t)|) dt + T

n−1∑
j=0

ωj(1)

(2.32)

holds. In order to find S fulfilling inequality (2.30) we need to estimate the
integrals

∫ T

0

ωj(|u(j)(t)|) dt, 0 ≤ j ≤ n− 1.

For this purpose we distinguish two cases.

Case 1. Let 0 ≤ j ≤ p − 1. Then, by Lemma 2.2, there exists c > 0 such
that

∫ T

0

ωj(|x(j)(t)|) dt ≤
∫ T

0

ωj(c tr+n−j) dt =

∫ T

0

ωj((cj t)r+n−j) dt (2.33)

where cr+n−j
j = c. Therefore

∫ T

0

ωj(|u(j)(t)|) dt ≤ 1

cj

∫ cj T

0

ωj(t
r+n−j) dt =: Cj.

Case 2. Let p ≤ j ≤ n− 1. Then, by Lemma 2.2 and inequality (2.26),

∫ T

0

ωj(|u(j)(t)|) dt ≤
∫ T

0

ωj(c (T − t)r+n−j) dt =

∫ T

0

ωj(c tr+n−j) dt = Cj,
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that is, (2.33) holds for p ≤ j ≤ n− 1, too.

After inserting (2.33) into (2.32) we obtain

ρ ≤
∫ T

0

h(t, n + ρV ) dt +
n−1∑
j=0

[Cj + T ωj(1)], (2.34)

where V is given in assumption (2.18). Since

lim sup
v→∞

1

v

∫ T

0

h(t, V v) dv < 1

by our assumption, there exists a positive constant S such that

∫ T

0

h(t, n + V v) dt +
n−1∑
j=0

[Cj + T ωj(1)] < v

whenever v ≥ S. This together with (2.34) shows that ρ < S, which proves
inequality (2.30). ¤

Approximate regular problems

Let S be the positive constant from the assertion of Lemma 2.3. For
m∈N, 0 ≤ j ≤ n− 1 and v ∈R, put

ρj = 1 + S T n−j−1 (2.35)

and

σj(
1
m

, v) =





1
m

sign v if |v| < 1
m

,

v if 1
m
≤ |v| ≤ ρj,

ρj sign v if ρj < |v|.

Let f ∗ denote the extension of f onto [0, T ] × (R \ {0})n as an even
function in each its space variable xj, 0 ≤ j ≤ n− 1, and for a.e. t∈ [0, T ]
and for all (x0, . . . , xn−1)∈Rn, m∈N, define an auxiliary function

fm(t, x0, . . . , xn−1) = f ∗(t, σ0(
1
m

, x0), . . . , σn−1(
1
m

, xn−1)). (2.36)
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Consider the sequence of regular differential equations

(−1)n−p u(n) = fm(t, u, . . . , u(n−1)) (2.37)

depending on m∈N.

Lemma 2.4. Let assumptions (2.17) and (2.18) hold, let B(r, a) be given
in (2.23) and let S be from Lemma 2.3. Then, for each m∈N, problem
(2.37), (2.16) has a solution um ∈B(r, a) and

‖u(n−1)
m ‖∞ < S. (2.38)

Proof. Fix an arbitrary m∈N. Assumption (2.17) and formula (2.36) yield
fm ∈Car([0, T ]× Rn). Put

gm(t) = sup{|f ∗(t, x0, . . . , xn−1)| : 1
m
≤ |xj| ≤ ρj, 0 ≤ j ≤ n− 1},

where ρj, 0 ≤ j ≤ n− 1, are given by (2.35). Then gm ∈L1[0, T ] and

|fm(t, x0, . . . , xn−1)| ≤ gm(t) for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn.

Since the problem (−1)n−p u(n) = 0, (2.16) has only the trivial solution, the
Fredholm type existence theorem implies that problem (2.37), (2.16) has a
solution um ∈ACn−1[0, T ]. Further, by assumptions (2.17) and (2.18), we
see that the inequalities

a (T − t)r ≤ fm(t, x0, . . . , xn−1), (2.39)

fm(t, x0, . . . , xn−1) ≤ h
(
t, n +

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

[ωj(1) + ωj(|xj|)] (2.40)

are satisfied for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn. Notice that in-
equality (2.40) follows from the relations

|σj(
1
m

, xj)| ≤ 1+ |xj|, ωj(|σj(
1
m

, xj)|) ≤ ωj(1)+ωj(|xj|), 0 ≤ j ≤ n− 1,

and the facts that h is nondecreasing in the second variable and ωj is
nonincreasing. In view of (2.39) we have um ∈B(r, a) and therefore from
(2.40) and Lemma 2.3, we conclude (2.38). ¤

Existence results

First, we consider the singular (p, n−p) right focal problem (2.15), (2.16)
with 1 ≤ p ≤ n− 1.
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Theorem 2.5. Let assumptions (2.17) and (2.18) hold. Then there exists
a solution u∈ACn−1[0, T ] of problem (2.15), (2.16) such that





u(j) > 0 on (0, T ] for 0 ≤ j ≤ p− 1,

(−1)j−p u(j) > 0 on [0, T ) for p ≤ j ≤ n− 1.
(2.41)

Proof. According to Lemma 2.4, for each m∈N problem (2.37), (2.16) has
a solution um ∈B(r, a) satisfying inequality (2.38) where S is a positive
constant independent of m. By Lemma 2.2 there exists c > 0 such that for
m∈N and t∈ [0, T ] we have

u(j)
m (t) ≥ c t r+n−j for 0 ≤ j ≤ p− 1, (2.42)

(−1)j−p u(j)
m (t) ≥ c (T − t) r+n−j for p ≤ j ≤ n− 1. (2.43)

Condition (2.16) and inequality (2.30) yield

‖u(j)
m ‖∞ < S T n−j−1 < ρj, 0 ≤ j ≤ n− 1. (2.44)

Here ρj is defined in formula (2.35). We now show that the sequence

{fm(t, um(t), . . . , u
(n−1)
m (t))} is uniformly integrable on [0, T ]. By assump-

tion (2.17) and inequalities (2.40), (2.42)– (2.44) we have

0 ≤ fm(t, um(t), . . . , u(n−1)
m (t)) ≤ h(t, n + SV ) + q(t) +

n−1∑
j=0

ωj(1) (2.45)

for a.e. t∈ [0, T ] and all m∈N, where

q(t) =

p−1∑
j=0

ωj(c tr+n−j) +
n−1∑
j=p

ωj(c (T − t)r+n−j).

Put cj = r+n−j
√

c for 0 ≤ j ≤ n− 1. Then

∫ T

0

q(t) dt =

p−1∑
j=0

1

cj

∫ cj T

0

ωj(t
r+n−j) dt +

n−1∑
j=p

1

cj

∫ cj T

0

ωj(t
r+n−j) dt.

By assumption (2.18), the functions h(t, n + V S) and ωj(t
r+n−j), 0 ≤

j ≤ n− 1, belong to L1[0, T ]. Therefore h(t, n + SV ) + q(t)∈L1[0, t] and
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from (2.45) and Criterion A.1 it follows that {fm(t, um(t), . . . , u
(n−1)
m (t))}

is uniformly integrable on [0, T ]. Hence the first assertion in Theorem 1.7
guarantees the existence of a subsequence {um′} of {um} which converges
in Cn−1[0, T ] to a function u∈Cn−1[0, T ]. Letting m′ →∞ in inequalities
(2.42) and (2.43) (with m′ instead of m ) yields

u(j)(t) ≥ c tr+n−j for 0 ≤ j ≤ p− 1,

(−1)j−p u(j)(t) ≥ c (T − t)r+n−j for p ≤ j ≤ n− 1

for t∈ [0, T ] and so u satisfies inequality (2.41). We see that u(j) has
exactly one zero on [0, T ] for 0 ≤ j ≤ n − 1. Hence u∈ACn−1[0, T ] and
u is a solution of problem (2.15), (2.16) by Theorem 1.7. ¤

Substituting t = T−s in (2.15), (2.16) and using Theorem 2.5 we obtain
the following existence result for the singular (n − p, p) left focal problem
(2.19), (2.20) with 1 ≤ p ≤ n− 1.

Theorem 2.6. Let assumptions (2.21) and (2.22) hold. Then problem
(2.19), (2.20) has a solution u∈ACn−1[0, T ] and





(−1)j u(j) > 0 on [0, T ) for 0 ≤ j ≤ p− 1,

(−1)p u(j) > 0 on (0, T ] for p ≤ j ≤ n− 1. ¤

Example. Let r > 0, αj ∈ (0, 1
r+n−j

) for 0≤ j≤n−1. Let c∈L∞[0, T ],

aj ∈L∞[0, T ], bj ∈L1[0, T ] be nonnegative for 0 ≤ j ≤ n−1, 0 < a < c(t)
for a.e. t∈ [0, T ] and

∫ T

0

γ(t)dt <
1

V
,

where γ(t) = max{bj(t) : 0 ≤ j ≤ n− 1} for a.e. t∈ [0, T ] and V is given
in (2.18). Then the differential equation

(−1)n−p u(n) = c(t) (T − t)r +
n−1∑
j=0

(
aj(t)

|u(j)|αj
+ bj(t) |u(j)|

)
(2.46)
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satisfies all assumptions of Theorem 2.5. Hence, for each p∈{1, . . . , n− 1},
problem (2.46), (2.16) has a solution u∈ACn−1[0, T ] satisfying inequality
(2.41).

Bibliographical notes

Theorem 2.1 is new and represents the first result in literature for the exis-
tence of solutions of (1, n− j) focal problems with time singularities. Theo-
rem 2.5 was adapted from Rach̊unková and Staněk [159], also see Rach̊unková
and Staněk [163]. Existence results for positive solutions to singular (p, n−p)
focal problems are available in Agarwal [2], Agarwal and O’Regan [8], [9], [10]
and Agarwal, O’Regan and Lakshmikantham [15]. The paper [9] is the first to
establish the existence of two solutions. Further multiplicity results solutions
are established in [10]. The technique presented in [9] and [10] to guarantee
the existence of twin solutions to singular (p, n−p) focal problems combines
(i) a nonlinear alternative of Leray-Schauder type, (ii) Krasnoselskii’s fixed
point theorem in a cone, and (iii) lower type inequalities.



Chapter 3

(n, p) problem

Now we are concerned with the singular (n, p) problem

−u(n) = f(t, u, , . . . , u(n−1)), (3.1)

u(j)(0) = 0, 0 ≤ j ≤ n− 2, u(p)(T ) = 0, p fixed, 0 ≤ p ≤ n− 1, (3.2)

where n ≥ 2, f ∈Car([0, T ]×D), D ⊂ Rn and f(t, x0, . . . , xn−1) may be
singular at the value 0 of its space variables x0, . . . , xn−2. Notice that the
(n, 0) problem is simultaneously the (1, n−1) conjugate problem discussed
in Chapter 4. For f positive, solutions of problem (3.1), (3.2) have singular
points of type I at t = 0, T and also singular points of type II. We will work
with the following assumptions on the function f in (3.1):




f ∈Car([0, T ]×D) where D = (0,∞)× (R \ {0})n−2 × R
and there exist a positive function ψ ∈L1[0, T ] and K > 0

such that

ψ(t) ≤ f(t, x0, . . . , xn−1) for a.e. t∈ [0, T ]

and each (x0, . . . , xn−1)∈ (0, K]× (R \ {0})n−2 × R,

(3.3)





0 < f(t, x0, . . . , xn−1) ≤ h
(
t,

n−1∑
j=0

|xj|
)

+
n−2∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D,

where h∈Car([0, T ]× [0,∞)) is positive and nondecreasing

in the second variable

ωj : (0,∞) → (0,∞) is nonincreasing,

lim sup
%→∞

1

%

∫ T

0

h(t, V (t)%) dt < 1 with V (t) =
n−1∑
j=0

tj

j!

and∫ 1

0

ωj(s
n−j−1) ds < ∞ for 0 ≤ j ≤ n− 2.

(3.4)

37
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Auxiliary results Put

G(t, s) =
1

(n− 1)!





tn−1
(
1− s

T

)n−p−1

−(t− s)n−1 for 0 ≤ s ≤ t ≤ T,

tn−1
(
1− s

T

)n−p−1

for 0 ≤ t < s ≤ T.

Then G(t, s) is the Green function of the problem

−u(n) = 0, (3.2) (3.5)

(see e.g. Agarwal [1] or Agarwal, O’Regan and Wong [21]).

Lemma 3.1. The Green function G(t, s) of problem (3.5) fulfils

G(T, s) > 0 for s∈ (0, T ) and for p > 0, (3.6)

∂jG(t, s)

∂tj
> 0 for (t, s)∈ (0, T )× (0, T ), (3.7)

and for 0 ≤ j ≤ min{p, n− 2}, p ≥ 0.

Proof. Property (3.6) of G follows from the inequality

(
1− s

T

)n−p−1

>
(
1− s

T

)n−1

which is true for s∈ (0, T ) and for p > 0. Further, let us suppose

0 ≤ j ≤ min{p, n− 2}
and prove inequality (3.7). We have

∂jG(t, s)

∂tj
=

1

(n− j − 1)!





tn−j−1
(
1− s

T

)n−p−1 − (t− s)n−j−1

for 0 ≤ s ≤ t ≤ T

tn−j−1
(
1− s

T

)n−p−1

for 0 ≤ t < s ≤ T

and therefore it is sufficient to show that
(
1− s

T

)n−p−1

>
(
1− s

t

)n−j−1

for 0 < s ≤ t < T. (3.8)
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Since the inequalities

(
1− s

T

)n−p−1

>
(
1− s

t

)n−p−1

≥
(
1− s

t

)n−j−1

are valid for 0 < s ≤ t < T, inequality (3.8) is true. ¤

Lemma 3.2. Let u∈ACn−1[0, T ] satisfy condition (3.2) and let

−u(n)(t) > 0 for a.e. t∈ [0, T ]. (3.9)

Then, if p > 0, we have





u(j)(t) > 0 for t∈ (0, T ], 0 ≤ j ≤ p− 1,

u(p)(t) > 0 for t∈ (0, T )
(3.10)

and if p = 0, we have

u(t) > 0 for t∈ (0, T ). (3.11)

Proof. We will consider two cases, namely (i) p =n−1 and (ii) 0≤ p≤n−2.

Case (i). Let p = n− 1. Then, by conditions (3.2) and (3.9), we have

0 < −
∫ T

t

u(n)(s) ds = u(n−1)(t) for t∈ [0, T ). (3.12)

Thus, integrating (3.12) from 0 to t and using (3.2), we get step by step

u(j)(t) > 0 for t∈ (0, T ], 0 ≤ j ≤ n− 2. (3.13)

Inequalities (3.12) and (3.13) give the assertion of Lemma 3.2.

Case (ii). Let 0 ≤ p ≤ n− 2. Then, using the formula

u(t) = −
∫ T

0

G(t, s) u(n)(s) ds, (3.14)

we can see that the assertion of Lemma 3.2 follows from (3.9) and from
Lemma 3.1. ¤
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A priori estimates

The following three lemmas give a priori estimates from below for func-
tions satisfying conditions (3.2) and (3.9). We consider the cases p = n− 1,
p = 0 and 1 ≤ p ≤ n− 2 separately.

Lemma 3.3. Let p = n − 1 and let u∈ACn−1[0, T ] satisfy conditions
(3.2), (3.9). Then the inequalities

u(j)(t) ≥ ‖u‖∞
T n−1

tn−j−1 for t∈ [0, T ], 0 ≤ j ≤ n− 2, (3.15)

are fulfilled.

Proof. Put

p0(t) = ‖u‖∞
( t

T

)n−1

for t∈ [0, T ]. (3.16)

Then p0(0) = · · · = p
(n−2)
0 (0) = 0, p0(T ) = ‖u‖∞. By virtue of inequality

(3.10) we have ‖u‖∞ = u(T ). So, if h(t) = u(t)− p0(t) for t∈ [0, T ], then
h satisfies the boundary conditions h(0) = · · · = h(n−2)(0) = 0, h(T ) = 0,
and moreover

h(n)(t) = u(n)(t)− p
(n)
0 (t) = u(n)(t) < 0 for a.e. t∈ [0, T ].

Therefore Lemma 3.2 (with h instead of u) gives h > 0 on (0, T ), that
is

u(t) ≥ p0(t) for t∈ [0, T ]. (3.17)

Further, put

p1(t) = ‖u′‖∞
( t

T

)n−2

for t∈ [0, T ]. (3.18)

Then p1(0) = · · · = p
(n−3)
1 (0) = 0, p1(T ) = ‖u′‖∞. Since ‖u′‖∞ = u′(T ),

the function h1 = u′ − p1 satisfies h1(0) = · · · = h
(n−3)
1 (0) = 0, h1(T ) = 0,

and moreover

h
(n−1)
1 = u(n) − p

(n−1)
1 = u(n) < 0 a.e. on [0, T ].
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Thus, by Lemma 3.2 where we use h1 and n − 1 instead of u and n,
respectively, we have h1 > 0 on (0, T ), that is

u′(t) ≥ p1(t) for t∈ [0, T ]. (3.19)

Similarly, for 2 ≤ j ≤ n− 2 we put

pj(t) = ‖u(j)‖∞
( t

T

)n−j−1

and hj(t) = u(j)(t)− pj(t) for t∈ [0, T ].

Using Lemma 3.2 (with hj and n− j instead of u and n ), we get hj > 0
on (0, T ) and therefore

u(j)(t) ≥ pj(t) for t∈ [0, T ], 2 ≤ j ≤ n− 2. (3.20)

Now (3.16)– (3.20) together with the inequalities

‖u(j)‖∞ ≥ ‖u‖∞
T j

, 1 ≤ j ≤ n− 2, (3.21)

give (3.15). ¤

Lemma 3.4. Let p = 0 and let u∈ACn−1[0, T ] satisfy assumptions (3.2),
(3.9). Then for 0 ≤ j ≤ n− 2 we have

u(j)(t)





≥ ‖u‖∞
T n−1

tn−j−1 for 0 ≤ t ≤ ξj+1,

≥ ‖u‖∞
T j+1

(ξj − t) for ξj+1 ≤ t ≤ ξj,

≤ ‖u‖∞
T j+1

(ξj − t) for ξj ≤ t ≤ T

(3.22)

with




0 < ξn−1 < ξn−2 < · · · < ξ2 < ξ1 < ξ0 = T

where ξi is a unique zero of u(i) in (0, T ), 1 ≤ i ≤ n− 1.
(3.23)

Proof. In view of (3.2) and (3.11) we have u(0) = u(T ) = 0, u > 0 on
(0, T ). Further, there is a unique ξ1 ∈ (0, T ) such that u′(ξ1) = 0 (otherwise
we would get a contradiction to inequality (3.9)). Similarly, in (0, T ) there
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is a unique ξi < ξi−1 such that u(i)(ξi) = 0, 2 ≤ i ≤ n − 1. According to
(3.9) we get

u(i) > 0 on (0, ξi), u(i) < 0 on (ξi, T ], 1 ≤ i ≤ n− 1. (3.24)

Hence

u(i) is concave on [ξi+2, T ] and convex on [0, ξi+2], 0≤ i≤n− 2, (3.25)

where ξn = 0. Let us prove inequality (3.22) for j = 0. Put

p0(t) = ‖u‖∞
( t

ξ1

)n−1

for t∈ [0, ξ1].

Then p0(0) = · · · = p
(n−2)
0 (0) = 0, p0(ξ1) = ‖u‖∞. Since ‖u‖∞ = u(ξ1),

the function h = u − p0 fulfils the boundary conditions h(0) = · · · =
h(n−2)(0) = 0, h(ξ1) = 0, and h(n)(t) < 0 for a.e. t∈ [0, ξ1]. Therefore, by
Lemma 3.2 (where we use h and ξ1 instead of u and T ), we deduce that
the inequality h > 0 holds on (0, ξ1), which gives

u(t) ≥ ‖u‖∞
T n−1

tn−1 for t∈ [0, ξ1]. (3.26)

By property (3.25), u is concave on [ξ1, T ] ⊂ [ξ2, T ]. Thus u(t) ≥ u(ξ1)
T−t
T−ξ1

for t∈ [ξ1, T ] and therefore

u(t) ≥ ‖u‖∞
T

(T − t) for t∈ [ξ1, T ]. (3.27)

Estimates (3.26) and (3.27) lead to inequality (3.22) for j = 0.

For 1 ≤ j ≤ n− 2, we put

pj(t) = u(j)(ξj+1)
( t

ξj+1

)n−j−1

and h(t) = u(j)(t)− pj(t)

on [0, ξj+1]. Since

u(j)(ξj+1) = ‖u(j)‖∞ ≥ ‖u‖∞
T j

, 1 ≤ j ≤ n− 2, (3.28)

we get as before

u(j)(t) ≥ ‖u‖∞
T n−1

tn−j−1 for t∈ [0, ξj+1]. (3.29)
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Further, using (3.25), we see that u(j) is concave on [ξj+1, T ] ⊂ [ξj+2, T ].
Hence





u(j)(t) ≥ u(j) (ξj+1)
ξj − t

ξj − ξj+1

≥ 0 for t∈ [ξj+1, ξj],

u(j)(t) ≤ u(j) (ξj+1)
ξj − t

ξj − ξj+1

≤ 0 for t∈ [ξj, T ].

(3.30)

Due to estimate (3.28) the above inequalities yield

|u(j)(t)| ≥ ‖u‖∞
T j+1

|ξj − t| for t∈ [ξj+1, T ]. (3.31)

Estimates (3.29)– (3.31) imply (3.22) for 1 ≤ j ≤ n− 2. ¤

Lemma 3.5. Let 1≤ p≤n−2 and let u∈ACn−1[0, T ] satisfy (3.2), (3.9).
Then, for 0≤ j≤ p−1, inequality (3.15) is true and for p≤ j≤n−2, in-
equalities (3.22) are valid on [0, T ] with 0 <ξn−1 <ξn−2 < . . . < ξp+1 <ξp = T,
where ξi is a unique zero of u(i) in (0, T ), p + 1 ≤ i ≤ n− 1.

Proof. For 0 ≤ j ≤ p− 1 we use the arguments of the proof of Lemma 3.3
and for p ≤ j ≤ n− 2 we argue as in the proof of Lemma 3.4. ¤

For the proof of solvability of problem (3.1), (3.2) we will need the fol-
lowing results.

Lemma 3.6. Let ψ ∈L1[0, T ] be positive. Then there is a positive constant
c = c(ψ) such that for each function u∈ACn−1[0, T ] satisfying (3.2) and

ψ(t) ≤ −u(n)(t) for a.e. t∈ [0, T ] (3.32)

the estimate ‖u‖∞ ≥ c holds.

Proof. Let G be the Green function of problem (3.5). There are two cases
to consider, namely (i) 1 ≤ p ≤ n− 1 and (ii) p = 0.

Case (i). Suppose 1 ≤ p ≤ n− 1 and define a function Φ by the formula

Φ(t, s) =
G(t, s)

tn−1
for (t, s)∈ (0, T ]× (0, T ].
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By Lemma 3.1, the function Φ is continuous and positive on (0, T ]× (0, T ).
Further, for any s∈ (0, T ) we have

∂n−1G(t, s)

∂tn−1

∣∣∣
(t,s)=(0,s)

=
(
1− s

T

)n−p−1

> 0.

Choose an arbitrary s∈ (0, T ). Then

lim
t→0+

Φ(t, s)=
1

(n−1)!

∂n−1G(t, s)

∂tn−1

∣∣∣
(t,s)=(0,s)

=
1

(n−1)!

(
1− s

T

)n−p−1

> 0,

which means that for any s∈ (0, T ) we can extend Φ(·, s) at t = 0 as
a continuous and positive function on [0, T ]. Thus the function

F (t) =

∫ T

0

Φ(t, s) ψ(s) ds

is continuous and positive on [0, T ], too. Therefore we can find d > 0 such
that F (t) ≥ d on [0, T ]. Then

u(t) = −
∫ T

0

G(t, s) u(n)(s) ds ≥
∫ T

0

G(t, s) ψ(s) ds

= tn−1

∫ T

0

G(t, s)

tn−1
ψ(s) ds = tn−1 F (t) ≥ tn−1 d for t∈ [0, T ].

This implies ‖u‖∞ = u(T ) ≥ T n−1 d = c.

Case (ii). Let p = 0. Define the function

Φ(t, s) =
G(t, s)

tn−1 (T − t)
for (t, s)∈ (0, T )× (0, T ).

In view of Lemma 3.1, Φ is continuous and positive on (0, T )× (0, T ). For
any s∈ (0, T ) we get

lim
t→0+

Φ(t, s) =
1

T (n− 1)!

(
1− s

T

)n−1

> 0

and

lim
t→T−

Φ(t, s) = − 1

T n−1

∂G(t, s)

∂t

∣∣∣
(t,s)=(T,s)

= − 1

T (n− 2)!

[(
1− s

T

)n−1

−
(
1− s

T

)n−2]
> 0,
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which means that for any s∈ (0, T ) we can extend Φ(·, s) to [0, T ] as
a continuous and positive function. Further we can argue as in Case (i). ¤

Lemma 3.7. Let a> 0, K > 0 and let the function ψ ∈L1[0, T ] be positive.
Furthermore, let the functions h, ωj, (0≤ j≤n−2) have the properties given
in assumption (3.4). Then there exist constants r > 0 and α∈ (0, K] such
that for each function u∈ACn−1[0, T ] satisfying (3.2),




−u(n)(t) ≤ a + h

(
t, n +

n−1∑
j=0

|u(j)(t)|
)

+
n−2∑
j=0

ωj(|u(j)(t)|)

for a.e. t∈ [0, T ]

(3.33)

and

‖u‖∞ ≤ K =⇒ ψ(t) ≤ −u(n)(t) for a.e. t∈ [0, T ], (3.34)

the estimates

‖u(n−1)‖∞ < r and ‖u‖∞ ≥ α (3.35)

are valid.

Proof. Let u∈ACn−1[0, T ] satisfy conditions (3.2), (3.33) and (3.34). Let
‖u‖∞ ≤ K. Then, by (3.34) and Lemma 3.6, there is a positive constant
c = c(ψ) such that ‖u‖∞ ≥ c. Otherwise we would have ‖u‖∞ > K. If we
put α = min{c,K}, then the second inequality in (3.35) is satisfied.

In order to prove the first estimate in (3.35) we put ‖u(n−1)‖∞ = ρ. Then
−ρ ≤ u(n−1)(t) ≤ ρ on [0, T ] and if we integrate this inequality from 0 to
t∈ (0, T ] and use (3.2), we get step by step

|u(j)(t)| ≤ ρ
tn−j−1

(n− j − 1)!
for t∈ [0, T ], 0 ≤ j ≤ n− 1. (3.36)

Lemmas 3.4 and 3.5 guarantee the existence of a unique zero ξn−1 of u(n−1)

with ξn−1 ∈ (0, T ) for 0 ≤ p ≤ n − 2 and ξn−1 = T for p = n − 1.
Integrating inequality (3.33) from t to ξn−1 gives

0 < u(n−1)(t) ≤ a (ξn−1 − t) +

∫ ξn−1

t

h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

ds

+
n−2∑
j=0

∫ ξn−1

t

ωj(|u(j)(s)|) ds
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for t∈ [0, ξn−1). If p < n− 1 and thus ξn−1 < T, we integrate (3.33) from
ξn−1 to t and get

0 < −u(n−1)(t) ≤ a (t− ξn−1) +

∫ t

ξn−1

h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

ds

+
n−2∑
j=0

∫ t

ξn−1

ωj(|u(j)(s)|) ds

for t∈ (ξn−1, T ]. Hence the inequality

|u(n−1)(t))| ≤ a T +
∣∣∣
∫ t

ξn−1

h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

ds
∣∣∣

+
n−2∑
j=0

∣∣∣
∫ t

ξn−1

ωj(|u(j)(s)|) ds
∣∣∣

is true for t∈ [0, T ], and consequently (see (3.36))

ρ ≤ a T +

∫ T

0

h(t, n + V (t) ρ) dt +
n−2∑
j=0

∫ T

0

ωj(|u(j)(t)|) dt (3.37)

where V is given in (3.4). We now estimate the integrals

∫ T

0

ωj(|u(j)(t)|) dt, 0 ≤ j ≤ n− 2.

We will consider three cases.

Case (i). Let p = n− 1. Then, by Lemma 3.3, for 0 ≤ j ≤ n− 2 we have

ωj(|u(j)(t)|) ≤ ωj

(‖u‖∞
T n−1

tn−j−1
)

for t∈ (0, T ].

Thus

ωj(|u(j)(t)|) ≤ ωj((cjt)
n−j−1) for t∈ (0, T ], 0 ≤ j ≤ n− 2, (3.38)
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where cn−j−1
j = αT 1−n. Inequality (3.38) implies

∫ T

0

ωj(|u(j)(t)|) dt ≤ 1

cj

∫ cj T

0

ωj(s
n−j−1) ds =: Bj

and therefore we have

∫ T

0

ωj(|u(j)(t)|) dt ≤ Bj, 0 ≤ j ≤ n− 2. (3.39)

Case (ii). Let p = 0. Then, by Lemma 3.4,

ωj(|u(j)(t)|) ≤




ωj((cjt)
n−j−1) for 0 ≤ t ≤ ξj+1

ωj(kj|ξj − t|) for ξj+1 ≤ t ≤ T
(3.40)

for 0 ≤ j ≤ n− 2, where

cn−j−1
j = α T 1−n, kj = αT−j−1 (3.41)

and ξj fulfils relation (3.23). Therefore

∫ T

0

ωj(|u(j)(t)|) dt

≤
∫ ξj+1

0

ωj((cj t)n−j−1) dt+

∫ ξj

ξj+1

ωj(kj (ξj − s)) dt+

∫ T

ξj

ωj(kj (t− ξj)) dt

≤ Bj +
1

kj

∫ kj (ξj−ξj+1)

0

ωj(s) ds +
1

kj

∫ kj (T−ξj)

0

ωj(s) ds ≤ Bj + Cj.

with Cj = 2
kj

∫ kj T

0
ωj(s) ds. Consequently, for 0 ≤ j ≤ n− 2 we have

∫ T

0

ωj(|u(j)(t)|) dt ≤ Bj + Cj. (3.42)

Case (iii). Let 1 ≤ p ≤ n − 2. Then, for 0 ≤ j ≤ p − 1, we have es-
timate (3.39) and, for p ≤ j ≤ n − 2, estimate (3.42) holds where ξj

(p + 1≤ j≤n−1) are from Lemma 3.5.
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In view of (3.37), (3.39) and (3.42) we deduce that in all the above three
cases

ρ ≤
∫ T

0

h(t, n + V (t)ρ) dt + D (3.43)

where D = a T +
∑n−2

j=0 (Bj + Cj). Since, by our assumption,

lim sup
ρ→∞

1

ρ

∫ T

0

h(t, V (t)ρ) dt < 1,

we have

lim sup
ρ→∞

1

ρ

∫ T

0

h(t, n + V (t) ρ) dt < 1

and consequently there exists r > 0 such that
∫ T

0

h(t, n + V (t) η) dt + D < η

whenever η ≥ r. Then inequality (3.43) gives ρ < r, which proves the first
inequality in (3.35) since ρ = ‖u(n−1)‖∞. ¤

Approximate regular problems

The main result on the existence of a solution of problem (3.1), (3.2) will
be proved by Theorem 1.7. To this end we consider a sequence of regular
problems constructed by the following procedure. Let K > 0, ψ, h and
ωj, 0 ≤ j ≤ n − 2, have the properties given in assumption (3.3) and
(3.4), a =

∑n−2
j=0 ωj(1) and let positive constants r and α be taken from

Lemma 3.7. Put

ρ0 = 1 + r T n−1 + K, ρi = 1 + r T n−i−1, 1 ≤ i ≤ n− 1,

σi(x) =

{
x for |x| ≤ %i,

ρi sign x for |x| > ρi,
0 ≤ i ≤ n− 1

and, for 0 < c < ρ0,

σ∗0(c, x) =





c for x < c,

x for c ≤ x ≤ ρ0

ρ0 for ρ0 < x.
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Choose m∈N and use the function f from (3.1) to define an auxiliary
function hm by means of the following recurrent formulas for a.e. t∈ [0, T ]
and all (x0, . . . , xn−1)∈D :

hm,0(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1),

hm,i(t, x0, . . . , xn−1)

=





hm,i−1(t, x0 . . . , xn−1) if |xi| ≥ 1
m

,

m
2

[
hm,i−1(t, x0, . . . , xi−1,

1
m

, xi+1, . . . , xn−1) (xi+
1
m

)

−hm,i−1(t, x0, . . . , xi−1,− 1
m

, xi+1, . . . , xn−1) (xi− 1
m

)
]

if |xi| < 1
m

,

for 1 ≤ i ≤ n− 2, and

hm(t, x0, . . . , xn−1) = hm,n−2(t, x0, . . . , xn−1).

Now, for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn put

fm(t, x0, . . . , xn−1) = hm(t, σ∗0(
1
m

, x0), σ1(x1), . . . , σn−1(xn−1)). (3.44)

Then, by conditions (3.3) and (3.4), fm ∈Car([0, T ]× Rn) and we have

{
ψ(t) ≤ fm(t, x0, . . . , xn−1)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈Rn, x0 ≤ K
(3.45)

and



0 < fm(t, x0, . . . , xn−1)

≤
n−2∑
j=0

ωj(1) + h
(
t, n +

n−1∑
j=0

|xj|
)

+
n−2∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈ (R \ {0})n−1 × R.

(3.46)

for m≥m0≥ 1
K

. Inequality (3.46) follows from the fact that

|σi(xi)| ≤ |xi| for 1≤ i≤n− 1,

|σ∗0( 1
m

, x0)| ≤ 1 + |x0|, σ∗0(
1
m

, x0) ≥ σ0(x0)

and

ωi(|σi(xi)|) ≤ ωi(|xi|) + ωi(1), 0 ≤ i ≤ n− 2.
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Consider auxiliary regular equations

−u(n) = fm(t, u, . . . , u(n−1)) (3.47)

where m ≥ m0.

Lemma 3.8. Let assumptions (3.3) and (3.4) hold. Then for each m∈N,
m ≥ m0, problem (3.47), (3.2) has a solution um ∈ACn−1[0, T ], the se-
quence

{fm(t, um(t), . . . , u(n−1)
m (t))}m≥m0 (3.48)

is uniformly integrable on [0, T ] and there exists a positive constants r such
that

‖u(n−1)
m ‖∞ < r for m ≥ m0. (3.49)

Proof. Choose m∈N, m ≥ m0 and put

gm(t) = sup
{

f(t, x0, . . . , xn−1) :

1
m
≤ x0 ≤ ρ0,

1
m
≤ |xi| ≤ ρi (0 ≤ i ≤ n− 2), |xn−1| ≤ ρn−1

}
.

Since f ∈Car([0, T ]×D), we have gm ∈L1[0, T ] and

fm(t, x0, . . . , xn−1) ≤ gm(t) for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn.

Since the homogeneous problem −u(n) = 0, (3.2) has only the trivial solu-
tion, the Fredholm type existence theorem guarantees the existence of a so-
lution um ∈ACn−1[0, T ] of problem (3.47), (3.2). By virtue of (3.45) and
(3.46), Lemma 3.7 gives

‖u(n−1)
m ‖∞ < r, ‖um‖∞ ≥ α, m ≥ m0, (3.50)

where r and α are positive constants taken from Lemma 3.7. Condition
(3.2) and the first inequality in (3.50) yield

‖u(n−j−1)
m ‖∞ < r T j < ρn−j−1, 0 ≤ j ≤ n− 1. (3.51)

It remains to verify that the sequence (3.48) is uniformly integrable on [0, T ].
By inequality (3.46),

0 ≤ fm(t, um(t), . . . , u(n−1)
m (t))

≤
n−2∑
j=0

ωj(1) + h
(
t, n +

n−1∑
j=0

|u(j)
m (t)|

)
+

n−2∑
j=0

ωj(|u(j)
m (t)|)
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for a.e. t∈ [0, T ] and all m ≥ m0. From the inequality (see (3.51))

0 < h
(
t, n +

n−1∑
j=0

|u(j)
m (t)|

)
≤ h

(
t, n + r

n−1∑
j=0

T j
)

and from h(t, n + r
∑n−1

j=0 T j)∈L1[0, T ] we see that the sequence (3.48) is
uniformly integrable on [0, T ] if the sequences

{ωj(|u(j)
m |)}m≥m0 , 0 ≤ j ≤ n− 2, (3.52)

have this property. We will distinguish three cases, namely p = n−1, p = 0
and 1 ≤ p ≤ n− 2.

Case (i). Suppose p = n − 1. Then Lemma 3.3 and the second inequality
in (3.50) give

u(j)
m (t) ≥ α

T n−1
tn−j−1 for t∈ [0, T ], 0 ≤ j ≤ n− 2, m ≥ m0. (3.53)

Hence

ωj(|u(j)
m (t)|) ≤ ωj(

α

T n−1
tn−j−1)

and since
∫ 1

0

ωj(s
n−j−1) ds < ∞ for 0 ≤ j ≤ n− 2

by assumption (3.4), the sequences in (3.52) are uniformly integrable on
[0, T ] by Criterion A.4.

Case (ii). Suppose p=0. Let ξi,m denote the unique zero of u
(i)
m , 1≤ i≤n−1,

in (0, T ). Then, by Lemma 3.4 and inequality (3.50),

0 < ξn−1,m < ξn−2,m < · · · < ξ2,m < ξ1,m = T (3.54)

and

u(j)
m (t)





≥ α

T n−1
tn−j−1 for 0 ≤ t ≤ ξj+1,m

≥ α

T j+1
(ξj,m − t) for ξj+1,m ≤ t ≤ ξj,m

≤ α

T j+1
(ξj,m − t) for ξj,m ≤ t ≤ T

(3.55)
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for 0 ≤ j ≤ n− 2, m ≥ m0. Hence for these j and m we have

|u(j)
m (t)| ≥

{
cj tn−j−1 for 0 ≤ t ≤ ξj+1,m

cj |ξj,m − t| for ξj+1,m ≤ t ≤ T
(3.56)

where

cj = α min{T 1−n, T−1−j}. (3.57)

Since

∫ 1

0

ωj(s
n−j−1) ds < ∞ for 0 ≤ j ≤ n− 2

by assumption (3.4), Criterion A.4 guarantees that the sequences in (3.52)
are uniformly integrable on [0, T ].

Case (iii). Suppose 1≤ p≤n−2. Then, by Lemma 3.5 and inequality (3.50),

u
(i)
m has a unique zero ξi,m in (0, T ) for p + 1 ≤ i ≤ n− 1,

0 < ξn−1,m < ξn−2,m < · · · < ξp+1,m < ξp,m = T,

u(j)
m (t) ≥ α

T n−1
tn−j−1 for t∈ [0, T ], 0 ≤ j ≤ p− 1, m ≥ m0

and inequality (3.55) holds for p≤ j≤n−2 and m≥m0. Now applying
arguments from Case (i) for 0≤ j≤ p−1 and from Case (ii) for p≤ j≤n−2,
we can verify that the sequences in (3.52) are uniformly integrable on [0, T ].

Summarizing, we have proved that the sequences in (3.48) are uniformly
integrable on [0, T ]. ¤

Main result

Theorem 3.9. Assume that assumptions (3.3) and (3.4) hold. Then there
exists a solution u∈ACn−1[0, T ] of problem (3.1), (3.2) such that

u(j) > 0 on (0, T ] if p ≥ 1 and 0 ≤ j ≤ p− 1 (3.58)

and

u(p) > 0 on (0, T ). (3.59)
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Proof. By Lemma 3.8, for each m∈N, m ≥ m0 ≥ 1
K

, there exists
a solution um ∈ACn−1[0, T ] of problem (3.47), (3.2) satisfying inequality
(3.50), which means that {um}m≥m0 is bounded in Cn−1[0, T ] and the se-
quence (3.48) is uniformly integrable on [0, T ], which further implies that

{u(n−1
m )}m≥m0 is equicontinuous on [0, T ]. Thus, by the Arzelà-Ascoli theo-

rem, we can assume without loss of generality that {um}m≥m0 is convergent
in Cn−1[0, T ] to a function u∈Cn−1[0, T ].

We now prove that the function u(j) has an at most finite number of zeros
on [0, T ] for 0 ≤ j ≤ n − 2. Then u∈ACn−1[0, T ] and u is a solution
of problem (3.1), (3.2) by Theorem 1.7 since the function f in (3.1) has no
singularity in its last space variable. Let p = n− 1. Then (3.53) is true and
letting m →∞ in (3.53) we obtain

u(j)(t) ≥ α

T n−1
tn−j−1, t∈ [0, T ], 0 ≤ j ≤ n− 2. (3.60)

From this inequality and from condition (3.2) we see that 0 is the unique zero
of u(j) for 0≤ j≤n−2. Let p = 0. Then (3.56) holds for 0≤ j≤n−2 and

m ≥ m0 where cj is given in (3.57) and ξi,m denotes the unique zero of u
(i)
m

in (0, T ) (0 ≤ i ≤ n−1). The localization of ξi,m is given in (3.54). Passing
if necessary to subsequences, we can assume that {ξi,m}m≥m0 is convergent;
let limm→∞ ξi,n = ξi, 0 ≤ i ≤ n− 1. Letting m →∞ in inequality (3.56)
yields

|u(j)(t)| ≥




cj tn−j−1 for 0 ≤ t ≤ ξj+1,

cj |ξj − t| for ξj+1 ≤ t ≤ T,
0 ≤ j ≤ n− 2. (3.61)

This and condition (3.2) show that u(j) has at most two zeros in [0, T ] for
0 ≤ j ≤ n− 2. Finally, let 1 ≤ p ≤ n − 2. In this case we can show that
the inequality in (3.60) holds for t∈ [0, T ] and 0 ≤ j ≤ p − 1 and that
in (3.61) for t∈ [0, T ] and p ≤ j ≤ n− 2. Therefore u(j) has at most two
zeros in [0, T ] for 0 ≤ j ≤ n− 2. Summarizing, we have proved that in all
the above cases u(j) has at most two zeros in [0, T ] for 0 ≤ j ≤ n− 2.

Finally, it follows from Lemma 3.2 that u(p) > 0 on (0, T ) and if p > 0
then from the inequalities in (3.60) for t∈ [0, T ] and 0 ≤ j ≤ p − 1 we
conclude that u(j) > 0 on (0, T ] for these j. ¤

Example. Let γ, δ, βi ∈ (0, 1), 0 <αj < 1
n−j−1

and let aj ∈L∞[0, T ] and

bi ∈L1[0, T ] be nonnegative for 0 ≤ j ≤ n − 2, 0 ≤ i ≤ n − 1. Then, by
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Theorem 3.9, the differential equation

−u(n) =
e−u

tγ (T − t)δ
+

n−2∑
j=0

aj(t)

|u(j)|αj
+

n−1∑
i=0

bi(t) |u(i)|βi

has a solution u∈ACn−1[0, T ] satisfying the boundary conditions (3.2) and
inequalities (3.58), (3.59).

Bibliographical notes

Theorem 3.9 was adapted from Agarwal, O’Regan, Rach̊unková and Sta-
něk [16].

Singular (n, p) problems were considered by Agarwal and O’Regan in [9],
[10] and Agarwal, O’Regan and Lakshmikantham [15]. In [9] and [10] the ex-
istence of two positive solutions in the set Cn−1[0, 1] ∩ Cn(0, 1) was proved
for the differential equation

u(n) + ϕ(t)f(t, u) = 0,

where ϕ∈C0(0, 1)∩L1[0, 1] and f ∈C0([0, 1]×(0,∞)) are positive. The pa-
per [15] dealt with the differential equation

u(n) + ϕ(t) f(t, u, . . . , up−1) = 0,

where ϕ∈C0(0, 1) ∩ L1[0, 1] and f ∈C0([0, T ]× (0,∞)p) are positive. By
a combination of regularization and sequential techniques with a nonlinear
alternative of Leray-Schauder type, the authors proved the existence of a so-
lution u∈Cn−1[0, 1]∩Cn(0, 1) with u(j) > 0 on (0, T ] for 0 ≤ j ≤ p−1.
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Conjugate problem

Let p be a positive integer, 1 ≤ p ≤ n−1. Consider the (p, n−p) conjugate
problem

(−1)pu(n) = f(t, u, . . . , u(n−1)), (4.1)

u(i)(0) = 0, 0 ≤ i ≤ n− p− 1, u(j)(T ) = 0, 0 ≤ j ≤ p− 1, (4.2)

where n ≥ 3, f ∈Car([0, T ]×D), D ⊂ Rn and f may be singular at the
value 0 of any of its space variables. Replacing t by T − t if necessary,
we may assume that p− 1 ≤ n− p− 1, that is

p∈{1, . . . , n

2
} for n even and p∈{1, . . . , n− 1

2
} for n odd. (4.3)

We observe that the larger p is chosen, the more complicated structure
of the set of all singular points of any solution to problem (4.1), (4.2) and
its derivatives is obtained. This fact will be shown in Lemmas 4.1 and 4.2.
We note that if f is positive then all solutions of problem (4.1), (4.2) have
singular points of type I at t = 0 and t = T and also singular points
of type II. Problem (4.1), (4.2) with p = 1 is the (n, 0) problem which
was considered in Chapter 3 devoted to the (n, p) problem. We assume
that n ≥ 3 since problem (4.1), (4.2) for n = 2 is the Dirichlet problem
discussed in Chapter 7.

We will use the following assumptions:





f ∈Car([0, T ]×D) where D = (0,∞)× (R \ {0})n−1 and

there exists c > 0 such that

c ≤ f(t, x0, . . . , xn−1)

for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈D,

(4.4)

55
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



h∈Car([0, T ]× [0,∞)) is positive and nondecreasing in its

second variable and

lim sup
z→∞

1

z

∫ T

0

h(t, z) dt <
1

K
, K =





T n − 1

T − 1
if T 6= 1,

n if T = 1,

(4.5)





ωj : (0,∞) → (0,∞) is nonincreasing and

∫ 1

0

ωj(s
n−j) ds < ∞ for 0 ≤ j ≤ n− 1,

(4.6)





f(t, x0, . . . , xn−1) ≤ h
(
t,

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈D,

where h and ωj satisfy (4.5) and (4.6)

(4.7)

Localization analysis of zeros to solutions

Let f satisfy assumption (4.4), that is, f may be singular at the value 0
of any of its space variables and f ≥ c > 0 on [0, T ]×D. Then all singular
points of any solution of problem (4.1), (4.2) and its derivatives coincide with
zeros of this solution and its derivatives. The localization analysis of zeros
of solutions to problem (4.1), (4.2) and their derivatives up to order n − 1
can be studied by localization analysis of zeros of solutions to the differential
inequality

(−1)p u(n)(t) ≥ c > 0 (4.8)

satisfying the boundary conditions (4.2). Define

B= {u∈ACn−1[0, T ] : u satisfies (4.2) and (4.8) holds for a.e. t∈ [0, T ]}.

Lemma 4.1. Let u∈B and let p = 1. Then u > 0 on (0, T ) and u(j)

has precisely one zero on (0, T ), 1 ≤ j ≤ n− 1.

Proof. The assertion follows immediately from Lemmas 3.2 and 3.4. ¤
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Lemma 4.2. Let u∈B, p ≥ 2 and let (4.3) hold. Then

(i) u > 0 on (0, T ),

(ii) u(k) has precisely k zeros in (0, T ) for k = 1, . . . , p− 1,

(iii) u(k) has precisely p zeros in (0, T ) for k = p, . . . , n− p,

(iv) u(n−k) has precisely k zeros in (0, T ) for k = 1, . . . , p− 1.

Proof. The proof is divided into three steps.

Step 1. Lower bounds for zeros.

By (4.2) we see that u′ has at least one zero t
(1)
1 in (0, T ). Hence

u′(0) = u′(t(1)
1 ) = u′(T ) = 0, which implies that u′′ has at least two zeros

t
(2)
1 , t

(2)
2 in (0, T ), t

(2)
1 < t

(2)
2 , and consequently (if p ≥ 3 )

u′′(0) = u′′(t(2)
1 ) = u′′(t(2)

2 ) = u′′(T ) = 0.

By induction we conclude that u(k), k = 3, . . . , p− 1, has at least k zeros
t
(k)
1 , . . . , t

(k)
k in (0, T ), 0 < t

(k)
1 < · · · < t

(k)
k < T and, by (4.2) and (4.3),

u(k)(0) = u(k)(t
(k)
1 ) = · · · = u(k)(t

(k)
k ) = u(k)(T ) = 0, k = 3, . . . , p− 1.

Therefore u(p) has at least p zeros in (0, T ). Now we will distinguish two
cases: (a) p < n

2
and (b) p = n

2
.

Case (a). Let p < n
2
. Then p ≤ n− p− 1 and, by (4.2),

u(j)(0) = 0, j = p, . . . , n− p− 1.

Therefore u(k) has at least p zeros in (0, T ) for k = p + 1, . . . , n− p.

Case (b). Let p = n
2

(clearly n is even in this case). Then p = n− p and
u(n−p) has at least p zeros in (0, T ).

We have shown that in both cases u(n−p) has at least p zeros in (0, T ).
Since for u(n−k), k = 1, . . . , p−1, we cannot use (4.2) any more, we deduce
that u(n−k) has at least k zeros in (0, T ) for k = 1, . . . , p−1. In particular
u(n−1) has at least one zero in (0, T ).

Step 2. Exact number of zeros.

By inequality (4.8), u(n−1) is strictly monotonous on [0, T ] and hence it
has precisely one zero in (0, T ). Therefore, by Step 1, u(n−k) has precisely
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k zeros in (0, T ) for 2 ≤ k ≤ p − 1 and u(k) has precisely p zeros in
(0, T ) for p ≤ k ≤ n − p. Similarly, u(k) has precisely k zeros in (0, T )
for 1 ≤ k ≤ p − 1 and u has no zero in (0, T ). We have proved that the
statements (ii)– (iv) are true.

Step 3. Positivity of u .

Denote by t
(k)
1 the first zero of u(k) in (0, T ), 1 ≤ k ≤ n−1. Inequality

(4.8) implies that (−1)p u(n−1) < 0 on [0, t
(n−1)
1 ) and hence (−1)p u(n−2) > 0

on [0, t
(n−2)
1 ). Therefore (−1)p+j u(n−j) > 0 on [0, t

(n−j)
1 ) for j = 3, . . . , p.

In particular, we have u(n−p) > 0 on [0, t
(n−p)
1 ), wherefore, by virtue of (4.2),

we obtain u(k) > 0 on (0, t
(k)
1 ), 1 ≤ k ≤ n−p−1, and consequently u > 0

on (0, T ). ¤

Our next result provides estimates from below of the absolute value
of functions u∈B and their derivatives up to order n − 1 on the interval
[0, T ]. These estimates are necessary for applying Theorem 1.7 to problem
(4.1), (4.2) with f satisfying assumption (4.4).

Lemma 4.3. Let u∈B and let (4.3) hold. Then for each i∈{1, . . . , n− 1}
there are pi +1 disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, pi ≤ (n−1) p such
that

pi⋃

k=0

[ak, ak+1] = [0, T ] (4.9)

and for each k ∈{0, . . . , pi} one of the inequalities

|u(n−i)(t)| ≥ c

i!
(t− ak)

i for t∈ [ak, ak+1] (4.10)

or

|u(n−i)(t)| ≥ c

i!
(ak+1 − t)i for t∈ [ak, ak+1] (4.11)

is satisfied.

Proof. Let t
(j)
i be zeros of u(j) in (0, T ), 1 ≤ j ≤ n − 1, described in

Lemmas 4.1 and 4.2. Integrating inequality (4.8) yields




(−1)p+1 u(n−1)(t) ≥ c (t
(n−1)
1 − t) for t∈ [0, t

(n−1)
1 ],

(−1)p u(n−1)(t) ≥ c (t− t
(n−1)
1 ) for t∈ [t

(n−1)
1 , T ].

(4.12)
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Now, integrating the first inequality in (4.12) from t∈ [0, t
(n−2)
1 ) to t

(n−2)
1

gives

(−1)pu(n−2)(t) ≥ c

2

[
(t

(n−1)
1 − t)2 − (t

(n−1)
1 − t

(n−2)
1 )2

]
≥ c

2!
(t

(n−2)
1 − t)2.

Hence, we get by such procedure that





(−1)p u(n−2)(t) ≥ c

2!
(t

(n−2)
1 − t)2 for t∈ [0, t

(n−2)
1 ],

(−1)p+1 u(n−2)(t) ≥ c

2!
(t− t

(n−2)
1 )2 for t∈ [t

(n−2)
1 , t

(n−1)
1 ],

(−1)p+1 u(n−2)(t) ≥ c

2!
(t

(n−2)
2 − t)2 for t∈ [t

(n−1)
1 , t

(n−2)
2 ],

(−1)p u(n−2)(t) ≥ c

2!
(t− t

(n−2)
2 )2 for t∈ [t

(n−2)
2 , T ].

(4.13)

Let us choose i∈{1, . . . , n − 1} and take all different zeros of functions
u(n−1), . . . , u(n−i), which are in (0, T ). By Lemmas 4.1 and 4.2, there is
a finite number pi ≤ (n−1) p of these zeros. Let us put them in the natural
order and denote by a1, . . . , api

. Set a0 = 0, api+1 = T. Thus we get pi +1
disjoint intervals (ak, ak+1), 0 ≤ k ≤ p i, satisfying (4.9).

If i = 1, then for a1 = t
(n−1)
1 and a2 = T we get by (4.12) that

|u(n−1)(t)| ≥ c (a1 − t) for t∈ [a0, a1]

and

|u(n−1)(t)| ≥ c (t− a1) for t∈ [a1, a2].

If i = 2, we put t
(n−2)
1 = a1, t

(n−1)
1 = a2, t

(n−2)
2 = a3, T = a4, and then

inequality (4.13) gives (4.10) or (4.11).

If i > 2 and we integrate the inequalities in (4.13) (i− 2)-times, we
get that on each [ak, ak+1], k ∈{0, . . . , p i} either (4.10) or (4.11) has to be
fulfilled. ¤

Existence result

In order to prove the main result (Theorem 4.7) we will need the following
three lemmas.
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Lemma 4.4. Let conditions (4.3) and (4.6) hold. Then there exist constants
Ai > 0, 0 ≤ i ≤ n− 1, such that for each u∈B the estimates

∫ T

0

ωi(|u(i)(t)|) dt ≤ Ai, 0 ≤ i ≤ n− 1, (4.14)

are satisfied.

Proof. Let u∈B and let i∈{0, . . . , n − 1}. By Lemma 4.3 there exist
pi + 1 disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, pi ≤ (n − 1) p, such that
(4.9) and either (4.10) or (4.11) are satisfied. Since ωi is nonincreasing,
inequalities (4.10) and (4.11) give

∫ T

0

ωi(|u(i)(t)|) dt =

pi∑

k=0

∫ ak+1

ak

ωi(|u(i)(t)|) dt

<

pi∑

k=0

[ ∫ ak+1

ak

ωi

( c

(n− i)!
(t− ak)

n−i
)

dt

+

∫ ak+1

ak

ωi

( c

(n− i)!
(ak+1 − t)n−i

)
dt

]
.

If we put ci = ( c
(n−i)!

)1/(n−i), we have

∫ T

0

ωi(|u(i)(t)|) dt <
2p i

ci

∫ ciT

0

ωi(s
n−i) ds <

n(n− 1)

ci

∫ ciT

0

ωi(s
n−i) ds.

Hence inequality (4.14) holds with

Ai =
n(n− 1)

ci

∫ ciT

0

ωi(s
n−i) ds

and, by assumption (4.6), Ai < ∞ for 0 ≤ i ≤ n− 1. ¤

Lemma 4.5. Let conditions (4.3) and (4.6) hold and let {um}⊂B. Then for

0≤ i≤n−1 the sequence {ωi(|u(i)
m (t)|)} is uniformly integrable on [0, T ].

Proof. Let i∈{0, . . . , n − 1}. Then, by Lemma 4.3, there exist pm,i + 1
disjoint intervals (am,k, am,k+1), 0 ≤ k ≤ pm,i, pm,i ≤ (n− 1) p, such that

p m,i⋃

k=0

[am,k, am,k+1] = [0, T ],
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and for each k ∈{0, . . . , pm,i} and m∈N one of the inequalities

|u(i)
m (t)| ≥ c

(n− i)!
(t− am,k)

n−i for t∈ [am,k, am,k+1]

or

|u(i)
m (t)| ≥ c

(n− i)!
(am,k+1 − t)n−i for t∈ [am,k, am,k+1]

is satisfied. Now the uniform integrability of {ωi(|u(i)
m (t)|)} on [0, T ] follows

from Criterion A.3. ¤

Lemma 4.6. Let conditions (4.3), (4.5) and (4.6) hold. Then there exists
a positive constant S ≥ n such that for each u∈B satisfying

(−1)p u(n)(t) ≤ h
(
t, n +

n−1∑
j=0

|u(j)(t)|
)

+
n−1∑
j=0

[ωj(|u(j)(t)|) + ωj(1)] (4.15)

for a.e. t∈ [0, T ], the estimate

‖u‖Cn−1 < S (4.16)

holds.

Proof. Let u∈B. By Lemmas 4.1 and 4.2 and by condition (4.2) we find
tj ∈ (0, T ) such that u(j)(tj) = 0 for 0 ≤ j ≤ n− 2. Put

max{|u(n−1)(t)| : 0 ≤ t ≤ T} = ρ.

Then −ρ ≤ u(n−1)(t) ≤ ρ for t∈ [0, T ]. Integrate this inequality from tn−2

to t∈ (tn−2, T ] and from t∈ [0, tn−2) to tn−2. We get −ρ T ≤u(n−2)(t)≤ρ T
on [0, T ]. Similarly, using u(j)(tj) = 0 for 0 ≤ j ≤ n − 2 and repeating
the integration, we obtain step by step

|u(j)(t)| ≤ ρ T n−j−1, t∈ [0, T ], 0 ≤ j ≤ n− 3.

Hence

‖u‖Cn−1 ≤ ρK, (4.17)

where K is taken from condition (4.5). Now, integrating inequality (4.15)
over [0, tn−1] and [tn−1, T ] and using the fact that tn−1 ∈ (0, T ) is the
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unique zero of u(n−1) by Lemmas 4.1 and 4.2 (and therefore (−1)p u(n−1) < 0
on [0, tn−1) and (−1)p u(n−1) > 0 on (tn−1, T ] due to (4.8)) we get

0 < (−1)p+1 u(n−1)(t)

≤
∫ tn−1

t

h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

ds +
n−1∑
j=0

∫ tn−1

t

[ωj(|u(j)(s)|) + ωj(1)] ds

for t∈ [0, tn−1] and

0 < (−1)p u(n−1)(t)

≤
∫ t

tn−1

h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

ds +
n−1∑
j=0

∫ t

tn−1

[ωj(|u(j)(s)|) + ωj(1)] ds

for t∈ [tn−1, T ]. Hence, by (4.5) and (4.17),

|u(n−1)(t)| ≤
∫ T

0

h(t, n + ρK) dt +
n−1∑
j=0

[ ∫ T

0

ωj(|u(j)(t)|) dt + T ωj(1)
]

for t∈ [0, T ]. Further, by Lemma 4.4, we can find positive constants Aj,
0 ≤ j ≤ n−1, independent of u and satisfying inequality (4.14). Therefore,
if we put

A =
n−1∑
j=0

[Aj + T ωj(1)],

we have

ρ ≤
∫ T

0

h(t, n + ρK) dt + A. (4.18)

Since, by condition (4.5), lim supz→∞
1
z

∫ T

0
h(t, z) dt < 1

K
, there exists a pos-

itive constant S ≥ n such that
∫ T

0

h(t, n + Kz) dt + A < z

whenever z ≥ S. This and (4.18) give ρ < S, which shows that inequality
(4.16) is true. ¤
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Theorem 4.7. Let conditions (4.3)– (4.7) hold. Then problem (4.1), (4.2)
has a solution u∈ACn−1[0, T ] and u > 0 on (0, T ).

Proof. Step 1. Construction of auxiliary regular problems.

We construct auxiliary regular problems. Let S be the constant from
Lemma 4.6 satisfying inequality (4.16). Set

σ0(x) =




|x| for |x| ≤ S,

S for |x| > S,
σ(x) =





x for |x| ≤ S,

Sx

|x| for |x| > S.

Choose m∈N and first define an auxiliary function hm ∈Car([0, T ]×Rn−1)
by the following recurrent formulas:

hm,0(t, x0, x1, . . . , xn−1) =





f(t, x0, x1, . . . , xn−1) if x0 ≥ 1
m

,

f(t, 1
m

, x1, . . . , xn−1) if x0 < 1
m

,

hm,i(t, x0, . . . , xi, . . . , xn−1),

=





hm,i−1(t, x0, . . . , xi, . . . , xn−1) if |xi| ≥ 1
m

,

m
2

[
hm,i−1(t, x0, . . . , xi−1,

1
m

, xi+1, . . . , xn−1)(xi + 1
m

)

−hm,i−1(t, x0, . . . , xi−1,− 1
m

, xi+1, . . . , xn−1)(xi − 1
m

)
]

if |xi| < 1
m

,

for 1 ≤ i ≤ n− 1 and

hm(t, x0, . . . , xn−1) = hm,n−1(t, x0, . . . , xn−1).

Finally, for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn put

fm(t, x0, x1, . . . , xn−1) = hm(t, σ0(x0), σ(x1), . . . , σ(xn−1)). (4.19)

Then fm ∈Car([0, T ]× Rn) for m∈N and, by (4.4) and (4.19),

c ≤ fm(t, x0, . . . , xn−1) ≤ gm(t) (4.20)
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for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn, where gm ∈L1[0, T ]. Further,
for (x0, . . . , xn−1)∈Rn and m∈N we have

max{σ0(x0),
1
m
} ≤ |x0|+ 1,

ω0(max{σ0(x0),
1
m
}) < ω0(|x0|) + ω0(S) < ω0(|x0|) + ω0(1)

and similarly

max{σ(xi),
1
m
} ≤ |xi|+ 1,

ωi(max{σ(xi),
1
m
}) < ωi(|xi|) + ωi(1), 1 ≤ i ≤ n− 1.

Therefore, by assumption (4.7), for each m∈N we have

fm(t, x0, . . . , xn−1) ≤ h
(
t, n +

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

[ωj(|xj|) + ωj(1)] (4.21)

for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn.

Consider the regular differential equation

(−1)p u(n) = fm(t, x0, . . . , xn−1). (4.22)

Since the homogeneous problem (−1)p u(n) = 0, (4.2) has only the trivial
solution and fm satisfies inequality (4.20), the Fredholm type existence theo-
rem guarantees that for each m∈N there exists a solution um ∈ACn−1[0, T ]
of problem (4.22), (4.2). Then it follows from inequalities (4.20) and (4.21)
that for each m∈N, um ∈B and inequality (4.15) holds with u = um.
Hence Lemma 4.6 shows that

‖um‖Cn−1 < S, m∈N, (4.23)

and, by Lemma 4.3, for each i∈{1, . . . , n− 1} there exist pm,i + 1 disjoint
intervals (am,k, am,k+1), 0 ≤ k ≤ pm,i, pm,i ≤ (n− 1)p such that

pm,i⋃

k=0

[am,k, am,k+1] = [0, T ],

and for each k ∈{0, . . . , pm,i} and m∈N one of the inequalities

|u(n−i)
m (t)| ≥ c

i!
(t− am,k)

i for t∈ [am,k, am,k+1]

or



Chapter 4. Conjugate problem 65

|u(n−i)
m (t)| ≥ c

i!
(am,k+1 − t)i for t∈ [am,k, am,k+1]

is satisfied.

Step 2. Uniform integrability.

Consider the sequence

{fm(t, um(t), . . . , u(n−1)
m (t))} ⊂ L1[0, T ]. (4.24)

Inequalities (4.20) and (4.21) show that

0 < fm(t, um(t), . . . , u(n−1)
m (t))

≤ h
(
t, n +

n−1∑
j=0

|u(j)
m (t)|

)
+

n−1∑
j=0

[ωj(|u(j)
m (t)|) + ωj(1)]

for m∈N and a.e. t∈ [0, T ]. Since h∈Car([0, T ]×[0,∞)) and um satisfies
(4.23), there exists h∗ ∈L1[0, T ] such that

h
(
t, n +

n−1∑
j=0

|u(j)
m (t)|

)
≤ h∗(t) for a.e. t∈ [0, T ] and all m∈N.

Hence, in order to prove that (4.24) is uniformly integrable on [0, T ] it
suffices to show that the sequences

{ωj(|u(j)
m (t)|)}, j = 0, . . . , n− 1,

are uniformly integrable on [0, T ]. This fact follows from Lemma 4.5 since
{um} ⊂ B. We have proved that (4.24) is uniformly integrable on [0, T ].

Step 3. Existence of a solution of problem (4.1), (4.2).

Consider the sequence {um} where um is a solution of problem (4.22),
(4.2). We know that (4.23) holds and since (4.24) is uniformly integrable

on [0, T ], the sequence {u(n−1)
m } is equicontinuous on [0, T ]. Hence, by

the Arzelà-Ascoli theorem, there exist u∈Cn−1[0, T ] and a subsequence
{u lm} ⊂ {um} such that

lim
m→∞

‖u lm − u‖Cn−1 = 0.
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Letting m →∞ and working with subsequences if necessary, we get

lim
m→∞

p lm,i = p i, p i ≤ (n− 1) p, 1 ≤ i ≤ n− 1,

and

lim
m→∞

a lm,k = ak, 0 ≤ k ≤ p i,

where 0 = a0 ≤ a1 ≤ · · · ≤ api
≤ T. In addition, (4.9) and either (4.10)

or (4.11) hold. Hence u(i), 0 ≤ i ≤ n − 1, has a finite number of zeros.
Therefore, by Theorem 1.7, u∈ACn−1[0, T ] and u is a solution of problem
(4.1), (4.2). From assumption (4.4) and Lemmas 4.1 and 4.2 we get u > 0
on (0, T ). ¤

Example. Let p be a positive integer, 1≤ p≤n − 1. Consider the differ-
ential equation

(−1)p u(n) =
1

uα0
+ uβ0 +

n−1∑
j=1

( aj(t)

|u(j)|αj
+ bj(t) |u(j)|βj

)
(4.25)

where the functions aj∈L∞[0, T ], bj∈L1[0, T ] are nonnegative, αj∈(0, 1
n−j

)

and βj ∈ (0, 1) for 0 ≤ j ≤ n − 1. Applying Theorem 4.7, problem (4.25),
(4.2) has a solution u∈ACn−1[0, T ] and u > 0 on (0, T ).
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differential equations of the type

(−1)n−p u(n) = f(t, u),
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tence results in [10], [80] and [81] are proved by fixed point theorems on cones,
whereas those in [6] by a combination of a sequential technique and a non-
linear alternative of Leray-Schauder type.



Chapter 5

Sturm-Liouville problem

We are now concerned with the Sturm-Liouville problem for the differential
equation

−u(n) = f(t, u, . . . , u(n−1)) (5.1)

with the boundary conditions



u(j)(0) = 0, 0 ≤ j ≤ n− 3,

α u(n−2)(0)− β u(n−1)(0) = 0,

γ u(n−2)(T ) + δ u(n−1)(T ) = 0,

(5.2)

where n ≥ 3, α, γ > 0, β, δ ≥ 0. Here

f ∈Car([0, T ]×D) and D = (0,∞)n−1 × (R \ {0}).
Notice that the function f may be singular at the value 0 of any of its space
variables. If f is positive, the solutions of problem (5.1), (5.2) have singular
points of type I at the end points of the interval [0, T ] and also singular
points of type II.

We will impose the following conditions on the function f in (5.1):




f ∈Car([0, T ]×D) where D = (0,∞)n−1 × (R \ {0})
and there exist positive constants a and r such that

a t r ≤ f(t, x0, . . . , xn−1)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D,

(5.3)





h∈Car([0, T ]× [0,∞)) is positive and nondecreasing

in the second variable and

lim sup
v→∞

1

v

∫ T

0

h(t, V v) dt < 1

where V = n
(β

α
+ T

)
max

{ T n−j−2

(n− j − 2)!
: 0 ≤ j ≤ n− 2

}
,

(5.4)

67
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



f(t, x0, . . . , xn−1) ≤ h
(
t,

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D,

where ωj : (0,∞) → (0,∞) are nonincreasing, 0 ≤ j ≤ n− 1,

and
∫ 1

0

ωn−1(t
r+1) dt < ∞,

∫ 1

0

ωj(t
n−j−1) dt < ∞, 0≤ j≤n− 2,

(5.5)





f(t, x0, . . . , xn−1)≤h
(
t,

n−1∑
j=0

|xj|
)
+

n−1∑
j=0

j 6=n−2

ωj(|xj|)

+q(t) ωn−2(|xn−2|)
for a.e. t∈ [0, T ] and each (x0, . . . , xn−1)∈D,

where q ∈L1[0, T ] is nonnegative, ωj : (0,∞) → (0,∞)

are nonincreasing, 0 ≤ j ≤ n− 1, and
∫ 1

0

ωn−1(t
r+1)dt < ∞,

∫ 1

0

ωj(t
n−j−2)dt < ∞, 0≤ j≤n− 3.

(5.6)

Green function and a priori estimates

We denote by G(t, s) the Green function of the problem

−u′′ = 0, (5.7)

α u(0)− β u′(0) = 0, γ u(T ) + δ u′(T ) = 0, (5.8)

where α, γ > 0 and β, δ ≥ 0. Then (see e.g. Agarwal [1])

G(t, s) =





1

d
(β + α s) (δ + γ (T − t)) for 0 ≤ s ≤ t ≤ T

1

d
(β + α t) (δ + γ (T − s)) for 0 ≤ t < s ≤ T,

(5.9)
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where d = α γ T + α δ + β γ > 0. We will discuss two cases, namely
min{β, δ} = 0, that is, at least one of the constants β and δ equals zero,
and min{β, δ} > 0, that is, both the constants β and δ are positive.

Let us choose positive constants a and r and define a set

A(r, a) = {u∈ACn−1[0, T ] : u fulfils (5.2) and (5.10)}
where

−u(n)(t) ≥ a tr for a.e. t∈ [0, T ]. (5.10)

Lemma 5.1. Let min{β, δ} = 0. Let u∈A(r, a) and set

A =
a

(r + 1)(r + 2)

(
T

2

)r+1

. (5.11)

Then u(n−1) is decreasing on [0, T ],

u(n−1)(t)





≥ a

r + 1
(ξ − t)r+1 if t∈ [0, ξ],

< − a

r + 1
(t− ξ)r+1 if t∈ (ξ, T ]

(5.12)

where ξ ∈ (0, T ) is the unique zero of u(n−1),

u(n−2)(t) ≥
{

A t if t∈ [
0, T

2

]
,

A (T − t) if t∈ (
T
2
, T

] (5.13)

and

u(j)(t) ≥ A

4 (n− j − 1)!
tn−j−1 for t∈ [0, T ], 0 ≤ j ≤ n− 3. (5.14)

Proof. From (5.9), (5.10) and the equality

u(n−2)(t) = −
∫ T

0

G(t, s) u(n)(s) ds, t∈ [0, T ],

it follows that



u(n−2)(0) = −β

d

∫ T

0

(δ + γ (T − s)) u(n)(s) ds

≥ a β γ

d

∫ T

0

(T − s) sr ds ≥ 0,

(5.15)
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



u(n−2)(T ) = −δ

d

∫ T

0

(β + α s) u(n)(s) ds

≥ a α δ

d

∫ T

0

sr+1 ds ≥ 0,

(5.16)

u(n−1)(0) = −
∫ T

0

∂G(t, s)

∂t

∣∣∣
t=0

u(n)(s) ds

= −α

d

∫ T

0

(δ + γ (T − s)) u(n)(s) ds ≥ aα γ

d

∫ T

0

(T − s) sr ds > 0

and

u(n−1)(T ) = −
∫ T

0

∂G(t, s)

∂t

∣∣∣
t=T

u(n)(s) ds

=
γ

d

∫ T

0

(β + α s) u(n)(s) ds ≤ −a α γ

d

∫ T

0

sr+1 ds < 0.

Since u(n−1) is decreasing on [0, T ] by inequality (5.10) and

u(n−1)(0) > 0, u(n−1)(T ) < 0,

we see that u(n−1) has a unique zero ξ ∈ (0, T ). Then

−u(n−1)(t) =

∫ ξ

t

u(n)(s) ds ≤ −a

∫ ξ

t

sr ds = − a

r + 1
(ξr+1 − tr+1)

for t∈ [0, ξ]. Hence,

u(n−1)(t) ≥ a

r + 1
(ξ − t)r+1, t∈ [0, ξ]

because of ξr+1 − tr+1 ≥ (ξ − t)r+1 for t∈ [0, ξ]. Similarly, using the in-
equality tr+1 − ξr+1 > (t− ξ)r+1, we get

u(n−1)(t) =

∫ t

ξ

u(n)(s) ds ≤ −a

∫ t

ξ

sr ds

= − a

r + 1
(tr+1 − ξr+1) < − a

r + 1
(t− ξ)r+1 for t∈ (ξ, T ].
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We have proved that inequality (5.12) holds.

We now verify inequality (5.13). From the first equalities in (5.15) and
(5.16) and from the assumption min{β, δ} = 0 it follows that

min{u(n−2)(0), u(n−2)(T )} = 0.

Moreover, by inequality (5.10), u(n−2) is concave on [0, T ] and consequently
to prove (5.13) it suffices to show that

u(n−2)

(
T

2

)
≥ A

T

2
. (5.17)

Due to inequality (5.12) we have

u(n−2)(t) = u(n−2)(0) +

∫ t

0

u(n−1)(s) ds ≥ a

r + 1

∫ t

0

(ξ − s)r+1 ds

=
a

(r + 1)(r + 2)
(ξr+2 − (ξ − t)r+2) ≥ a

(r + 1)(r + 2)
t r+2

for t∈ [0, ξ], since ξr+2 − (ξ − t)r+2 ≥ t r+2 holds in such a case. Similarly,
by (5.12), we obtain

u(n−2)(t) = u(n−2)(T )−
∫ T

t

u(n−1)(s) ds >
a

r + 1

∫ T

t

(s− ξ)r+1 ds

=
a

(r + 1)(r + 2)
((T − ξ)r+2 − (t− ξ)r+2)

≥ a

(r + 1)(r + 2)
(T − t)r+2

for t∈ (ξ, T ], since (T −ξ)r+2− (t−ξ)r+2 ≥ (T − t)r+2 holds in such a case.
Summarizing, we have

u(n−2)(t) ≥ a

(r + 1)(r + 2)
t r+2 if t∈ [0, ξ] (5.18)

and

u(n−2)(t) ≥ a

(r + 1)(r + 2)
(T − t)r+2 if t∈ (ξ, T ]. (5.19)
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We know that max{u(n−2)(t) : t∈ [0, T ]} = u(n−2)(ξ). Consequently if ξ≥ T
2
,

then (5.11) and (5.18) yield (5.17) and if ξ < T
2

then (5.17) follows from
(5.11) and (5.19).

It remains to prove inequality (5.14). Using (5.13) and u(n−3)(0) = 0, we
obtain

u(n−3)(t) =

∫ t

0

u(n−2)(s) ds ≥ A

∫ t

0

s ds =
A

2
t2 for t∈ [0, T

2
].

In particular, u(n−3)(T
2
)≥A

2
(T

2
)2. Since u(n−3) is increasing and ( t

2
)2≤ (T

2
)2,

we conclude that the inequality u(n−3)(T
2
)≤u(n−3)(t) holds on [T

2
, T ]. Thus,

u(n−3)(t)≥A
t2

4 · 2!
for t∈ [T

2
, T ].

Consequently,

u(n−3)(t)≥A
t2

4 · 2!
for t∈ [0, T ].

Now, using the equalities

u(j)(t) =

∫ t

0

u(j+1)(s) ds for t∈ [0, T ] and 0 ≤ j ≤ n− 4

we can verify that inequalities (5.14) are satisfied. ¤

Lemma 5.2. Let min{β, δ} > 0. Let u∈A(r, a) and set

B =
a

d
min

{
β γ

∫ T

0

(T − s) sr ds, α δ

∫ T

0

sr+1 ds
}

> 0. (5.20)

Then u(n−1) is decreasing on [0, T ], u(n−1) satisfies inequality (5.12) where
ξ ∈ (0, T ) is its unique zero,

u(n−2)(t) ≥ B for t∈ [0, T ] (5.21)

and

u(j)(t) ≥ B

(n− j − 2)!
tn−j−2 for t∈ [0, T ], 0 ≤ j ≤ n− 3. (5.22)
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Proof. The properties of u(n−1) follow immediately from Lemma 5.1 and
its proof. Next, by relations (5.15) and (5.16),

u(n−2)(0) ≥ a β γ

d

∫ T

0

(T − s) sr ds ≥ B,

and

u(n−2)(T ) ≥ aα δ

d

∫ T

0

sr+1 ds ≥ B.

Since u(n−2) is concave on [0, T ], these inequalities show that inequality
(5.21) is true. Now (5.21) and the equalities u(j)(0) = 0, 0 ≤ j ≤ n − 3
imply that inequality (5.22) holds. ¤

Lemma 5.3. Let min{β, δ} = 0 and let h and ωj(0 ≤ j ≤ n − 1) have
the properties given in conditions (5.4) and (5.5). Then there exists a positive
constant S0 such that for each u∈A(r, a) satisfying

−u(n)(t) ≤ h
(
t, n +

n−1∑
j=0

|u(j)(t)|
)

+
n−1∑
j=0

[
ωj(|u(j)(t)|) + ωj(1)

]
(5.23)

for a.e. t∈ [0, T ], the estimates

‖u(j)‖∞ < S0 for 0 ≤ j ≤ n− 1 (5.24)

are valid.

Proof. Let u∈A(r, a) satisfy inequality (5.23) for a.e. t ∈ [0, T ]. By
Lemma 5.1, u(n−1) has a unique zero ξ ∈ (0, T ) and u satisfies inequalities
(5.12)– (5.14) with A given in (5.11). From

u(n−2)(0) =
β

α
u(n−1)(0) ≥ 0

it follows that

|u(n−2)(t)| ≤ β

α
u(n−1)(0) +

∫ t

0

|u(n−1)(s)| ds≤
(

β

α
+ T

)
‖u(n−1)‖∞

for t∈ [0, T ]. Thus

‖u(n−2)‖∞ ≤
(

β

α
+ T

)
‖u(n−1)‖∞ (5.25)
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and then the equalities

u(j)(t) =
1

(n− j− 3)!

∫ t

0

(t− s)n− j− 3 u(n−2)(s) ds, t∈ [0, T ], 0≤ j≤n−3,

give

‖u(j)‖∞ ≤ T n−j−2

(n− j − 2)!
‖u(n−2)‖∞ ≤ T n−j−2

(n− j − 2)!

(β

α
+ T

)
‖u(n−1)‖∞,

that is

‖u(j)‖∞ ≤ V

n
‖u(n−1)‖∞, 0 ≤ j ≤ n− 3, (5.26)

where V is given in condition (5.4). Now inequality (5.23) yields

|u(n−1)(t)| =
∣∣∣
∫ t

ξ

u(n)(s) ds
∣∣∣

≤
∫ T

0

[
h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

+
n−1∑
j=0

[ωj(|u(j)(s)|) + ωj(1)]
]

ds

≤
∫ T

0

[
h(s, n + V ‖u(n−1)‖∞) +

n−1∑
j=0

[ωj(|u(j)(s)|) + ωj(1)]
]

ds,

for all t ∈ [0, T ], i.e.





|u(n−1)(t)| ≤
∫ T

0

[
h(s, n + V ‖u(n−1)‖∞)

+
n−1∑
j=0

[ωj(|u(j)(s)|) + ωj(1)]
]

ds for t ∈ [0, T ].

(5.27)

Set

K = r+1

√
a

r + 1
and rj = n−j−1

√
A

4(n− j − 1)!
, 0 ≤ j ≤ n− 3.
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Since (see inequalities (5.12)– (5.14))




∫ T

0

ωn−1(|u(n−1)(t)|) dt

≤
∫ ξ

0

ωn−1

( a

r+1
(ξ−t)r+1

)
dt+

∫ T

ξ

ωn−1

( a

r+1
(t−ξ)r+1

)
dt

=
1

K

[ ∫ Kξ

0

ωn−1(t
r+1) dt +

∫ K(T−ξ)

0

ωn−1(t
r+1) dt

]

≤ 2

K

∫ KT

0

ωn−1(t
r+1) dt,

(5.28)

∫ T

0

ωn−2(|u(n−2)(t)|) dt ≤
∫ T/2

0

ωn−2(At) dt +

∫ T

T/2

ωn−2(A(T − t)) dt

=
2

A

∫ (AT )/2

0

ωn−2(t) dt

and (for 0 ≤ j ≤ n− 3 )

∫ T

0

ωj(|u(j)(t)|) dt ≤
∫ T

0

ωj

( A

4(n− j − 1)!
tn−j−1

)
dt

=
1

rj

∫ rjT

0

ωj(t
n−j−1) dt,

we deduce from inequality (5.27) that

‖u(n−1)‖∞ ≤
∫ T

0

h(s, n + V ‖u(n−1)‖∞) ds + Λ (5.29)

where

Λ =
n−3∑
j=0

1

rj

∫ rjT

0

ωj(t
n−j−1) dt +

2

A

∫ (AT )/2

0

ωn−2(t) dt

+
2

K

∫ KT

0

ωn−1(t
r+1) dt + T

n−1∑
j=0

ωj(1) < ∞.
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According to our assumption (see condition (5.4)) we have

lim sup
v→∞

1

v

∫ T

0

h(t, V v) dt < 1,

and therefore there exists a positive constant S∗ such that
∫ T

0

h(t, n + V v) dt + Λ < v

whenever v ≥ S∗. This and (5.29) show that ‖u(n−1)‖∞ < S∗. Now us-
ing inequalities (5.25) and (5.26) we see that inequality (5.24) holds with
S0 = S∗ max{1, V

n
}. ¤

Lemma 5.4. Let min{β, δ} > 0 and let h, q and ωj (0 ≤ j ≤ n − 1)
have the properties given in conditions (5.4) and (5.6). Then there exists
a positive constant S1 such that

‖u(j)‖∞ < S1, 0 ≤ j ≤ n− 1 (5.30)

for each u∈A(r, a) satisfying the inequality




−u(n)(t) ≤ h
(
t, n +

n−1∑
j=0

|u(j)(t)|
)
+

n−1∑
j=0

j 6=n−2

[ωj(|u(j)(t)|)+ωj(1)]

+ q(t)[ωn−2(|u(n−2)(t)|) + ωn−2(1)] for a.e. t ∈ [0, T ].

(5.31)

Proof. Let u∈A(r, a) satisfy (5.31) for a.e. t∈ [0, T ]. By Lemma 5.2, in-
equalities (5.12), (5.21) and (5.22) are true provided ξ ∈ (0, T ) is the unique
zero of u(n−1) and B is given by (5.20). Since u(n−2)(0) = β

α
u(n−1)(0) the

same reasoning as in the proof of Lemma 5.3 shows that inequalities (5.25)
and (5.26) hold if V is defined by (5.4). From inequalities (5.21) and (5.22)
we obtain

ωn−2(|u(n−2)(t)|) ≤ ωn−2(B), t∈ [0, T ]

and∫ T

0

ωj(|u(j)(t)|) dt ≤
∫ T

0

ωj

( B

(n− j − 2)!
tn−j−2

)
dt

=
1

mj

∫ mjT

0

ωj(t
n−j−2) dt
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for 0 ≤ j ≤ n−3, where mj = n−j−2

√
B

(n−j−2)!
. Then (see (5.26), (5.28) and

(5.31))

|u(n−1)(t)| =
∣∣∣
∫ t

ξ

u(n)(s) ds
∣∣∣

≤
∫ T

0

[
h
(
s, n +

n−1∑
j=0

|u(j)(s)|
)

+
n−1∑
j=0

j 6=n−2

[ωj(|u(j)(s)|) + ωj(1)]

+ q(s) [ωn−2(|u(n−2)(s)|) + ωn−2(1)]
]

ds

≤
∫ T

0

h(s, n + V ‖u(n−1)‖∞) ds + Λ1 for t∈ [0, T ]

where

Λ1 =
n−3∑
j=0

1

mj

∫ mjT

0

ωj(t
n−j−2) dt + ‖q‖1[ωn−2(B) + ωn−2(1)]

+
2

K

∫ KT

0

ωn−1(t
r+1) dt + T

n−1∑
j=0

j 6=n−2

ωj(1) < ∞.

Hence

‖u(n−1)‖∞ ≤
∫ T

0

h(s, n + V ‖u(n−1)‖∞) ds + Λ1

and using the same procedure as in the proof of Lemma 5.3, we conclude
from the assumption lim supv→∞

1
v

∫ T

0
h(s, V v) ds < 1 that inequality (5.30)

is true with a positive constant S1. ¤

Auxiliary regular problems

For each m∈N and any positive constant L define %L,m, τL ∈C0(R)
and fL,m ∈Car([0, T ]× Rn) by the formulas

%L,m(v) =





1
m

if |v|< 1
m

,

|v| if 1
m
≤|v| ≤ L+1,

L+1 if |v|>L+1, ,

τL(v) =





v if |v|≤L+1,

(L+1)v

|v| if |v|>L+1,
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and

fL,m(t, x0, . . . , xn−2, xn−1)

=





f(t, %L,m(x0), . . . , %L,m(xn−2), τL(xn−1)) if |xn−1| ≥ 1
m

m

2

[
fL,m(t, x0, . . . , xn−2,

1
m

)(xn−1 + 1
m

)

−fL,m(t, x0, . . . , xn−2,− 1
m

))(xn−1 − 1
m

)
]

if |xn−1| < 1
m

.

Then for a.e. t∈ [0, T ] and all (x0, . . . , xn−1)∈Rn,





a t r ≤ fL,m(t, x0, . . . , xn−1)

≤ h
(
t, n +

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

[ωj(|xj|)+ωj(1)]
(5.32)

provided conditions (5.3)– (5.5) hold, and





a tr ≤ fL,m(t, x0, . . . , xn−1) ≤ h
(
t, n +

n−1∑
j=0

|xj|
)

+
n−1∑
j=0

j 6=n−2

[ωj(|xj|) + ωj(1)] + q(t)[ωn−2(|xj|) + ωn−2(1)]
(5.33)

provided conditions (5.3), (5.4) and (5.6) hold.

Consider an auxiliary family of regular differential equations

−u(n) = fL,m(t, u, . . . , u(n−1)) (5.34)

depending on L > 0 and m∈N.

Lemma 5.5. Let min{β, δ} = 0 and let conditions (5.3)– (5.5) hold. Let S0

be the positive constant from Lemma 5.3. Then for each m∈N, problem
(5.34), (5.2) with L = S0 has a solution um ∈A(r, a) and

‖u(j)
m ‖∞ < S0 for 0 ≤ j ≤ n− 1. (5.35)
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In addition, the sequence

{fS0,m(t, um(t), . . . , u(n−1)
m (t))} (5.36)

is uniformly integrable on [0, T ].

Proof. Put gm(t) = sup{fS0,m(t, x0, . . . , xn−1) : (x0, . . . , xn−1)∈Rn}. Then

gm(t) = sup
{

f(t, x0, . . . , xn−1) : 1
m
≤ xj ≤ S0 + 1

for 0 ≤ j ≤ n− 2 and 1
m
≤ |xn−1| ≤ S0 + 1

}
.

Since f ∈Car([0, T ]×D), we have gm ∈L1[0, T ]. As the homogeneous prob-
lem −u(n) = 0, (5.2) has only the trivial solution, the Fredholm type exis-
tence theorem guarantees the existence of a solution um of problem (5.34),
(5.2) with L = S0 for all m∈N. Besides, inequality (5.32) with L = S0

yields

a t r ≤ −u(n)
m (t) ≤ h

(
t, n +

n−1∑
j=0

|u(j)
m (t)|

)
+

n−1∑
j=0

[ωj(|u(j)
m (t)|) + ωj(1)]

for a.e. t∈ [0, T ]. Consequently um ∈A(r, a) and inequality (5.35) is true by
Lemmas 5.1 and 5.3. Moreover (for m∈N),

u(n−1)
m (t)





≥ a

r + 1
(ξm − t)r+1 for t∈ [0, ξm],

< − a

r + 1
(t− ξm)r+1 for t∈ (ξm, T ],

(5.37)

where ξm ∈ (0, T ) is the unique zero of u
(n−1)
m ,

u(n−2)
m (t) ≥

{
A t for t∈ [0, T

2
],

A (T − t) for t∈ (T
2
, T ]

(5.38)

and

u(j)
m (t) ≥ A

4(n− j − 1)!
tn−j−1 for t∈ [0, T ], 0 ≤ j ≤ n− 3, (5.39)

where A is defined in formula (5.11). Since

0 ≤ fS0,m(t, um(t), . . . , u(n−1)
m (t))

≤ h(t, n(1+S0)) +
n−1∑
j=0

[ωj(|u(j)
m (t)|) + ωj(1)]
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for a.e. t ∈ [0, T ] and each m∈N and h(t, n(1 + S0))∈L1[0, T ] by (5.4),
to prove the uniform integrability of the sequence (5.36) it suffices to show
that the sequences

{ωj(|u(j)
m (t)|)}, 0 ≤ j ≤ n− 1

are uniformly integrable on [0, T ]. Let 0 ≤ j ≤ n− 3. Then

ωj(|u(j)
m (t)|) ≤ ωj

( A

4(n− j − 1)!
tn−j−1

)
, t∈ [0, T ], m∈N,

and it follows from the properties of ωj that ωj(
A

4(n−j−1)!
tn−j−1)∈L1[0, T ].

Hence {ωj(|u(j)
m (t)|)} is uniformly integrable on [0, T ]. Analogously, (5.38)

gives ωn−2(|u(n−2)
m (t)|) ≤ ωn−2(ϕ(t)) for t∈ [0, T ] and m∈N, where

ϕ(t) =





At for t∈ [0, T
2
],

A(T − t) for t∈ (T
2
, T ].

Since ωn−2(ϕ(t))∈L1[0, T ], it follows that the sequence {ωn−2(|u(n−2)
m (t)|)}

is uniformly integrable on [0, T ]. Furthermore, the uniform integrability of

{ωn−1(|u(n−1)
m (t)|)} follows from Criterion A.4. We have proved that the

sequence (5.36) is uniformly integrable on [0, T ]. ¤

Lemma 5.6. Let min{β, δ} > 0 and let conditions (5.3), (5.4) and (5.6)
hold. Let S1 be the positive constant from Lemma 5.4. Then for each
m∈N, problem (5.34), (5.2) with L = S1 has a solution um ∈A(r, a) and

‖u(j)
m ‖∞ < S1 for 0 ≤ j ≤ n− 1. (5.40)

In addition, the sequence

{fS1,m(t, um(t), . . . , u(n−1)
m (t))} (5.41)

is uniformly integrable on [0, T ].

Proof. Essentially the same reasoning as in the first part of the proof of
Lemma 5.5 shows that for each m∈N there exists a solution um of problem
(5.34), (5.2) with L = S1. The fact that um ∈A(r, a) and um satisfies
inequality (5.40) follows from Lemmas 5.2 and 5.4. It remains to verify
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that the sequence (5.41) is uniformly integrable on [0, T ]. Notice that, by

Lemmas 5.2 and 5.4, u
(n−1)
m satisfies inequality (5.37) where ξm ∈ (0, T ) is

its unique zero and

u(n−2)
m (t) ≥ B for t∈ [0, T ], (5.42)

u(j)
m (t) ≥ B

(n− j − 2)!
tn−j−2 for t∈ [0, T ], 0 ≤ j ≤ n− 3, (5.43)

where B is given in formula (5.20). Hence

ωn−2(u
(n−2)
m (t)) ≤ ωn−2(B), t∈ [0, T ], m∈N (5.44)

and




ωj(|u(j)
m (t)|) ≤ ωj

( B

(n− j − 2)!
tn−j−2

)
,

for t∈ (0, T ), m∈N, 0 ≤ j ≤ n− 3.

(5.45)

By conditions (5.4) and (5.6) we know that the functions h(t, n(1 + S1)),
q(t) and ωj(

B
(n−j−2)!

tn−j−2) belong to the set L1[0, T ] for 0 ≤ j ≤ n − 3

and that the sequence {ωn−1(|u(n−1)
m (t)|)} is uniformly integrable on [0, T ],

which was shown in the proof of Lemma 5.5. Hence the uniform integrability
of the sequence (5.41) follows from (5.44), (5.45) and from the following
inequality (see (5.33))

0 ≤ fS1,m(t, um(t), . . . , u(n−1)
m (t)) ≤ h(t, n(1 + S1))

n−1∑
j=0

j 6=n−2

[ωj(|u(j)
m (t)|) + ωj(1)] + q(t) [ωn−2(|u(n−2)

m (t)|) + ωn−2(1)]

for a.e. t∈ [0, T ] and all m∈N. ¤

Existence results

Theorem 5.7. Let conditions (5.3) − (5.5) hold and let min{β, δ} = 0.
Then problem (5.1), (5.2) has a solution u∈ACn−1[0, T ] such that

u(n−2) > 0 on (0, T ) and u(j) > 0 on (0, T ] for 0 ≤ j ≤ n− 3. (5.46)
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Proof. By Lemma 5.5, for each m∈N, there is a solution um ∈A(r, a) of
problem (5.34), (5.2) with L = S0. Lemmas 5.1, 5.3 and 5.5 show that um

satisfies inequalities (5.35) and (5.37)– (5.39) where A > 0 is given in (5.11)
and the sequence (5.36) is uniformly integrable on [0, T ]. Hence {um} is

bounded in Cn−1[0, T ] and {u(n−1)
m } is equicontinuous on [0, T ]. Without

loss of generality we can assume that {um} is convergent in Cn−1[0, T ]
and {ξm} is convergent in R where ξm ∈ (0, T ) denotes the unique zero of

u
(n−1)
m . Let limm→∞ um = u, limm→∞ ξm = ξ. Then

u(n−1)(t)




≥ a

r + 1
(ξ − t)r+1 for t∈ [0, ξ]

≤ − a

r + 1
(ξ − t)r+1 for t∈ (ξ, T ],

(5.47)

u(n−2)(t) ≥




A t for t∈ [0, T
2
]

A (T − t) for t∈ (T
2
, T ],

(5.48)

u(j)(t) ≥ A

4(n− j − 1)!
tn−j−1, t∈ [0, T ], 0 ≤ j ≤ n− 3. (5.49)

Hence u(j) has at most two zeros on [0, T ] for 0 ≤ j ≤ n − 1. Applying
Theorem 1.7, we obtain that u∈ACn−1[0, T ], u is a solution of problem
(5.1), (5.2) and (see (5.48) and (5.49)) u(n−2) > 0 on (0, T ), u(j) > 0 on
(0, T ] for 0 ≤ j ≤ n− 3. ¤

Theorem 5.8. Assume (5.3), (5.4), (5.6) and let min{β, δ}> 0. Then there
exists a solution u∈ACn−1[0, T ] of problem (5.1), (5.2) such that

u(n−2) > 0 on [0, T ] and u(j) > 0 on (0, T ] for 0 ≤ j ≤ n− 3. (5.50)

Proof. Lemma 5.6 guarantees that for each m∈N there exists a solution
um ∈A(r, a) of problem (5.34), (5.2) with L = S1. By Lemmas 5.2, 5.4
and 5.6, um satisfies inequalities (5.37), (5.40), (5.42) and (5.43) where
B > 0 is defined in formula (5.20) and the sequence (5.41) is uniformly inte-
grable on [0, T ]. Without loss of generality we can assume that {um} and
{ξm} are convergent in Cn−1[0, T ] and R, respectively. Here ξm ∈ (0, T )

is the unique zero of u
(n−1)
m . Let limm→∞ um = u, limm→∞ ξm = ξ. Then

inequalities (5.47) and

u(n−2)(t) ≥ B, t∈ [0, T ], (5.51)
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u(j)(t) ≥ B

(n− j − 2)!
tn−j−2, t∈ [0, T ], 0 ≤ j ≤ n− 3, (5.52)

are true. Hence u(j) has at most one zero in [0, T ] for 0 ≤ j ≤ n − 1.
Thus, by Theorem 1.7, u∈ACn−1[0, T ] is a solution of problem (5.1), (5.2)
and from (5.51) and (5.52) we see that u(n−2) > 0 on [0, T ] and u(j) > 0
on (0, T ] for 0 ≤ j ≤ n− 3. ¤

Example. Consider the differential equation





−u(n) = sin
( t

T

)r

+
n−2∑
j=0

( aj(t)

(u(j))αj
+ bj(t) (u(j))γj

)

+
an−1(t)

|u(n−1)|αn−1
+ bn−1(t) |u(n−1)|γn−1

(5.53)

with the boundary conditions (5.2) where min{β, δ} = 0. Theorem 5.7
guarantees this problem has a solution u∈ACn−1[0, T ] satisfying inequality
(5.46) provided r∈ (0,∞), αj ∈ (0, 1

n−j−1
) for 0≤ j ≤ n−2, αn−1 ∈ (0, 1

r+1
),

γi ∈ (0, 1), and ai ∈L∞[0, T ], bi ∈L1[0, T ] are nonnegative for 0≤ i≤n−1.

Now consider problem (5.53), (5.2) where min{β, δ} > 0. If r∈ (0,∞),
αj ∈ (0, 1

n−j−2
) for 0 ≤ j ≤ n−3, αn−2 ∈ (0,∞), αn−1 ∈ (0, 1

r+1
), γi ∈ (0, 1),

bi ∈L1[0, T ] is nonnegative for 0 ≤ i ≤ n − 1 and finally an−2 ∈L1[0, T ],
an−1, ak ∈L∞[0, T ] are nonnegative for 0 ≤ k ≤ n−3 then, by Theorem 5.8,
problem (5.53),(5.2) has a solution satisfying inequality (5.50).

Bibliographical notes

Theorems 5.7 and 5.8 were adapted from Rach̊unková and Staněk [159]. The
singular Sturm-Liouville problem for the equation

u(n) + f(t, u, . . . , u(n−2)) = 0

is considered in Agarwal and Wong [26] where f ∈C0((0, 1)× (0,∞)n−1) is
positive. Here the existence of a solution u∈Cn−1[0, 1] ∩ Cn(0, 1) positive
on (0, 1) is proved by a fixed point theorem for mappings that are decreasing
with respect to a cone in a Banach space.





Chapter 6

Lidstone problem

Let R− = (−∞, 0), R+ = (0,∞) and R0 = R \ {0}. We will consider the
singular Lidstone problem

(−1)n u(2n) = f(t, u, . . . , u(2n−1)), (6.1)

u(2j)(0) = u(2j)(T ) = 0, 0 ≤ j ≤ n− 1 (6.2)

where n ≥ 1 and f ∈Car([0, T ]×D) with

D =





R+ × R0 × R− × R0 × · · · × R+ × R0︸ ︷︷ ︸
4k−2

if n = 2k − 1,

R+ × R0 × R− × R0 × · · · × R− × R0︸ ︷︷ ︸
4k

if n = 2k

(for n = 1 and 2, we have D = R+×R0 and D = R+×R0×R−×R0, re-
spectively). If n = 1, problem (6.1), (6.2) reduces to the Dirichlet problem.
The function f may be singular at the value 0 of its space variables. If f
is positive on [0, T ]×D, the solutions of problem (6.1), (6.2) have singular
points of type I at t = 0 and t = T and also singular points of type II.

Green functions

Let j ∈N. In our studies we will essentially use the Green functions
Gj(t, s) of the problems

u(2j)(t) = 0, u(2i)(0) = u(2i)(T ) = 0, 0 ≤ i ≤ j − 1.

Then

G1(t, s) =





s

T
(t− T ) for 0 ≤ s ≤ t ≤ T,

t

T
(s− T ) for 0 ≤ t < s ≤ T.

(6.3)

85
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If j > 1 we have

Gj(t, s) =

∫ T

0

· · ·
∫ T

0︸ ︷︷ ︸
(j−1) times

G1(t, sj−1) G1(sj−1, sj−2) . . . G1(s1, s) ds1 . . . dsj−1

for (t, s)∈ [0, T ]× [0, T ]. Therefore the Green function Gj(t, s) can be ex-
pressed as

Gj(t, s) =

∫ T

0

G1(t, τ) Gj−1(τ, s) dτ (6.4)

for (t, s)∈ [0, T ]×[0, T ] and j > 1 (see Agarwal [1], Agarwal and Wong [25],
Wong and Agarwal [199]). Since G1(t, s) < 0 for (t, s)∈ (0, T )× (0, T ), we
conclude from (6.4) that

(−1)j Gj(t, s) > 0 for (t, s)∈ (0, T )× (0, T ). (6.5)

The next lemma gives inequalities for the Green function Gj(t, s).

Lemma 6.1. For (t, s)∈ [0, T ]× [0, T ] and j ∈N, the inequality

|Gj(t, s)| ≥ T 2j−5

30 j−1
st(T − t)(T − s) (6.6)

holds.

Proof. The validity of inequality (6.6) will be proved by induction. Since

|G1(t, s)| =





s

T
(T − t) ≥ s t (T − t) (T − s)

T 3
for 0 ≤ s ≤ t ≤ T,

t

T
(T − s) ≥ s t (T − t) (T − s)

T 3
for 0 ≤ t < s ≤ T,

(6.7)

estimate (6.6) is true for j=1. Assume now that (6.6) holds for j = i≥ 1.
Then relations (6.4)– (6.7) give

|Gi+1(t, s)| =
∫ T

0

|G1(t, τ)| |Gi(τ, s)| dτ

≥ T 2 i−8

30i−1
s t (T − t) (T − s)

∫ T

0

τ 2 (T − τ)2 dτ

=
T 2 i−3

30i
s t (T − t) (T − s)
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for (t, s)∈ [0, T ]× [0, T ] and therefore (6.6) is valid for j = i + 1. ¤

In the proof of Theorem 6.3 we will need the following result.

Lemma 6.2. Let ξ ∈ (0, T ). Then
∣∣∣∣
∫ t

ξ

s (T − s) ds

∣∣∣∣ ≥
T

6
(t− ξ)2 for t∈ [0, T ]. (6.8)

Proof. It suffices to prove inequality (6.8) only for t∈ [ξ, T ]. Then

2 T t + 4 T ξ − 2 (t2 + t ξ + ξ2) = 2 t (T − t) + 2 ξ (T − t) + 2 ξ (T − ξ) > 0

and therefore
∫ t

ξ

s(T − s) ds =
1

6
[3 T (t2 − ξ2)− 2 (t3 − ξ3)]

=
t− ξ

6
[T (t− ξ) + 2 T t + 4 T ξ − 2 (t2 + t ξ + ξ2)] ≥ T

6
(t− ξ)2.

¤

Main result

The next result provides sufficient conditions for the existence of a solution
of the singular Lidstone problem.

Theorem 6.3. Let f ∈Car([0, T ]×D) and let there exist a∈ (0,∞) such
that





a ≤ f(t, x0, . . . , x2n−1)

for a.e. t∈ [0, T ] and each (x0, . . . , x2n−1)∈D.
(6.9)

Let




f(t, x0, . . . , x2n−1) ≤ h
(
t,

2n−1∑
j=0

|xj|
)

+
2n−1∑
j=0

ωj(|xj|)

for a.e. t∈ [0, T ] and each (x0, . . . , x2n−1)∈D,

(6.10)

where h∈Car([0, T ] × [0,∞)) is positive and nondecreasing in the second
variable, ωj : R+ → R+ is nonincreasing, 0 ≤ j ≤ 2n− 1,



88 Chapter 6. Lidstone problem

lim sup
v→∞

1

v

∫ T

0

h(t, Kv) dt < 1 with K =





2n if T = 1,

T 2n − 1

T − 1
if T 6= 1,

(6.11)

and

∫ 1

0

ω2n−1(s) ds < ∞,

∫ 1

0

ω2j(s) ds < ∞ for 0 ≤ j ≤ n− 1, (6.12)

∫ 1

0

ω2j+1(s
2) ds < ∞ for 0 ≤ j ≤ n− 2. (6.13)

Then problem (6.1), (6.2) has a solution u∈AC 2n−1[0, T ] and

(−1)j u(2j)(t) > 0 for t∈ (0, T ) and 0 ≤ j ≤ n− 1. (6.14)

Proof. Step 1. Regularization.

For each m∈N, define χm, ϕm, τm ∈C0(R), and Rm ⊂ R by the for-
mulas

χm(v) =





v if v ≥ 1
m

,

1
m

if v < 1
m

,
ϕm(v) =




− 1

m
if v > − 1

m
,

v if v ≤ − 1
m

,

τm =





χm if n = 2k − 1,

ϕm if n = 2k,
Rm = R \ (− 1

m
, 1

m
).

Choose m ∈ N and put

fm,0(t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)

= f(t, χm(x0), x1, ϕm(x2), x3, . . . , τm(x2n−2), x2n−1)

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)∈ [0, T ]×R×Rm×R×Rm×· · ·×R×Rm.



Chapter 6. Lidstone problem 89

Define fm ∈Car([0, T ]× R 2n) by the formula

fm(t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)

=





m
2

[
fm,0(t, x0,

1
m

, x2, x3, . . . , x2n−2, x2n−1)(x1 + 1
m

)

−fm,0(t, x0,− 1
m

, x2, x3, . . . , x2n−2, x2n−1)(x1 − 1
m

)
]

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)

∈ [0, T ]× R× [− 1
m

, 1
m

]× R× Rm × · · · × R× Rm,

m
2

[
fm,0(t, x0, x1, x2,

1
m

, . . . , x2n−2, x2n−1)(x3 + 1
m

)

−fm,0(t, x0, x1, x2,− 1
m

, . . . , x2n−2, x2n−1)(x3 − 1
m

)
]

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)

∈ [0, T ]× R3 × [− 1
m

, 1
m

]× · · · × R× Rm,

...
...

...
...

m
2

[
fm,0(t, x0, x1, x2, . . . , x2n−2,

1
m

)(x2n−1 + 1
m

)

−fm,0(t, x0, x1, x2, . . . , x2n−2,− 1
m

)(x2n−1 − 1
m

)
]

for (t, x0, x1, x2, . . . , x2n−2, x2n−1)∈ [0, T ]×R 2n−1× [− 1
m

, 1
m

].

Then inequalities (6.9) and (6.10) imply that





a ≤ fm(t, x0, . . . , x2n−1)

≤
(
t, 2n +

2n−1∑
j=0

|xj|
)

+
2n−1∑
j=0

[ωj(|xj|) + ωj(1)]
(6.15)

for a.e. t∈ [0, T ] and all (x0, . . . , x2n−1)∈R 2n
0 .

Consider the sequence of approximate regular differential equations

(−1)n u(2n) = fm(t, u, . . . , u(2n−1)). (6.16)
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Step 2. Solvability of problem (6.16), (6.2).

We first give a priori bounds for solutions of problem (6.16), (6.2). To
this end let um ∈AC 2n−1[0, T ] be a solution of problem (6.16), (6.2). By
inequality (6.15) we have

(−1)n u(2n)
m (t) ≥ a > 0 for a.e. t ∈ [0, T ]. (6.17)

Furthermore, by the definitions of the Green functions Gi(t, s), i = 1, 2, . . ., n,
the equality

(−1)j u(2j)
m (t) = (−1)n−j

∫ T

0

Gn−j(t, s) (−1)n u(2n)
m (s) ds (6.18)

holds for t ∈ [0, T ] and 0 ≤ j ≤ n− 1. From relations (6.5) and (6.17) we
see that

(−1)j u(2j)
m (t) > 0 for t ∈ [0, T ], 0 ≤ j ≤ n− 1. (6.19)

Hence (−1)j u
(2j+1)
m is decreasing on [0, T ] for 0 ≤ j ≤ n − 1. Therefore

and due to boundary conditions (6.2) we conclude that u
(2j+1)
m (ξj,m) = 0

holds for a unique ξj,m ∈ (0, T ). Moreover, from relations (6.6), (6.17) and
(6.18) it follows that

|u(2j)
m (t)| ≥ a

T 2(n−j)−5

30n−j−1
t (T − t)

∫ T

0

s (T − s) ds

= a
T 2(n−j)−2

6 · 30n−j−1
t (T − t) for t∈ [0, T ], 0 ≤ j ≤ n− 1.

In particular,

|u(2j)
m (t)| ≥ a

T 2(n−j)−2

6 · 30n−j−1
t (T − t) for t∈ [0, T ], 0 ≤ j ≤ n− 1. (6.20)

Since

u(2j+1)
m (t) =

∫ t

ξj,m

u(2j+2)
m (s) ds and

∣∣∣∣∣
∫ t

ξj,m

s (T − s) ds

∣∣∣∣∣ ≥
T

6
(t− ξj,m)2
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by Lemma 6.2, we obtain




|u(2j+1)

m (t)| ≥ a
T 2(n−j)−3

36 · 30n−j−2
(t− ξj,m)2

for t∈ [0, T ] and 0 ≤ j ≤ n− 2

(6.21)

and

|u(2n−1)
m (t)| ≥ a |t− ξn−1,m| for t∈ [0, T ]. (6.22)

By inequality (6.17) we have |u(2n)
m (t)| ≥ a > 0 for a.e. t ∈ [0, T ]. Put

A = a min{1, A1, A2},
where

A1 = min
{ T 2(n−j)−3

36 · 30n−j−2
: 0 ≤ j ≤ n− 2

}

and

A2 = min
{ T 2(n−j)−2

6 · 30n−j−1
: 0 ≤ j ≤ n− 1

}
.

Then inequalities (6.20)– (6.22) give





|u(2n−1)
m (t)| ≥ A |t− ξn−1,m|,

|u(2j+1)
m (t)| ≥ A (t− ξj,m)2 for 0 ≤ j ≤ n− 2,

|u(2j)
m (t)| ≥ A t (T − t) for 0 ≤ j ≤ n− 1,

(6.23)

for t∈ [0, T ]. Hence

∫ T

0

ω2n−1(|u(2n−1)
m (s)|) ds ≤

∫ T

0

ω2n−1(A |s− ξn−1,m|) ds

=
1

A

∫ Aξn−1,m

0

ω2n−1(s) ds +
1

A

∫ A (T−ξn−1,m)

0

ω2n−1(s) ds

<
2

A

∫ A T

0

ω2n−1(s) ds,
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∫ T

0

ω2j+1(|u(2j+1)
m (s)|) ds ≤

∫ T

0

ω2j+1(A(s− ξj,m)2) ds

=
1√
A

∫ √
A (T−ξj,m)

−√A ξj,m

ω2j+1(s
2) ds <

2√
A

∫ √
A T

0

ω2j+1(s
2) ds

and using the inequality

t (T − t) ≥





T t

2
for 0 ≤ t ≤ T

2
,

T (T − t)

2
for T

2
≤ t ≤ T,

we compute
∫ T

0

ω2j(|u(2j)
m (s)|) ds ≤

∫ T

0

ω2j(As (T − s)) ds

≤
∫ T/2

0

ω2j

(ATs

2

)
ds+

∫ T

T/2

ω2j

(AT (T − s)

2

)
ds =

4

AT

∫ A T 2/2

0

ω2j(s) ds.

So, we can summarize the above considerations as follows:
∫ T

0

ω2n−1(|u(2n−1)
m (s)|) ds <

2

A

∫ A T

0

ω2n−1(s) ds, (6.24)





∫ T

0

ω2j+1(|u(2j+1)
m (s)|) ds <

2√
A

∫ √
A T

0

ω2j+1(s
2) ds,

j = 0, 1, . . . , n− 2,

(6.25)





∫ T

0

ω2j(|u(2j)
m (s)|) ds ≤ 4

AT

∫ A T 2/2

0

ω2j(s) ds,

j = 0, 1, . . . , n− 1,

(6.26)

From inequalities (6.24)– (6.26) and from (6.15) we obtain

|u(2n−1)
m (t)| =

∣∣∣
∫ t

ξn−1,m

fm(s, um(s), . . . , u(2n−1)
m (s)) ds

∣∣∣

≤
∫ T

0

|fm(s, um(s), . . . , u(2n−1)
m (s))| ds
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≤
∫ T

0

h
(
s, 2n +

2n−1∑
j=0

|u(j)
m (s)|

)
ds +

2n−1∑
j=0

∫ T

0

ωj(|u(j)
m (s)|) ds

<

∫ T

0

h
(
s, 2n +

2n−1∑
j=0

|u(j)
m (s)|

)
ds + Λ

for t ∈ [0, T ], where

Λ =
2

A

∫ AT

0

ω2n−1(s) ds +
2√
A

n−2∑
j=0

∫ √
A T

0

ω2j+1(s
2) ds

+
4

AT

n−1∑
j=0

∫ A T 2/2

0

ω2j(s) ds +
2n−1∑
j=0

ωj(1)

In particular,

|u(2n−1)
m (t)| <

∫ T

0

h
(
s, 2n +

2n−1∑
j=0

|u(j)
m (s)|

)
ds + Λ for t ∈ [0, T ]. (6.27)

Notice that Λ < ∞ due to conditions (6.12) and (6.13). Since

‖u(j)
m ‖∞ ≤ T 2n−j−1‖u(n−1)

m ‖∞, 0 ≤ j ≤ 2n− 2, m∈N, (6.28)

which follows immediately from u
(2j+1)
m (ξj,m)=0 and u

(2j)
m (0)=0 (0≤j≤n−1),

inequality (6.27) shows that




‖u(2n−1)
m ‖∞ <

∫ T

0

h
(
s, 2n +

2n−1∑
j=0

‖u(j)
m ‖∞

)
ds + Λ

≤
∫ T

0

h(s, 2n + K ‖u(2n−1)
m ‖∞) ds + Λ

(6.29)

where K is given in (6.11). By condition (6.11),

lim sup
v→∞

1

v

( ∫ T

0

h(s, 2n + Kv) ds + Λ
)

< 1

and therefore there exists a positive constant S such that
∫ T

0

h(s, 2n + Kv) ds + Λ < v
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whenever v ≥ S. Now (6.29) shows that

‖u(2n−1)
m ‖∞ < S, m∈N, (6.30)

and then, by inequality (6.28),

‖u(j)
m ‖∞ < T 2n−j−1S, 0 ≤ j ≤ 2n− 2, m∈N. (6.31)

We have proved that there exists a positive constant S such that any solution
um of problem (6.16), (6.2) satisfies inequalities (6.30) and (6.31), that is,
‖um‖C 2n−1 ≤ KS. Set

γ(x) =





1 if |x| ≤ KS,

2− |x|
K S

if K S < |x| ≤ 2 KS,

0 if |x| > 2 KS

and let f̃m ∈Car([0, T ]× R 2n) be given by

f̃m(t, x0, . . . , x2n−1) = γ
( 2n−1∑

j=0

|xj|
)

[fm(t, x0, . . . , x2n−1)− a] + a.

Clearly, inequality (6.15) is satisfied with f̃m instead of fm. Hence applying
the above procedure we obtain that ‖ũm‖C 2n−1 ≤ K S for any solution ũm

of the differential equations

(−1)n u(2n) = f̃m(t, u, . . . , u(2n−1))

satisfying the boundary conditions (6.2). Therefore Corollary C.6 (with
ϕ(t)=a and with 2n instead of n ) guarantees that problem (6.16), (6.2)
has a solution um ∈AC 2n−1[0, T ] and ‖um‖C 2n−1 ≤ KS.

Step 3. Limit processes.

By Step 2 we know that for each m∈N there exists a solution um

of problem (6.16), (6.2) satisfying inequalities (6.23), (6.30) and (6.31). We

now show that the sequence {fm(um(t), . . . , u
(2n−1)
m (t))} is uniformly inte-
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grable on [0, T ]. From inequalities (6.15) and (6.23) it follows that

a ≤ fm(um(t), . . . , u(2n−1)
m (t))

≤ h
(
t, 2n +

2n−1∑
j=0

|u(j)
m (t)|

)
+

2n−1∑
j=0

[ωj(|u(j)
m (t)|) + ωj(1)]

≤ h(t, 2n + KS) +
2n−1∑
j=0

ωj(1) +
n−1∑
j=0

ω2j(At(T − t))

+
n−2∑
j=0

ω2j+1(A(t− ξj,m)2) + ω2n−1(A|t− ξn−1,m|)

for a.e. t∈ [0, T ] where ξj,m is the unique zero of u
(2j+1)
m (0≤j≤n−1,

m∈N). We have h(t, 2n+KS)∈L1[0, T ] and also ω2j(At(T−t))∈L1[0, T ]

by (6.12). Hence, to prove that {fm(um(t), . . . , u
(2n−1)
m (t))} is uniformly

integrable on [0, T ], it suffices to show that the sequences

{ω2j+1(A(t− ξj,m)2)}, {ω2n−1(A|t− ξn−1,m|)}, 0 ≤ j ≤ n− 2,

are uniformly integrable on [0, T ]. Due to conditions (6.12) and (6.13) this
fact follows from Criterion A.4 (with b=A, r=2 for {ω2j+1(A(t−ξj,m)2)}
and b=A, r=1 for {ω2n−1(A|t − ξn−1,m|)} ). The uniform integrability of

{fm(um(t), . . . , u
(2n−1)
m (t))} yields that {u(2n−1)

m } is equicontinuous on [0, T ]
and consequently, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass
Theorem, we can assume without loss of generality that {um} is conver-
gent in C 2n−1[0, T ] and {ξj,m} is convergent in R for 0 ≤ j ≤ n − 1.
Let limm→∞ um = u and limm→∞ ξj,m = ξj ( 0 ≤ j ≤ n − 1 ). Then
u∈C 2n−1[0, T ] satisfies the boundary conditions (6.2) and letting m →∞
in inequality (6.23) we get

|u(2n−1)(t)| ≥ A|t−ξn−1|, |u(2j+1)(t)| ≥ A(t−ξj)
2, |u(2i)(t)| ≥ At(T−t)

for t∈ [0, T ], 0 ≤ j ≤ n−2 and 0 ≤ i ≤ n−1. Hence u(j) has at most two
zeros in [0, T ] for 0 ≤ j ≤ 2n − 1 and moreover, due to inequality (6.19),
u satisfies inequality (6.14). Therefore, by Theorem 1.7, u is a solution
of problem (6.1), (6.2) and u∈AC 2n−1[0, T ]. ¤

Example. Consider problem (6.1), (6.2) with

f(t, x0, . . . , x2n−1) = p(t) +
2n−1∑

k=0

( ak(t)

|xk|αk
+ bk(t)|xk|βk

)
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on [0, T ] × D where ak ∈L∞[0, T ], p, bk ∈L1[0, T ] are nonnegative for
0 ≤ k ≤ 2n − 1 and p(t) ≥ a > 0 for a.e. t∈ [0, T ]. If α2n−1, α2j ∈ (0, 1)
for 0 ≤ j ≤ n − 1 , α2j+1 ∈ (0, 1

2
) for 0 ≤ j ≤ n − 2 and βk ∈ (0, 1)

for 0 ≤ k ≤ 2n − 1 then, by Theorem 6.3, the problem has a solution
u∈AC 2n−1[0, T ] satisfying inequality (6.14).

Bibliographical notes

Theorem 6.3 was adapted from Agarwal, O’Regan, Rach̊unková and Sta-
něk [16]. The singular Lidstone problem for the differential equation

(−1)n u(2n) = f(t, u)

is considered in Zhao [206]. Here f ∈C0((0, 1)× (0,∞)) is nonnegative and
f may be singular at u = 0, t = 0 and/or t = 1. The existence of positive
solutions in the sets C 2n−2[0, 1] ∩ C 2n(0, 1) and C 2n−1[0, 1] ∩ C 2n(0, 1) is
proved by a combination of the method of lower and upper functions with
the Schauder fixed point theorem. Other singular Lidstone problem for the
differential equation

(−1)n u(2n) = f(t, u,−u′′, . . . , (−1)j u(2j), . . . , (−1)n−1 u(2n−2))

may be found in Wei [198], where f ∈ C((0, 1) × (0,∞)n) is nonnegative
and f(t, x0, . . . , xn−1) may be singular at xj = 0, j = 0, 1, . . . , n− 1, t = 0
and/or t = 1. Sufficient and necessary conditions for the existence of positive
solutions in the sets C2n−2[0, 1] ∩ C2n(0, 1) or C2n−1[0, 1] ∩ C2n(0, 1) are
given. The results are proved by a combination of the method of lower and
upper functions with a maximal principle.
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Many nonlinear evolution partial differential equations, which act as mod-
els for combusting or other processes, have solutions which develop strong
singularities in a finite time, see the references in the books by Bebernes and
Eberly [35], Samarskii, Galaktionov, Kurdyumov and Mikhailov [175] and
in the survey paper by Levine [124]. The prototype of such problems is the
semilinear parabolic equation from combustion theory

ut = ux x + f(u).

Important examples of f include f(u) = exp(u) and f(u) = uβ, β > 1.
In many physical systems, the diffusion term is not linear but depends on
the function u, for example

ut = (uσ ux)x + uβ, σ > 0.

This equation has a porous-medium type diffusion term, and arises as a
model for the temperature profile of a fusion reactor plasma with one source
term (see Zmitrenko, Kurdyumov, Mikhailov and Samarskii [207] and for
further references see the works Samarskii, Galaktionov, Kurdyumov and
Mikhailov [175] or Le Roux and Wilhelmsson [123]). Another possibility is
that the diffusion term depends on its gradient. It occurs in the equation

ut = (|ux|σ ux)x + exp(u)

which arises from studies of turbulent diffusion or the flow of a non-Newtonian
liquid. This equation is invariant under the respective Lie groups of trans-
formations (see e.g. Budd, Collins and Galaktionov [48]). Searching for
solutions which are invariant under these fransformations leads to the fol-
lowing ordinary differential equation for u with a quasilinear differential
operator:

(|u′|p−2 u′)′ − c t u′ + exp(u)− 1 = 0,

where c is a positive constant and p = σ + 2. Let us put

φp(y) = |y|p−2y for y ∈ R.

If p > 1, then the quasilinear operator

u 7→ (φp(u
′))′



Part II. Second order singular problems with φ - Laplacian 99

is called the (one-dimensional) p –Laplacian.

Further, motivated by various significant applications to non-Newtonian
fluid theory, diffusion of flows in porous media, nonlinear elasticity and
theory of capillary surfaces (see Atkinson and Bouillet [29], Esteban and
Vazquez [82], Phan-Thien [151]), several authors have proposed the study
of radially symmetric solutions of the p –Laplace equation

div
(|∇v|p−2∇v

)
= h(|x|, v).

Here ∇ is the gradient, p > 1 and |x| is the Euclidean norm in Rn

of x = (x1, . . . , xn), n > 1. Radially symmetric solutions of this partially
differential equation (i.e., solutions that depend only on the variable r = |x| )
satisfy the ordinary differential equation

r1−n (rn−1 |v′|p−2 v′)′ = h(r, v), ′ =
d

dr
.

If p = n, the change of variables t = ln r transforms it into the equation

(|u′|p−2 u′)′ = en t h(e t, u), ′ =
d

dt

and for p 6= n, the change of variables t = r(p−n)/(p−1) yields the equation

(|u′|p−2 u′)′ =
∣∣∣ p− 1

p− n

∣∣∣
p

t
p−n

p (1−n) h(t
p−1
p−n , u), ′ =

d

dt
.

Both these equations have (one-dimensional) p –Laplacian φp.

This operator was also discussed for systems of second order differential
equations in Lu, O’Regan and Agarwal [130], Manásevich and Mawhin [131],
[132], Mawhin [137], Mawhin and Ureña [139], Nowakowski and Orpel [145],
Zhang [203]. Further modifications can be found in X.L. Fan and X. Fan [85],
Fan, Wu and Wang [86], where the p(t) – Laplacian u → (|u′|p(t)−2u)′ was
investigated and in Dambrosio [63] who worked with the (p1, . . . , pn) – Lapla-
cian. The above operators have been sometimes replaced by their abstract
and more general version of the form

u 7→ (φ(u′))′

called the φ –Laplacian, where φ : R→ R is an increasing homeomorphism.
This leads to clearer exposition and better understanding of the methods that



are employed to derive existence results. See also Manásevich, Mawhin [132],
where φ : Rn → Rn is a strictly monotone homeomorphism.

Most of existence results for problems with φ –Laplacian (or with some
of its special versions) is proved under the assumption that the problems
are regular. See e.g. Dambrosio [63], X.L. Fan and X. Fan [85], Fan,
Wu and Wang [86], Liu [125], Lu, O’Regan and Agarwal [130], Manásevich
and Mawhin [131], [132], Mawhin [138], [137], Mawhin and Ureña [139],
O’Regan [147], Rach̊unková and Tvrdý [169], Zhang [203] who consider two-
point boundary conditions (Dirichlet, Neumann, mixed and periodic). Fur-
ther we refer to the papers Agarwal, O’Regan and Staněk [20] or Nowakowski
and Orpel [145] where some nonlocal boundary conditions can be found. Re-
cently some papers dealing with singular problems with φ –Laplacian have
been published. We can refer to Agarwal, Lü and O’Regan [3], Jiang [109],
[110], Wang and Gao [197] for the Dirichlet problem, to Jebelean and Mawhin
[107], [108], Liu [126], Polášek and Rach̊unková [153], Rach̊unková and Tvrdý
[170] for the periodic problem, to Agarwal, O’Regan, Staněk [18], [20] for
the mixed or nonlocal problems and to Rach̊unková, Staněk and Tvrdý [163]
for other references and results.



Chapter 7

Dirichlet problem

Assume that

φ is an increasing odd homeomorphism with φ(R) = R.

In this chapter we consider the singular Dirichlet problem with φ –Laplacian
of the form

(φ(u′))′ + f(t, u, u′) = 0, u(0) = u(T ) = 0, (7.1)

and its special cases, in particular, the problem of the form

u′′ + f(t, u, u′) = 0, u(0) = u(T ) = 0, (7.2)

where φ(y) ≡ y. We will investigate problems (7.1) and (7.2) on the set
[0, T ]×A. In general, the function f depends on the time variable t∈ [0, T ]
and on two space variables x and y, where (x, y)∈A and A is a closed
subset of R2. We assume that problems (7.1) and (7.2) are singular, which
means, by Chapter 1, that f does not satisfy the Carathéodory conditions
on [0, T ]×A. In what follows, the types of singularities of f will be exactly
specified for each problem under consideration.

In accordance with Chapter 1 we define:

Definition 7.1. A function u : [0, T ] → R with φ(u′)∈AC[0, T ] is a solu-
tion of problem (7.1) if u satisfies

(φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 a.e. on [0, T ]

and fulfils the boundary conditions u(0) = u(T ) = 0. If A 6= R2, we impose
on u in addition the condition (u(t), u′(t))∈A for t∈ [0, T ].

A function u∈C[0, T ] is a w-solution of problem (7.1) if there exists
a finite number of singular points tν ∈ [0, T ], ν = 1, . . . , r, such that if we
denote J = [0, T ] \ {tν}r

ν=1, then φ(u′)∈ACloc(J), u satisfies

(φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 a.e. on [0, T ]

101
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and fulfils the boundary conditions u(0) = u(T ) = 0. If A 6= R2, then
(u(t), u′(t))∈A for t∈ J.

Note that the condition φ(u′)∈AC[0, T ] implies u∈C1[0, T ] and the
condition φ(u′)∈ACloc(J) implies u∈C1(J). If f is supposed to be con-
tinuous on (0, T ) × R2 and can have only time singularities at t = 0 and
t = T, then any solution (any w-solution) u of problem (7.1) moreover satis-
fies φ(u′)∈C1(0, T ). If we have a w-solution u which is not a solution, then
we do not know the behaviour of u′ near singular points tν . But we often
need to know this behaviour. For example, if a singular ordinary differen-
tial equation arises from a partial differential equation with some symmetry
properties we need u′ to be defined on the whole interval [0, T ]. Therefore
we will focus our main attention on solutions and on such w-solutions that
have bounded first derivatives on J.

Remark 7.2. We see that the Dirichlet conditions in (7.1) can be written in
the form u∈B, where

B = {x∈C[0, T ] : x(0) = x(T ) = 0}

is a closed subset of C[0, T ]. Hence, we can carry out the investigation of
problem (7.1) in the spirit of the existence principles presented in Chapter 1:

• the singular problem (7.1) is approximated by a sequence of solvable
regular problems,

• a sequence {un} of approximate solutions is generated,

• a convergence of a suitable subsequence {ukn} is investigated,

• the type of this convergence determines the properties of its limit u
and, among other, determines whether u is a w-solution or a solution
of the original singular problem.

There are more possibilities how to construct an approximate sequence
of regular problems. Their choice depends on the type of singularities of
the nonlinearity f in (7.1) (time, space), on the type of singular points cor-
responding to a solution or a w-solution of problem (7.1) (type I, type II),
on the type of results desired (existence of a solution, a positive solution,
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a w-solution, uniqueness), and so on. A common idea is that approximate
functions fn have no singularities, fn 6= f on neighbourhoods Un of sin-
gular points of f, fn = f elsewhere, and limn→∞ meas (Un) = 0. Having
such a sequence of {fn} we study regular problems

(φ(u′))′ + fn(t, u, u′) = 0, u(0) = An, u(T ) = Bn, n∈N,

where An, Bn ∈R, limn→∞ An = limn→∞ Bn = 0. In some proofs, one
simply puts An = Bn = 0 for n∈N. Solvability of these regular prob-
lems can be investigated by means of various methods which have been
developed for regular Dirichlet problems (fixed point theorems, topologi-
cal degree arguments – Cronin [59], Mawhin [135], the critical point theory
– Drábek [77], the topological transversality method – Granas, Guenther
and Lee [100], variational methods – Ambrosetti [27], Došlý and Řehák [76],
Mawhin and Willem [140], lower and upper functions – De Coster and Ha-
bets [60], [61], [62], Kiguradze and Shekhter [118], Vasiliev and Klokov [194],
Ważewski method – Srzednicki [180], Dibĺık [73], etc.). Using these methods
we generate a sequence of approximate solutions {un}. The crucial informa-
tion which enables us to realize the limit process concerns a priori estimates
of the approximate solutions un. In the next section we present some ex-
istence results and a priori estimates of solutions of regular problems which
will be used in the study of solvability of the singular problem (7.1).

7.1 Regular Dirichlet problem

In this section we will study an auxiliary regular problem of the form

(φ(u′))′ + g(t, u, u′) = 0, u(0) = A, u(T ) = B, (7.3)

where g ∈Car([0, T ]× R2), A, B ∈R.

Definition 7.3. A function u : [0, T ] → R with φ(u′)∈AC[0, T ] is a solu-
tion of problem (7.3) if u satisfies

(φ(u′(t)))′ + g(t, u(t), u′(t)) = 0 for a.e. t∈ [0, T ]

and fulfils the boundary conditions u(0) = A, u(T ) = B.

The simplest case when g has a Lebesgue integrable majorant, is de-
scribed in the next theorem.
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Theorem 7.4. Assume that there is a function h∈L1[0, T ] such that

|g(t, x, y)| ≤ h(t) for a.e. t∈ [0, T ] and all x, y ∈R. (7.4)

Then problem (7.3) has a solution.

Proof. Step 1. Solution of an auxiliary problem.

Consider the auxiliary problem

(φ(u′))′ = b(t), u(0) = A, u(T ) = B, (7.5)

where b∈L1[0, T ]. It can be checked by direct computation that u is a so-
lution of problem (7.5) if and only if u∈C1[0, T ] satisfies the conditions

u(t) = A +

∫ t

0

φ−1
(
φ(u′(0)) +

∫ s

0

b(τ)dτ
)
ds

and∫ T

0

φ−1
(
φ(u′(0)) +

∫ s

0

b(τ)dτ
)
ds = B − A.

Step 2. Definition of functional γ.

For each `∈C[0, T ] define

ψ` : R→ R, ψ`(x) =

∫ T

0

φ−1
(
x + `(s)

)
ds.

Due to the assumption that φ is an increasing homeomorphism with φ(R) =
R, the function ψ` is continuous, increasing, and ψ`(R) = R. Thus the
equation ψ`(x) = B − A has exactly one root x = γ(`)∈R. Therefore we
can define the functional

γ : C[0, T ] → R, ψ`(γ(`)) = B − A.

Step 3. The functional γ maps bounded sets to bounded sets.

Assume that M ⊂ C[0, T ] and c∈ (0,∞) are such that ‖`‖∞ ≤ c for
each `∈M. Further assume that there exists a sequence {`n} ⊂ M such
that

lim
n→∞

γ(`n) = ∞ or lim
n→∞

γ(`n) = −∞.
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Let the former possibility occur. Then

B − A = lim
n→∞

ψ`n(γ(`n)) ≥ lim
n→∞

Tφ−1(γ(`n)− c) = ∞,

a contradiction. The latter possibility can be argued similarly. Thus γ(M)
is bounded.

Step 4. Functional γ is continuous.

Consider a sequence {`n} ⊂ C[0, T ] and assume that

lim
n→∞

`n = `0 in C[0, T ].

By Step 3, the sequence {γ(`n)} ⊂ R is bounded and hence we can choose
a subsequence such that limn→∞ γ(`kn) = x0 ∈R. We get

B − A = ψ`kn
(γ(`kn)) =

∫ T

0

φ−1
(
γ(`kn) + `kn(t)

)
dt,

which, for n →∞, yields

B − A =

∫ T

0

φ−1
(
x0 + `0(t)

)
dt.

Thus, according to Step 2, we have x0 = γ(`0). It follows that any convergent
subsequence of {γ(`n)} has the same limit γ(`0). Since {γ(`n} is bounded,
we get γ(`0) = limn→∞ γ(`n).

Step 5. Definition of operator F .

Define operators N : C1[0, T ] → C[0, T ] and F : C1[0, T ] → C1[0, T ]
by

(N (u))(t) = −
∫ t

0

g(s, u(s), u′(s))ds

and

(F(u))(t) = A +

∫ t

0

φ−1
(
γ(N (u)) + (N (u))(s)

)
ds.

Step 1 and Step 2 yield that u is a solution of problem (7.3) if and only if
u∈C1[0, T ] satisfies

u(t) = A +

∫ t

0

φ−1
(
φ(u′(0)) + (N (u))(s)

)
ds, φ(u′(0)) = γ(N (u)).
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Therefore the operator equation u = F(u) is equivalent to problem (7.3).
Thus it suffices to prove that the operator F has a fixed point.

Step 6. Fixed point of operator F .

Since the operators γ and N are continuous, it follows that F is
continuous. Choose an arbitrary sequence {un} ⊂ C1[0, T ] and denote
vn = F(un) for n∈N. Then

v′n(t) = φ−1
(
γ(N (un)) + (N (un))(t)

)
, t∈ [0, T ], n∈N.

By condition (7.4) there is a c1 ∈ (0,∞) such that ‖(N (un)‖∞ ≤ c1. This
implies that the sequences {vn} and {v′n} are bounded on [0, T ]. Con-
sequently, the sequence {vn} is equicontinuous on [0, T ]. Moreover, for
t1, t2 ∈ [0, T ] we have

|φ(v′n(t1))− φ(v′n(t2))| = |(N (un))(t1)− (N (un))(t2)| ≤
∣∣∣∣
∫ t2

t1

h(s)ds

∣∣∣∣ .

Thus the sequence {φ(v′n)} is bounded and equicontinuous on [0, T ]. Mak-
ing use of the Arzelà-Ascoli theorem we can find subsequences {vkn} and
{φ(v′kn

)} uniformly convergent on [0, T ]. Then {v′kn
} is also uniformly con-

vergent on [0, T ] and so, {vkn} is convergent in C1[0, T ]. We have proved
that the operator F is compact on C1[0, T ]. By the Schauder fixed point
theorem, F has a fixed point, which is a solution of problem (7.3). ¤

Method of a priori estimates

Using the method of a priori estimates we can get existence of solutions
of problem (7.3) even for functions g which do not satisfy (7.4) with some
h∈L1[0, T ]. To this aim the following two lemmas will be useful. Define the
linear function

a(t) =
T − t

T
A +

t

T
B, t∈ [0, T ]. (7.6)

Motivated by the monographs Kiguradze [115] or Kiguradze and Shekhter
[118] we will prove a priori estimates under one-sided growth conditions.
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Lemma 7.5 (A priori estimate – sublinear growth).

Let α, β ∈ [0, 1), κ ∈ (0,∞). Let h1 ∈L1[0, T ] be nonnegative and let the
function a be given by (7.6). Further assume that

lim
y→∞

φ(y)

y
> 0. (7.7)

Then there exists r > 0 such that the estimate

‖u‖∞ + ‖u′‖∞ ≤ r

is valid for each nonnegative function h0 ∈ L1[0, T ] with ‖h0‖1≤κ and for
each function u satisfying





φ(u′)∈AC[0, T ], u(0) = A, u(T ) = B,

−(φ(u′(t)))′ sign(u(t)− a(t))

≤ h0(t) + h1(t)(|u(t)|α + |u′(t)|β) for a.e. t∈ [0, T ].

(7.8)

Proof. Choose an arbitrary u satisfying (7.8). Denote ρ = ‖u′‖∞ and let
ρ = |u′(t0)|. Assume that ρ > |B−A

T
|. We have ‖u‖∞ ≤ ρT + |A|. Now, we

shall consider four cases.

Case 1. Let u′(t0) = ρ, u(t0) < a(t0). This yields t0 ∈ (0, T ) and if we
put v(t) = u(t) − a(t) on [0, T ], we have v′(t0) > 0, v(t0) < 0. Since
v(0) = 0, we can find t1 ∈ [0, t0) such that

v′(t1) = 0, v′(t) > 0 for t∈ (t1, t0).

This implies u(t)− a(t) = v(t) < 0 on [t1, t0]. Integrating the inequality in
(7.8), we get

∫ t0

t1

(φ(u′(t)))′dt ≤ ‖h0‖1 + ((ρT + |A|)α + ρβ)‖h1‖1.

Thus




φ(ρ)

ρ
≤ 1

ρ

(
κ +

∣∣φ (
B−A

T

)∣∣)

+

(
(ρT + |A|)α

ρ
+ ρβ−1

)
‖h1‖1 =: F (ρ).

(7.9)
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Since limy→∞ F (y) = 0, we deduce by assumption (7.7) that

there exists ρ∗ >

∣∣∣∣
B − A

T

∣∣∣∣ such that ‖u′‖∞ ≤ ρ∗. (7.10)

We see that ρ∗ does not depend on the choice of u and h0.

Case 2. Let u′(t0) = ρ, u(t0) ≥ a(t0). So, for v = u − a we have
v′(t0) > 0, v(t0) ≥ 0. Let t0 ∈ [0, T ). Then there exists t1 ∈ (t0, T ) such
that

v′(t1) = 0, v′(t) > 0 for t∈ (t0, t1).

This implies u(t)− a(t) = v(t) > 0 on (t0, t1]. Integrating the inequality in
(7.8), we get

−
∫ t1

t0

(φ(u′(t)))′dt ≤ ‖h0‖1 +
(
(ρT + |A|)α + ρβ

) ‖h1‖1.

Thus relation (7.9) is valid which yields estimate (7.10). Now, let t0 = T.
Then there exists t1 ∈ (0, T ) such that

v′(t1) = 0, v′(t) > 0 for t∈ (t1, T ).

Since v(T ) = 0, we see that u(t)− a(t) = v(t) < 0 on (t1, T ). Integrating
the inequality in (7.8), we get

∫ T

t1

(φ(u′(t)))′ dt ≤ ‖h0‖1 +
(
(ρ T + |A|)α + ρβ

) ‖h1‖1.

So, relation (7.9) and consequently estimate (7.10) are valid again.

Cases 3 and 4. Let

u′(t0) = −ρ, u(t0) > a(t0) or u′(t0) = −ρ, u(t0) ≤ a(t0).

Similarly, using the assumption that φ is odd, we can verify that estimate
(7.10) is true also in this remaining two cases.

Summarizing, if we put r = ρ∗ + ρ∗T + |A|, we get ‖u‖∞+‖u′‖∞≤ r. ¤
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Remark 7.6. (i) If φ does not fulfil condition (7.7), we replace the inequal-
ity in (7.8) by

−(φ(u′(t)))′ sign(u(t)− a(t))

≤ h0(t) + h1(t)

(∣∣∣∣φ
(

u(t)− A

T

)∣∣∣∣
α

+ |φ(u′(t))|β
)

for a.e. t∈ [0, T ].

Then, arguing similarly to the proof of Lemma 7.5, we get

1 ≤ 1

φ(ρ)

(
κ +

∣∣∣∣φ
(

B − A

T

)∣∣∣∣
)

+ ‖h1‖1((φ(ρ))α−1 + (φ(ρ))β−1).

This implies estimate (7.10) and consequently ‖u‖∞ + ‖u′‖∞ ≤ r.

(ii) If φ(y) = φp(y) = |y|p−2y with p ≥ 2, then condition (7.7) is always
satisfied.

Lemma 7.7 (A priori estimate – linear growth).

Assume that κ ∈ (0,∞) and that the function a is given by (7.6). Let
h1, h2 ∈L1[0, T ] be nonnegative and let

lim
y→∞

φ(y)

y
> T‖h1‖1 + ‖h2‖1. (7.11)

Then there exists r > 0 such that the estimate

‖u‖∞ + ‖u′‖∞ ≤ r

is valid for each nonnegative function h0 ∈ L1[0, T ] with ‖h0‖1≤κ and for
each function u satisfying





φ(u′)∈AC[0, T ], u(0) = A, u(T ) = B,

−(φ(u′(t)))′ sign(u(t)− a(t))

≤ h0(t) + h1(t) |u(t)|+ h2(t) |u′(t)| for a.e. t∈ [0, T ].

(7.12)

Proof. Choose an arbitrary function u satisfying condition (7.12). Denote
ρ = ‖u′‖∞ and let ρ = |u′(t0)|. We have ‖u‖∞ ≤ ρ T + |A|. Assume that
ρ > |B−A

T
|. Now, we shall consider four cases as in the proof of Lemma 7.5.
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Let u′(t0) = ρ, u(t0) < a(t0). We argue as in the proof of Lemma 7.5
and find t1 ∈ [0, t0) such that u′(t1) = |B−A

T
| and u(t) < a(t) on [t1, t0].

Integrating the inequality in (7.12), we get

φ(ρ)

ρ
≤ 1

ρ

(
κ +

∣∣∣∣φ
(

B − A

T

)∣∣∣∣ + |A|‖h1‖1

)
+ T‖h1‖1 + ‖h2‖1 =: F1(ρ).

Since limy→∞ F1(y) = T‖h1‖1 +‖h2‖1, we deduce by assumption (7.11) that
estimate (7.10) holds. The remaining three cases are similar. Therefore, if
we put r = ρ∗ + ρ∗T + |A|, we get ‖u‖∞ + ‖u′‖∞ ≤ r. ¤

Remark 7.8. (i) If condition (7.11) is not satisfied, we assume

T ‖h1‖1 + ‖h2‖1 < 1

and replace the inequality in (7.12) by

−(φ(u′(t)))′ sign(u(t)− a(t))

≤ h0(t) + h1(t)

∣∣∣∣φ
(

u(t)−A

T

)∣∣∣∣ + h2(t)|φ(u′(t))| for a.e. t∈ [0, T ].

Then, arguing similarly to the proof of Lemma 7.7 and to Remark 7.6, we
get ‖u‖∞ + ‖u′‖∞ ≤ r.

(ii) We see that if φ(y) = φp(y) = |y|p−2y with p > 2, then condition
(7.11) is fulfilled for each h1, h2 ∈L1[0, T ].

The following theorem relies on Lemma 7.5.

Theorem 7.9. Assume that the function a is given by (7.6). Let α, β∈ [0, 1)
and let h∈L1[0, T ] be nonnegative. Further assume (7.7) and




g(t, x, y) sign(x− a(t)) ≤ h(t)(1 + |x|α + |y|β)

for a.e. t∈ [0, T ] and all x, y ∈R.
(7.13)

Then problem (7.3) has a solution.

Proof. Let r be the constant of Lemma 7.5 for h0 = h1 = h and κ = ‖h‖1.
Put M = max{|A|, |B|}, r̃ = r + M, and define

χ(z) =





−r̃ if z < −r̃,

z if |z| ≤ r̃,

r̃ if z > r̃,

g̃(t, x, y) = g(t, χ(x), χ(y)) for a.e. t∈ [0, T ]
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and all x, y, z ∈ R. Then g̃ ∈Car([0, T ] × R2) and there is a function

h̃∈L1[0, T ] such that |g̃(t, x, y)| ≤ h̃(t) for a.e. t∈ [0, T ] and all x, y ∈R.
Consider the auxiliary problem

(φ(u′))′ + g̃(t, u, u′) = 0, u(0) = A, u(T ) = B. (7.14)

By Theorem 7.4, problem (7.14) has a solution u. Since r̃ > M, we have
sign(x− a(t)) = sign(χ(x)− a(t)) for t∈ [0, T ], x∈R, and

−(φ(u′(t)))′ sign(u(t)− a(t)) = g(t, χ(u(t)), χ(u′(t))) sign(χ(u(t))− a(t))

≤ h(t) (1 + |χ(u(t))|α + |χ(u′(t))|β)

≤ h(t)(1 + |u(t)|α + |u′(t)|β) for a.e. t∈ [0, T ].

Thus, by Lemma 7.5, the function u satisfies ‖u‖∞+‖u′‖∞ ≤ r and hence
u is also a solution of problem (7.3). ¤

Remark 7.10. If g satisfies inequality (7.13) with α, β ∈ [0, 1), we will say
that g has one-sided sublinear growth in x and y. In this case each function
g + g0 has also one-sided sublinear growth provided g0(t, x, y) sign(x− a(t))
is nonpositive on [0, T ]× R2.

Example. Let A = B = 0, hi ∈L1[0, T ], i = 0, 1, 2, 3, h1, h3 be nonneg-
ative on [0, T ]. For a.e. t∈ [0, T ] and all x, y ∈R define the function

g(t, x, y) = h0(t)− h1(t) x3 + h2(t)
√
|y| − h3(t) xy4.

We see that g satisfies inequality (7.13) because a(t) ≡ 0 and we can
write g in the form g = g0 + g1, where g1(t, x, y) = h0(t) + h2(t)

√
|y| and

g0(t, x, y) = −h1(t)x
3−h3(t) xy4. Here g1 has a sublinear growth in x and

y and g0(t, x, y) sign x ≤ 0 on [0, T ]× R2.

The next theorem will be applicable to problem (7.3) with g(t, x, y) hav-
ing one-sided linear growth in x and y.

Theorem 7.11. Let the function a be given by (7.6). Let h0, h1, h2 ∈L1[0, T ]
be nonnegative and let condition (7.11) hold. Further assume





g(t, x, y) sign(x− a(t)) ≤ h0(t) + h1(t)|x|+ h2(t)|y|
for a.e. t∈ [0, T ] and all x, y ∈R.

Then problem (7.3) has a solution.
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Proof. We argue as in the proof of Theorem 7.9 and use Lemma 7.7 instead
of Lemma 7.5. ¤

Example. Let T = 1, n∈N, A = 0, B = 1, φ(y) ≡ y, h∈L1[0, 1] and let
ϕ∈Car([0, 1]× R2) be nonnegative. Then the function

g(t, x, y) = h(t) + t x + t2 y − (x− t)2n+1ϕ(t, x, y)

satisfies the conditions of Theorem 7.11 because

g(t, x, y) sign(x− t) ≤ |h(t)|+ t |x|+ t2 |y|
for a.e. t∈ [0, 1] and for all x, y ∈R, and

lim
y→∞

φ(y)

y
= 1 >

∫ 1

0

t dt +

∫ 1

0

t2 dt =
5

6
,

i.e. condition (7.11) is valid.

Remark 7.12. If φ does not fulfil conditions (7.7) and (7.11) in Theo-
rems 7.9 and 7.11, respectively, we modify these theorems according to Re-
marks 7.6 and 7.8.

Method of lower and upper functions

It is well known that for regular second order boundary value problems
the lower and upper functions method is a useful instrument for proofs of their
solvability and for a priori estimates of their solutions. See e.g. De Coster
and Habets [60], [61], [62], Kiguradze and Shekhter [118], Ladde, Laksh-
mikantham and Vatsala [120], Rach̊unková and Tvrdý [167], [168], [169]
or Vasiliev and Klokov [194]. In literature several definitions of lower and
upper functions for regular boundary value problems can be found. (Note
that in some papers they are called lower and upper solutions). Here we will
use the following one.

Definition 7.13. A function σ ∈C[0, T ] is called a lower function of prob-
lem (7.3) if there is a finite set Σ⊂ (0, T ) such that φ(σ′)∈ACloc([0, T ] \Σ),
σ′(τ+) := limt→τ+ σ′(t)∈R, σ′(τ−) := limt→τ− σ′(t)∈R for each τ ∈Σ,





(φ(σ′(t)))′ + g(t, σ(t), σ′(t)) ≥ 0 for a.e. t∈ [0, T ],

σ(0) ≤ A, σ(T ) ≤ B, σ′(τ−) < σ′(τ+) for each τ ∈Σ.
(7.15)
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If the inequalities in (7.15) are reversed, then σ is called an upper function
of problem (7.3).

We have seen that Theorems 7.9 and 7.11 can be used for problem (7.3)
provided g(t, x, y) satisfies sublinear or linear one-sided growth restrictions
with respect to x and y. Another class of functions g is covered by the next
theorem which says that if there exist lower and upper functions σ1 ≤ σ2 to
problem (7.3), it suffices to require the inequality in (7.4) only for x∈ [σ1, σ2].
This implies that g(t, x, y) can grow in x arbitrarily.

Theorem 7.14. Let σ1 and σ2 be a lower function and an upper function
of problem (7.3) and let σ1(t) ≤ σ2(t) for t∈ [0, T ]. Assume that there is
a function h∈L1[0, T ] such that

|g(t, x, y)| ≤ h(t) for a.e. t∈ [0, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.

Then problem (7.3) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t) for t∈ [0, T ]. (7.16)

Proof. Step 1. Construction of an auxiliary problem.

For a.e. t∈ [0, T ] and all x, y ∈R, ε∈ [0, 1], define

g̃(t, x, y) =





g(t, σ1(t), y) + ω1

(
t,

σ1(t)− x

σ1(t)− x + 1

)
+

σ1(t)− x

σ1(t)− x + 1

if x < σ1(t),

g(t, x, y) if σ1(t) ≤ x ≤ σ2(t),

g(t, σ2(t), y)− ω2

(
t,

x− σ2(t)

x− σ2(t) + 1

)
− x− σ2(t)

x− σ2(t) + 1

if x > σ2(t),

where

ωi(t, ε) = sup{|g(t, σi(t), σ
′
i(t))−g(t, σi(t), y)| : |y−σ′i(t)| < ε}, i = 1, 2.

We see that ωi ∈Car([0, T ] × [0, 1]) is nonnegative, nondecreasing in its
second variable and ωi(t, 0) = 0 for a.e. t∈ [0, T ], i = 1, 2. Further, we have
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g̃ ∈Car([0, T ]×R2) and there exists h̃∈L1[0, T ] such that |g̃(t, x, y)| ≤ h̃(t)
for a.e. t∈ [0, T ] and all x, y ∈R. Thus, by Theorem 7.4, problem (7.14) with
g̃ defined in this proof has a solution u.

Step 2. Solution u of the auxiliary problem lies between σ1 and σ2.

We will prove that estimate (7.16) holds. Denote v(t) = u(t)− σ2(t) for
t∈ [0, T ] and assume, on the contrary, that

max{v(t) : t∈ [0, T ]} = v(t0) > 0.

Since u(0) = A, u(T ) = B and σ2(0) ≥ A, σ2(T ) ≥ B, we have t0 ∈ (0, T ).
Moreover, Definition 7.13 implies that t0 6∈Σ, because v′(τ−) < v′(τ+) for
τ ∈Σ. So, we have t0 ∈ (0, T ) \ Σ and v′(t0) = 0. This guarantees the
existence of t1 ∈ (t0, T ) such that

v(t) > 0 and |v′(t)| < v(t)

v(t) + 1
< 1

for t∈ [t0, t1] and [t0, t1] ∩ Σ = ∅. Then

(
φ(u′(t))

)′ − (
φ(σ′2(t))

)′
= −g̃(t, u(t), u′(t))− (

φ(σ′2(t))
)′

= −g(t, σ2(t), u
′(t)) + ω2

(
t,

v(t)

v(t) + 1

)
+

v(t)

v(t) + 1
− (

φ(σ′2(t))
)′

> −g(t, σ2(t), u
′(t)) + ω2(t, |v′(t)|)−

(
φ(σ′2(t))

)′ ≥ −g(t, σ2(t), u
′(t))

+g(t, σ2(t), u
′(t))− g(t, σ2(t), σ

′
2(t))−

(
φ(σ′2(t))

)′ ≥ 0

for a.e. t∈ [t0, t1]. Hence

0 <

∫ t

t0

(
φ(u′(s))

)′ − (
φ(σ′2(s))

)′
ds = φ(u′(t))− φ(σ′2(t)), t∈ (t0, t1].

Therefore v′ = u′ − σ′2 > 0 on (t0, t1], which contradicts the assumption
that v has its maximum value at t0. The inequality σ1(t) ≤ u(t) can be
proved similarly. Thus, u fulfils estimate (7.16) and so, u is a solution
of problem (7.3). ¤
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Example. Let A,B ∈R and r1, r2 ∈R be such that r1 ≤ min{0, A, B}
and r2 ≥ max{0, A, B} and

g(t, r1, 0) ≥ 0, g(t, r2, 0) ≤ 0 for a.e. t∈ [0, T ].

Then the constant function σ1(t) ≡ r1 satisfies condition (7.15) and hence,
σ1 is a lower function of problem (7.3). Similarly σ2(t) ≡ r2 satisfies con-
dition (7.15) with the reversed inequalities and so, σ2 is an upper function
of problem (7.3). Here Σ = ∅.

The next lemmas on a priori estimates enable us to extend the existence
results of Theorems 7.9 and 7.11. The first two deal with the so called
Nagumo function ω ∈C[0,∞) which is positive and fulfils

∫ ∞

0

ds

ω(s)
= ∞. (7.17)

Similar a priori estimates for φ(y) ≡ y can be found in Kiguradze [115] or
Kiguradze and Shekhter [118].

Lemma 7.15 (A priori estimate – Nagumo condition I).

Assume that the function a is given by (7.6). Let r0, κ ∈ (0,∞), let
h0 ∈L1[0, T ] be nonnegative and let ω ∈C[0,∞) be positive and fulfil condi-
tion (7.17). Then there exists r > 0 such that for each function u satisfying





φ(u′)∈AC[0, T ], u(0) = A, u(T ) = B, ‖u‖∞ ≤ r0,

−(φ(u′(t)))′ sign(u(t)−a(t))≤κ ω(|φ(u′(t))|)(h0(t) + |u′(t)|)
(7.18)

the estimate ‖u′‖∞ ≤ r is valid.

Proof. Choose an arbitrary u satisfying condition (7.18). Denote ‖u′‖∞ = ρ
and let ρ = |u′(t0)|. Assume ρ > |B−A

T
|. We will consider four cases as in

the proof of Lemma 7.5.

Case 1. Let u′(t0) = ρ, u(t0) <a(t0). Then t0 ∈ (0, T ) and since u(0) = a(0),
we can find t1 ∈ [0, t0) such that

u′(t1) =

∣∣∣∣
B − A

T

∣∣∣∣ , u′(t) >

∣∣∣∣
B − A

T

∣∣∣∣ for t∈ (t1, t0).



116 Chapter 7. Dirichlet problem

This implies

u(t) < a(t), u′(t) > 0 for t∈ [t1, t0]

and, by condition (7.18),

(φ(u′(t)))′

ω(φ(u′(t)))
≤ κ(h0(t) + u′(t)) for a.e. t∈ [t1, t0].

Integration of the last inequality leads to

∫ t0

t1

(φ(u′(t)))′

ω(φ(u′(t)))
dt ≤ κ(‖h0‖1 + 2r0)

and

∫ φ(ρ)

0

ds

ω(s)
≤

∫ φ(|(B−A)/T |)

0

ds

ω(s)
+ κ(‖h0‖1 + 2r0) =: K < ∞. (7.19)

Case 2. Let u′(t0) = ρ, u(t0) ≥ a(t0). Let t0 ∈ [0, T ). Then there exists
t1 ∈ (t0, T ) such that

u′(t1) =

∣∣∣∣
B − A

T

∣∣∣∣ , u′(t) >

∣∣∣∣
B − A

T

∣∣∣∣ for t∈ (t0, t1).

This implies

u(t) > a(t), u′(t) > 0 for t∈ (t0, t1]

and, by condition (7.18),

−(φ(u′(t)))′

ω(φ(u′(t)))
≤ κ(h0(t) + u′(t)) for a.e. t∈ [t0, t1].

Integration of the last inequality leads to

−
∫ t1

t0

(φ(u′(t)))′

ω(φ(u′(t)))
dt ≤ κ(‖h0‖1 + 2r0)

and we get relation (7.19).
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Now, let t0 = T. Then there exists t1 ∈ (0, T ) such that

u′(t1) =

∣∣∣∣
B − A

T

∣∣∣∣ , u′(t) >

∣∣∣∣
B − A

T

∣∣∣∣ , u(t) < a(t) for t∈ (t1, T ).

We get (7.19) as in Case 1.

Cases 3. and 4. In the remaining two cases we prove (7.19) similarly.

By condition (7.17) there is an r > |B−A
T
| such that

∫ φ(r)

0

ds

ω(s)
> K.

Thus, by virtue of relation (7.19), ρ < r. Hence the estimate ‖u′‖∞ ≤ r is
proved. ¤

Lemma 7.16 (A priori estimate – Nagumo condition II).

Let a1, a2 ∈ [0, T ], a1 < a2, y1, y2 ∈ R, r0, κ ∈ (0,∞). Furthermore,
let h0 ∈L1[0, T ] be nonnegative and let ω ∈C[0,∞) be positive and fulfil
condition (7.17). Then there exists r > 0 such that for each function u
satisfying





φ(u′)∈AC[0, T ], ‖u‖∞ ≤ r0,

(φ(u′(t)))′ sign(u′(t)−y1)

≥−κ ω(|φ(u′(t))−φ(y1)|)(h0(t)+|u′(t)− y1|)
for a.e. t∈ [0, a2],

(φ(u′(t)))′ sign(u′(t)− y2)

≤ κ ω(|φ(u′(t))− φ(y2)|)(h0(t) + |u′(t)− y2|)
for a.e. t∈ [a1, T ],

(7.20)

the estimate ‖u′‖∞ ≤ r is valid.

Proof. Choose an arbitrary u satisfying condition (7.20). By the Mean
Value Theorem we can find ξ ∈ (a1, a2) such that |u′(ξ)| ≤ 2r0

a2−a1
=: c0.

Further we see that

sign(φ(u′(t))− φ(yi)) = sign(u′(t)− yi), i = 1, 2, for t∈ [0, T ].
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Put vi(t) = φ(u′(t))− φ(yi), i = 1, 2, for t∈ [0, T ]. Then

|vi(ξ)| ≤ φ(c0) + |φ(yi)| =: ci, i = 1, 2.

Condition (7.17) implies that there exists ρi ∈ (ci,∞), i = 1, 2, such that
∫ ρi

ci

ds

ω(s)
> κ(‖h0‖1 + 2r0 + T |yi|), i = 1, 2. (7.21)

Assume

max{|v1(t)| : t∈ [0, ξ]} = |v1(α)| > ρ1.

Then α < ξ and there exists β ∈ (α, ξ] such that

|v1(β)| = c1, |v1(t)| ≥ c1 for t∈ [α, β].

By the inequality in (7.20) which holds on [0, a2], we get

−v′1(t) sign v1(t)

ω(|v1(t)|) ≤ κ (h0(t) + |u′(t)− y1|) for a.e. t∈ [α, β].

Integrating this inequality over [α, β] and using the substitution s = |v′1(t)|,
we arrive at

∫ |v1(α)|

c1

ds

ω(s)
≤ κ

(∫ β

α

h0(t)dt +

∫ β

α

|u′(t)− y1|dt

)
. (7.22)

Since |v1(t)| = |φ(u′(t))− φ(y1)| ≥ c1 for t∈ [α, β], we see that u′(t)− y1

does not change its sign on [α, β] and hence

∫ β

α

|u′(t)− y1|dt =

∣∣∣∣
∫ β

α

(u′(t)− y1)dt

∣∣∣∣ ≤ 2r0 + T |y1|.

So, (7.22) leads to

∫ ρ1

c1

ds

ω(s)
<

∫ |v1(α)|

c1

ds

ω(s)
≤ κ(‖h0‖1 + 2r0 + T |y1|),

which contradicts inequality (7.21). Therefore |v1(α)| ≤ ρ1 and we have
proved

|φ(u′(t))− φ(y1)| ≤ ρ1 for t∈ [0, ξ].
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The estimate

|φ(u′(t))− φ(y2)| ≤ ρ2 for t∈ [ξ, T ]

can be proved similarly. Hence, we get ‖u′‖∞ ≤ r if we put r = φ−1(ρ∗),
where ρ∗ = max{ρ1, ρ2}+ max{|φ(y1)|, |φ(y2)|}. ¤

If we investigate problem (7.3) with g(t, x, y) having arbitrary growth
in x and growth in y controlled by the Nagumo condition (7.23) , we can
often use one of the following two theorems.

Theorem 7.17. Let a be given by (7.6), let σ1 and σ2 be a lower function
and an upper function of problem (7.3) and let σ1(t) ≤ σ2(t) for t∈ [0, T ].
Assume that there exist κ ∈ (0,∞), a nonnegative function h0 ∈L1[0, T ]
and a positive function ω ∈C[0,∞) fulfilling condition (7.17) and





g(t, x, y) sign(x− a(t)) ≤ κ ω(|φ(y)|)(h0(t) + |y|)
for a.e. t∈ [0, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.

(7.23)

Then problem (7.3) has a solution u satisfying estimate (7.16) and moreover,
‖u′‖∞ ≤ r. Here r > 0 is the constant independent of u and given by
Lemma 7.15 for r0 = max{‖σ1‖∞, ‖σ2‖∞}.
Proof. Without loss of generality we can assume

r > max{‖σ′1‖∞, ‖σ′2‖∞}.

Define

χ(z) =





1 if 0 ≤ z ≤ r,

2r − z

r
if r < z < 2r,

0 if z ≥ 2r

g̃(t, x, y) = χ(|y|)g(t, x, y)

for a.e. t∈ [0, T ] and all x, y ∈R, z ∈ [0,∞). Then g̃ ∈Car([0, T ]×R2) and

there is a function h̃∈L1[0, T ] such that |g̃(t, x, y)| ≤ h̃(t) for a.e. t∈ [0, T ]
and all x∈ [σ1(t), σ2(t)], y ∈R. Consider problem (7.14) with g̃ defined
in this proof. Since σ1 and σ2 are also lower and upper functions to this
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problem, we get by Theorem 7.14 that it has a solution u satisfying estimate
(7.16). Further,

−(φ(u′(t)))′ sign(u(t)− a(t)) = g̃(t, u(t), u′(t)) sign(u(t)− a(t))

= χ(|u′(t)|) g(t, u(t), u′(t)) sign(u(t)− a(t))

≤ χ(|u′(t)|)κ ω(|φ(u′(t))|) (h0(t) + |u′(t)|)
≤ κ ω(|φ(u′(t))|) (h0(t) + |u′(t)|) for a.e. t∈ [0, T ].

By Lemma 7.15, the function u satisfies ‖u′‖∞ ≤ r and hence u is also a
solution of problem (7.3). ¤

Example. Let k, n∈N, A=B=1, c∈R, h1 ∈L∞[0, T ], and let h2 ∈L1[0, T ]
and ϕ∈Car([0, T ] × R2) be nonnegative functions. For a.e. t∈ [0, T ] and
all x, y ∈R define the function

g(t, x, y) = h1(t)− x2n+1 + x2(h2(t) + cy)φ(y)− (x− 1)2k+1ϕ(t, x, y).

We can find constant functions σ1(t) ≡ r1 < 1 and σ2(t) ≡ r2 > 1 which
are respectively lower and upper functions of problem (7.3) with g defined
above. Moreover, g fulfils inequality (7.23) with κ = 1,

ω(s) = (1 + |c|)(1 + s) and h0(t) = |h1(t)|+ max{|r1|, r2}2|h2(t)|.
By Theorem 7.17 our problem has a solution u satisfying r1 ≤ u(t) ≤ r2

for t∈ [0, T ].

The second form of the Nagumo condition is condition (7.24) which is
used in the next theorem.

Theorem 7.18. Let σ1 and σ2 be a lower function and an upper function
of problem (7.3) and let σ1(t) ≤ σ2(t) for t∈ [0, T ]. Assume that there
exist a1, a2 ∈ [0, T ], a1 < a2, y1, y2 ∈R, κ ∈ (0,∞), a nonnegative function
h0 ∈L1[0, T ] and a positive function ω ∈C[0,∞) fulfilling condition (7.17)
and




g(t, x, y) sign(y − y1) ≤ κ ω(|φ(y)− φ(y1)|)(h0(t)+|y−y1|)
for a.e. t∈ [0, a2] and all x∈ [σ1(t), σ2(t)], y ∈R,

g(t, x, y) sign(y − y2) ≥ −κ ω(|φ(y)− φ(y2)|)(h0(t)+|y−y2|)
for a.e. t∈ [a1, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.

(7.24)
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Then problem (7.3) has a solution u satisfying estimate (7.16) and more-
over, ‖u′‖∞ ≤ r. Here r > 0 is the constant independent of u and given
by Lemma 7.16 for r0 = max{‖σ1‖∞, ‖σ2‖∞}.
Proof. We define g̃ as in the proof of Theorem 7.17 using a sufficiently
large r from Lemma 7.16. Then, similarly to the proof of Theorem 7.17, we
get a solution u of problem (7.14) satisfying estimate (7.16) and condition
(7.20). By Lemma 7.16, the function u satisfies ‖u′‖∞ ≤ r and hence u
is also a solution of problem (7.3). ¤

Example. Let k ∈N be odd, A, B, c, r∈R, y1 = y2 = 0, a1, a2 ∈ [0, T ],
a1 < a2, h1, h2, h3 ∈L1[0, T ]. Assume that h1 is positive on [0, T ] and

h2 ≥ 0 a.e. on [0, a1], h2 = 0 a.e. on (a1, T ],

h3 = 0 a.e. on [0, a2], h3 ≥ 0 a.e. on (a2, T ].

Consider problem (7.3) with φ(y) ≡ y and

g(t, x, y) = h1(t)(r
k − xk) + cy2 − h2(t)y

3 + h3(t)y
5

for a.e. t∈ [0, T ] and all x, y ∈R. We can find r1, r2 ∈R such that

r1 ≤ min{−|r|, A, B}, r2 ≥ max{|r|, A, B},
and

g(t, r1, 0) > 0, g(t, r2, 0) < 0 for a.e. t∈ [0, T ].

Therefore the constant function σ1(t) ≡ r1 satisfies condition (7.15) and
hence σ1 is a lower function of the problem. Similarly, σ2(t) ≡ r2 satisfies
condition (7.15) with reversed inequalities and so, σ2 is an upper function
of this problem. Moreover, g fulfils both the inequalities in (7.24) with κ=1
and

h0(t) = |h1(t)|(|r|k + (max{|r1|, r2})k), ω(s) = (|c|+ 1)(1 + s).

Hence, by Theorem 7.18, our problem has a solution u such that r1 ≤ u(t) ≤
r2 for t∈ [0, T ]. Note that since the growth restrictions in Theorem 7.18 are
only one-sided, the function g can have not only the quadratic term c y2

but also terms with y3 and y5.
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7.2 Dirichlet problem with time singularities

First we will study the singular problem (7.2) under the assumption

f ∈Car((0, T ]× R2) has a time singularity at t = 0, (7.25)

i.e. there exist x, y ∈R such that
∫ ε

0

|f(t, x, y)|dt = ∞ for ε∈ (0, T ].

We want to prove the existence of a solution to (7.2) or the existence of
a w-solution u to (7.2) satisfying

there exists r > 0 such that |u′(t)| ≤ r for t∈ (0, T ]. (7.26)

According to Definition 7.1 and assumption (7.25), a w-solution u of prob-
lem (7.2) has a continuous derivative on (0, T ] but u′ need not exist at
the singular point t=0. However, condition (7.26) guarantees that u′ must
be bounded near t = 0. Those who are interested in the existence of a w-
solution u with u′ possibly unbounded near t = 0 can find nice results in
Agarwal, Lü and O’Regan [3], Agarwal and O’Regan [4], [5], [7], [12], Kig-
uradze [115], [117], Kiguradze and Shekhter [118], Lomtatidze [127], Lom-
tatidze and Malaguti [128] or Lomtatidze and Torres [129].

If we modify theorems of Section 1.2 for the Dirichlet problem (7.2) with
time singularities we can extend the results of Section 7.1 and obtain the ex-
istence of w-solutions or solutions of (7.2). To this aim we present here
the version of Theorem 1.3 for t0 = 0, n = 2 and A=R2. Consider a se-
quence of regular problems

u′′ + fk(t, u, u′) = 0, u(0) = u(T ) = 0, (7.27)

where fk ∈Car([0, T ]× R2), k ∈N.

Theorem 7.19. Let assumption (7.25) hold. Assume




for each k ∈N and each (x, y)∈R2,

fk(t, x, y) = f(t, x, y) a.e. on [0, T ] \ 4k,

where 4k = [0, 1
k
) ∩ [0, T ],

(7.28)

and
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



there exists a bounded set Ω ⊂ C1[0, T ]

such that for each k∈N
the regular problem (7.27) has a solution uk ∈Ω.

(7.29)

Then
{

there exist a function u∈C[0, T ] and a subsequence

{uk`
} ⊂ {uk} such that lim`→∞ ‖uk`

− u‖∞ = 0,
(7.30)

lim
`→∞

u′k`
(t) = u′(t) locally uniformly on (0, T ], (7.31)

{
u∈AC1

loc(0, T ] and

u is a w-solution of problem (7.2) satisfying (7.26).
(7.32)

Assume, moreover, that there exist ψ ∈L1[0, T ], η > 0, `0 ∈ N and λ ∈
{−1, 1} such that





λ fk`
(t, uk`

(t), u′k`
(t)) ≥ ψ(t)

for all `∈N, ` ≥ `0, and for a.e. t∈ (0, η].
(7.33)

Then u is a solution of problem (7.2), i.e. u∈AC1[0, T ].

If f(t, x, y) in (7.2) has one-sided sublinear growth in x and y, we use
Theorem 7.19 to modify Theorem 7.9 as follows.

Theorem 7.20. Let assumption (7.25) hold and let α, β ∈ [0, 1). Assume
that there exists a nonnegative function h∈L1[0, T ] such that





f(t, x, y) sign x ≤ h(t) (1 + |x|α + |y|β)

for a.e. t∈ [0, T ] and all x, y ∈R.

Then problem (7.2) has a w-solution u satisfying estimate (7.26).

Proof. Choose an arbitrary k ∈N and for x, y ∈R define the auxiliary
function

fk(t, x, y) =





f(t, x, y) for a.e. t∈ [0, T ] \∆k,

0 for a.e. t∈∆k,
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where ∆k = [0, T ] ∩ [0, 1
k
). We see that fk ∈Car([0, T ] × R2) fulfils con-

dition (7.28) and inequality (7.13) with a(t) ≡ 0 and g = fk. Consider
the approximate regular problem

u′′ + fk(t, u, u′) = 0, u(0) = u(T ) = 0. (7.34)

Let us put a(t) ≡ 0 and φ(y) ≡ y. By Theorem 7.9, we deduce that problem
(7.34) has a solution uk. In this way we get a sequence {uk} of solutions
of (7.34), k∈N, satisfying

−u′′k(t) sign uk(t) ≤ h(t)(1 + |uk(t)|α + |u′k(t)|β)

for a.e. t∈ [0, T ] and all k ∈N. So, by Lemma 7.5, there exists r > 0 such
that

‖uk‖∞ + ‖u′k‖∞ ≤ r for all k ∈N.

Define the set

Ω = {x∈C1[0, T ] : ‖x‖∞ + ‖x′‖∞ ≤ r}.
Then condition (7.29) is valid and, by Theorem 7.19, we can find a subse-
quence {uk`

} ⊂ {uk} satisfying conditions (7.30), (7.31) and (7.32). ¤

Example. Let k ∈ N, α∈ [1,∞), let ϕ∈C(R2) be positive and let
h0, h1, h2 ∈L1[0, T ]. Consider problem (7.2), where

f(t, x, y) = −x2k+1ϕ(x, y)

tα
+ h0(t) + h1(t)x

1
3 + h2(t)|y| 12

for a.e. t∈ [0, T ] and all x, y ∈R. The first term of f is singular at t = 0.
Further, f satisfies

f(t, x, y) sign x ≤ h(t)(1 + |x| 13 + |y| 12 ) for a.e. t∈ [0, T ] and x, y ∈R,

where h = |h0| + |h1| + |h2|. Therefore, by Theorem 7.20, the problem has
a w-solution satisfying (7.26).

If f(t, x, y) in (7.2) has one-sided linear growth in x and y, we can
decide about the existence of a w-solution by means of the following modifi-
cation of Theorem 7.11.
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Theorem 7.21. Let assumption (7.25) hold. Assume that there exist non-
negative functions h0, h1, h2 ∈L1[0, T ] such that

T‖h1‖1 + ‖h2‖1 < 1,





f(t, x, y) sign x ≤ h0(t) + h1(t) |x|+ h2(t) |y|
for a.e. t∈ [0, T ] and all x, y ∈R.

Then problem (7.2) has a w-solution u satisfying estimate (7.26).

Proof. For k ∈N consider problem (7.34). Put a(t) ≡ 0 and φ(y) ≡ y.
Using Theorem 7.11 and Lemma 7.7 we argue as in the proof of Theorem 7.20.

¤

Example. Let k∈N, α∈ [1,∞), a, b∈R, |a| + |b| < 1
2
, let ϕ∈C(R2)

be positive and let h0 ∈L1[0, 1]. Consider problem (7.2), where T = 1 and

f(t, x, y) = −x2k+1ϕ(x, y)

tα
+ h0(t) +

1√
t
(a x + b y)

for a.e. t∈ [0, 1] and all x, y ∈R. The first term of f is singular at t = 0.
Further, f satisfies

f(t, x, y) sign x ≤ |h0(t)|+ |a|√
t
|x|+ |b|√

t
|y| for a.e. t∈ [0, 1] and x, y ∈R.

Therefore, by Theorem 7.21, the problem has a w-solution satisfying estimate
(7.26).

The next theorem shows that if f(t, x, y) keeps its sign for small t and
x, we get a solution of problem (7.2).

Theorem 7.22. Let all conditions of Theorem 7.20 or Theorem 7.21 be ful-
filled and let u be a w-solution of problem (7.2) satisfying estimate (7.26).
Further assume that





there exist λ∈{−1, 1} and δ ∈ (0, T ) such that

λ f(t, x, y) < 0 for a.e. t∈ (0, δ) and all x∈ (−δ, δ), y∈[−r, r].
(7.35)

Then u is a solution of problem (7.2).
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Proof. For k ∈N consider problem (7.34). By the proof of Theorem 7.20
or Theorem 7.21 there exist r > 0 and a sequence of approximate solutions
{uk`

} satisfying conditions (7.30), (7.31) and ‖uk`
‖∞ + ‖u′k`

‖∞ ≤ r for
`∈N. The function u in (7.30) is a w-solution of problem (7.2) and fulfils
estimate (7.26). To prove that u is a solution we will describe the behaviour
of u′ at the singular point t = 0. Since u(0) = 0, there exists η1 ∈ (0, δ)
such that |u(t)| < δ for t∈ (0, η1). Then condition (7.35) gives

−λu′′(t) = λf(t, u, u′) < 0 for a.e. t∈ (0, η1)

and hence u′ is strictly monotonous on (0, η1). Using estimate (7.26) we
see that limt→0+ u′(t)∈ [−r, r].

Let limt→0+ u′(t) 6= 0. Then

{
there exists η ∈ (0, η1) such that

u(t) > 0 on (0, η) (or u(t) < 0 on (0, η)).
(7.36)

Let limt→0+ u′(t) = 0. Since u′ is strictly monotonous on (0, η1), we have
u′(t) 6= 0 for t∈ (0, η1). This implies (7.36). Moreover, conditions (7.30)
and (7.36) yield `0 > 0 such that

uk`
(t) > 0 on (0, η] (or uk`

(t) < 0 on (0, η])

for each `∈N, ` ≥ `0. Hence, under the assumptions of Theorem 7.20 or
Theorem 7.21, we have

λ2fk`
(t, uk`

(t), u′k`
(t)) ≥ ψ(t) for a.e. t∈ (0, η], ` ≥ `0,

where λ2 = − sign uk`
(t). Provided the assumptions of Theorem 7.20 hold,

we put ψ(t) = −h(t)(1 + rα + rβ) and if the assumptions of Theorem 7.21
are fulfilled, we put ψ(t) = −h0(t) − (r + 1) (h1(t) + h2(t)). Consequently,
inequality (7.33) holds and Theorem 7.19 implies u∈AC1[0, T ], i.e. u is
a solution of problem (7.2). ¤

Example. Let k ∈N, α∈ [1,∞), a, b∈R, |a| < 1
6
, b < 0 and let ϕ∈C(R2)

be positive. Consider problem (7.2), where T = 1 and

f(t, x, y) = −(|x|+ x)2k+1ϕ(x, y)

tα
+

1√
t
(a x + t y + b)
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for a.e. t∈ [0, 1] and all x, y ∈R. Then f satisfies

f(t, x, y) sign x ≤ |b|√
t

+
|a|√

t
|x|+

√
t |y| for a.e. t∈ [0, 1] and all x, y ∈R.

Therefore, by Theorem 7.21, the problem has a w-solution satisfying estimate
(7.26). We can check that there exists δ > 0 such that

f(t, x, y) < 0 for a.e. t∈ [0, δ] and all x∈ [−δ, δ], y ∈ [−r, r].

Hence, by Theorem 7.22, u is a solution of the problem.

Similarly we could modify other theorems of Section 7.1 in order to get
a solution or a w-solution to problem (7.2). However, we switch our attention
to the more general singular problem (7.1).

Dirichlet problem with φ – Laplacian

As before we assume that f fulfils condition (7.25) and we are interested
in the existence of a solution to problem (7.1) or of a w-solution u to (7.1)
satisfying estimate (7.26). Since problem (7.1) contains φ –Laplacian, we
cannot now use theorems of Section 1.2 directly but we need to generalize
them for problems with φ –Laplacian. Consider the sequence of regular
problems

(φ(u′))′ + fk(t, u, u′) = 0, u(0) = u(T ) = 0, (7.37)

where fk ∈Car([0, T ]× R2), k ∈N.

Theorem 7.23 (First principle for φ – Laplacian and time singularities).

Let assumptions (7.25) and (7.28) hold. Further assume that




there exists a bounded set Ω ⊂ C1[0, T ]

such that for each k∈N
the regular problem (7.37) has a solution uk ∈Ω.

(7.38)

Then assertions (7.30) and (7.31) are valid, φ(u′)∈ACloc(0, T ] and u is
a w-solution of problem (7.1).

If, moreover, condition (7.33) is satisfied, then u is a solution of problem
(7.1), i.e. φ(u′)∈AC[0, T ].
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Proof. Step 1. Convergence of the sequence of approximate solutions.

Condition (7.38) implies that the sequence {uk} is bounded and equicon-
tinuous on [0, T ]. By the Arzelà-Ascoli theorem assertion (7.30) is true and
u(0) = u(T ) = 0. Since {u′k} is bounded, we get, due to assumption (7.28),
that for each τ ∈ (0, T ] there exist kτ ∈N and hτ ∈L1[0, T ] such that for
each k ≥ kτ

|fk(s, uk(s), u
′
k(s))| ≤ hτ (s) for a.e. s∈ [τ, T ]. (7.39)

Hence problem (7.37) yields for k ≥ kτ , t1, t2 ∈ [τ, T ]

|φ(u′k(t2))− φ(u′k(t1))| ≤
∣∣∣∣
∫ t2

t1

hτ (s) ds

∣∣∣∣ ,

which implies that the sequence {φ(u′k)} is equicontinuous on [τ, T ]. By
virtue of the uniform continuity of φ−1 on compact intervals, the sequence
{u′k} is also equicontinuous on [τ, T ]. The Arzelà-Ascoli theorem implies
that for each compact subset K ⊂ (0, T ] a subsequence of {u′k} uniformly
converging to u′ on K can be chosen. Therefore, using the diagonalization
theorem, we can choose a subsequence {uk`

} satisfying both (7.30) and
(7.31).

Step 2. Convergence of the sequence of approximate nonlinearities.

Let V1 be the set of all t∈ [0, T ] such that f(t, ·, ·) : R2 → R is not
continuous and let V2 be the set of all t∈ [0, T ] such that the equality
in (7.28) is not satisfied. Then meas (V1 ∪ V2) = 0. Choose an arbitrary
τ ∈ (0, T ]\ (V1∪V2). Then there exists `0 ∈N such that for ` ≥ `0 we have

fk`
(τ, uk`

(τ), u′k`
(τ)) = f(τ, uk`

(τ), u′k`
(τ))

and, by (7.30) and (7.31), the equality

lim
`→∞

fk`
(τ, uk`

(τ), u′k`
(τ)) = f(τ, u(τ), u′(τ))

holds. Hence,

lim
`→∞

fk`
(t, uk`

(t), u′k`
(t)) = f(t, u(t), u′(t)) for a.e. t∈ [0, T ]. (7.40)
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Step 3. The function u is a w-solution of problem (7.1).

Choose an arbitrary τ ∈ (0, T ] and integrate the equality

(φ(u′k`
(t)))′ + fk`

(t, uk`
(t), u′k`

(t)) = 0 for a.e. t∈ [0, T ].

We get

φ(u′k`
(T ))− φ(u′k`

(τ)) +

∫ T

τ

fk`
(s, uk`

(s), u′k`
(s)) ds = 0.

Applying conditions (7.39), (7.40) and the Lebesgue dominated convergence
theorem on [τ, T ], we can deduce (having in mind that τ is arbitrary) that
the limit u solves the equation

φ(u′(T ))− φ(u′(t)) +

∫ T

t

f(s, u(s), u′(s)) ds = 0 for t∈ (0, T ]. (7.41)

This immediately yields that φ(u′)∈ACloc(0, T ] and u is a w-solution
of problem (7.1).

Step 4. The function u is a solution of problem (7.1).

Assume, moreover, that condition (7.33) holds. Due to assumption (7.38)
there is a c∈ (0,∞) such that for each `∈N

∣∣∣∣
∫ η

0

fk`
(s, uk`

(s), u′k`
(s)) ds

∣∣∣∣ = |φ(u′k`
(0))− φ(u′k`

(η))| ≤ c.

So, by the Fatou lemma, using also condition (7.33) and equality (7.40),
we deduce that f(t, u(t), u′(t))∈L1[0, η]. Further, by virtue of assumption
(7.38) and assertions (7.30), (7.31), the functions u and u′ are bounded
on [η, T ]. Hence, assumption (7.25) implies f(t, u(t), u′(t))∈L1[η, T ], which
together with the above arguments yields f(t, u(t), u′(t))∈L1[0, T ]. There-
fore due to equality (7.41) we have that φ(u′)∈AC[0, T ], i.e. u is a solution
of problem (7.1). ¤

Now, using Theorem 7.23, we will extend Theorem 7.17 which is based on
the existence of lower and upper functions to problem (7.1). Note that lower
and upper functions to problem (7.1) are understood in the sense of Defini-
tion 7.13.
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Theorem 7.24. Assume that (7.25) holds. Let σ1 and σ2 be a lower
function and an upper function of problem (7.1) and let σ1(t) ≤ σ2(t) for
t∈ [0, T ]. Assume that there exist a nonnegative function h∈L1[0, T ] and
a positive function ω ∈C[0,∞) fulfilling condition (7.17), further assume
that

there exists b > 0 such that ω(s) ≥ b for s∈ [0,∞) (7.42)

and{
f(t, x, y) sign x ≤ ω(|φ(y)|)(h(t) + |y|)

for a.e. t∈ [0, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.
(7.43)

Then problem (7.1) has a w-solution u satisfying estimate (7.16) and
‖u′‖∞ < ∞.

If, moreover, condition (7.35) with r ≥ ‖u′‖∞ holds, then u is a solu-
tion of problem (7.1).

Proof. Step 1. Choose an arbitrary k ∈N and denote ∆k = [0, T ] ∩ [0, 1
k
),

∆k1 = {t∈∆k : σ1(t) = σ2(t)}, ∆k2 = {t∈∆k : σ1(t) < σ2(t)}. Define
a function gk by

gk(t, x) =





(φ(σ′2(t)))
′ if x > σ2(t),

(x−σ1(t))(φ(σ′2(t)))
′+(σ2(t)−x) (φ(σ′1(t)))

′

σ2(t)− σ1(t)

if σ1(t) ≤ x ≤ σ2(t),

(φ(σ′1(t)))
′ if x < σ1(t)

for a.e. t∈∆k2 and all x∈R and a function fk by

fk(t, x, y) =





f(t, x, y) if t∈ [0, T ] \∆k ,

−(φ(σ′1(t)))
′ if t∈∆k1 ,

−gk(t, x) if t∈∆k2

(7.44)

for a.e. t∈ [0, T ] and all x, y ∈R. Then fk ∈Car([0, T ]×R2) and condition
(7.28) is valid. Consider problem (7.37) with fk defined in this proof. Then
σ1 and σ2 are also lower and upper functions to this problem. Moreover,
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due to inequalities (7.42), (7.43) and formula (7.44), fk satisfies inequality
(7.23) with g(t, x, y) = fk(t, x, y), a(t) ≡ 0, κ = (1

b
+ 1) and

h0(t) = h(t) + |(φ(σ′1(t)))
′|+ |(φ(σ′2(t)))

′|.

Hence, for each k∈N, Theorem 7.17 gives a solution uk of problem (7.37).
Moreover, each solution uk satisfies estimate (7.16) and ‖u′k‖∞ ≤ r, where
r > 0 is the constant given by Lemma 7.15 for r0 = max{‖σ1‖∞, ‖σ2‖∞}
and for A = B = 0.

Step 2. Define a set

Ω = {x∈C1[0, T ] : σ1 ≤ x ≤ σ2 on [0, T ], ‖x′‖∞ ≤ r}.

Then condition (7.38) is valid and, by Theorem 7.23, we can find a sub-
sequence {uk`

} ⊂ {uk} such that assertions (7.30) and (7.31) hold and
the function u∈C[0, T ] with φ(u′)∈ACloc(0, T ] is a w-solution of prob-
lem (7.1). Since {uk`

} ⊂ Ω, we see that u fulfils estimate (7.16) and
‖u′‖∞ ≤ r.

Step 3. Let condition (7.35) hold. Similarly to the proof of Theorem 7.22
we can show that there exist η > 0 and `0 > 0 such that either uk`

(t) > 0
on (0, η] for each `∈N, ` ≥ `0 or uk`

(t) < 0 on (0, η] for each `∈N,
` ≥ `0. Denote

ω0 = max{ω(s) : s∈ [0, φ(r)]}
and

ψ(t) = −|(φ(σ′1(t)))
′| − |(φ(σ′2(t)))

′| − ω0 [h(t) + r] for a.e. t ∈ [0, T ].

Since

−fk`
(t, uk`

(t), u′k`
(t)) sign uk`

(t) ≥ ψ(t) for a.e. t∈ [0, η] and all ` ≥ `0,

we see that fk`
fulfils condition (7.33) with λ = − sign uk`

(t). Therefore
Theorem 7.23 implies u∈AC1[0, T ], i.e. u is a solution of problem (7.1).
¤

Example. Let k, n∈N, c∈R, α∈ [1,∞), ε∈ (0,∞), ϕ∈C(R2) and
ψ ∈C(R). Further, assume that ϕ is nonnegative and ψ(x) = 0 if x ≤ 0
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and ψ(x) < 0 if x > 0. Consider problem (7.1) where

f(t, x, y) = (t− ε)2n+1 − x2n+1 + c x2 y φ(y)− x2k+1 ϕ(x, y) +
1

tα
ψ(x)

for a.e. t∈ [0, T ] and all x, y ∈R. The last term of f is singular at t = 0.
We can find constant functions σ1(t) ≡ r1 < 0 and σ2(t) ≡ r2 > 0 which are
lower and upper functions of the problem. Moreover, f satisfies inequalities
(7.35) and (7.43). Indeed, we can choose δ > 0 sufficiently small and put
λ = 1, r = max{|r1|, r2}, ω(s) = (|c| r2 + 1) (1 + s), h(t) = |t − ε|2n+1.
By Theorem 7.24, our problem has a solution u such that r1 ≤ u(t) ≤ r2

for t∈ [0, T ].

We continue with a generalization of Theorem 1.4 to problem (7.1).

Theorem 7.25 (Second principle for φ – Laplacian and time singularities).

Let the assumptions of Theorem 7.23 be satisfied with (7.33) replaced by
the assumption that there exist ψ ∈L1[0, T ], η > 0, γ ∈R, `0 ∈N and
λ∈{−1, 1} such that





λ fk`
(t, uk`

(t), u′k`
(t)) sign(u′k`

(t)− γ) ≥ ψ(t)

for all `∈N, ` ≥ `0 and for a.e. t∈ (0, η].
(7.45)

Then the assertions of Theorem 7.23 remain valid.

Proof. By Theorem 7.23 there exist a sequence {uk`
} and a function u

such that assertions (7.30) and (7.31) hold and u is a w-solution of problem
(7.1) with φ(u′)∈ACloc(0, T ]. Arguing as in Step 4 of the proof of The-
orem 7.23 we see that to show φ(u′)∈AC[0, T ] it suffices to prove that
f(t, u(t), u′(t))∈L1[0, η]. Put M = V1 ∪ V2 ∪ V3 ∪ V4, where

V1 = {t∈ [0, η] : f(t, ·, ·) : R2 → R is not continuous},
V2 = {t∈ [0, η] : t is an isolated zero of u′ − γ},
V3 = {t∈ [0, η] : (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 is not fulfilled},
V4 = {t∈ [0, η] : the equality in condition (7.28) is not fulfilled}.

Then meas (M) = 0. Choose an arbitrary s∈ (0, T ] \M.
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a) Let u′(s) 6= γ. Assume for example sign(u′(s) − γ) = 1. Then there
exists `0 ∈N such that for each ` ≥ `0 we have sign(u′k`

(s)− γ) = 1 and
so, due to properties (7.28), (7.30), (7.31) and since s 6∈ V1 ∪ V4, we get





lim`→∞ fk`
(s, uk`

(s), u′k`
(s)) sign(u′k`

(s)− γ)

= f(s, u(s), u′(s)) sign(u′(s)− γ).
(7.46)

If sign(u′(s)− γ) = −1, we get equality (7.46) in the same way.

b) Let s be an accumulation point of the set V2 of isolated zeros of u′− γ.
Then there exists a sequence {sm} ⊂ (0, T ] such that u′(sm) = γ and
limm→∞ sm = s. Since u′ is continuous on (0, T ], we get u′(s) = γ. There-
fore φ(u′(sm)) = φ(u′(s)) = φ(γ),

lim
m→∞

φ(u′(sm))− φ(u′(s))
sm − s

= 0,

and, by virtue of s 6∈ V3, we get 0 = (φ(u′(s)))′ = −f(s, u(s), u′(s)). Since
s 6∈ V1 ∪ V4, we have by properties (7.28), (7.30) and (7.31)

lim
`→∞

fk`
(s, uk`

(s), u′k`
(s)) sign(u′k`

(s)− γ)

= f(s, u(s), u′(s)) lim
`→∞

sign(u′k`
(s)− γ) = 0.

So, we have proved that equality (7.46) is valid for a.e. s∈ [0, η].

Further, by assumption (7.38), there exist c > 0 and `0 ∈N such that
for ` ≥ `0

∫ η

0

λ fk`
(s, uk`

(s), u′k`
(s)) sign(u′k`

(s)− γ) ds≤
∫ η

0

|φ(u′k`
(s))− φ(γ)|′ ds

≤ |φ(u′k`
(0))− φ(γ)|+ |φ(u′k`

(η))− φ(γ)| ≤ c,

and hence, due to assumption (7.45), we can use the Fatou lemma to de-
duce that λ f(t, u(t), u′(t)) sign(u′(t)− γ)∈L1[0, η] and, consequently,
f(t, u(t), u′(t))∈L1[0, η]. ¤

Now, we are ready to extend Theorem 7.18 with the second form of Nagu-
mo condition to problem (7.1).
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Theorem 7.26. Assume that (7.25) holds. Let σ1 and σ2 be a lower
function and an upper function of problem (7.1) and let σ1(t) ≤ σ2(t) for
t∈ [0, T ]. Assume that there exist a1, a2 ∈ [0, T ], a1 < a2, y1, y2 ∈R, a non-
negative function h∈L1[0, T ] and a positive function ω ∈C[0,∞) fulfilling
conditions (7.17), (7.42) and





f(t, x, y) sign(y − y1) ≤ ω(|φ(y)− φ(y1)|)(h(t) + |y − y1|)
for a.e. t∈ [0, a2] and all x∈ [σ1(t), σ2(t)], y ∈R,

f(t, x, y) sign(y − y2) ≥ −ω(|φ(y)− φ(y2)|)(h(t) + |y − y2|)
for a.e. t∈ [a1, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.

(7.47)

Then problem (7.1) has a solution u satisfying estimate (7.16).

Proof. Choose an arbitrary k ∈N and consider problem (7.37) with fk

defined in the proof of Theorem 7.24. Let us put g(t, x, y) = fk(t, x, y),
a(t) ≡ 0, κ = (1

b
+ 1) and

h0(t) = h(t) + |(φ(σ′1(t)))
′|+ |(φ(σ′2(t)))

′|.

Here b > 0 is given by (7.42). Using Theorem 7.18 and Lemma 7.16 and
arguing similarly to the proof of Theorem 7.24 we show that conditions (7.28)
and (7.38) are valid. So, by Theorem 7.25, we get a w-solution u of problem
(7.1). By Theorem 7.18, u also satisfies estimates (7.16) and (7.26), where
r > 0 is the constant found by Lemma 7.16 for r0 = max{‖σ1‖∞, ‖σ2‖∞}.
Moreover, the first inequality in (7.47) gives

−fk`
(t, uk`

(t), u′k`
(t)) sign(u′k`

(t)− y1) ≥ ψ(t) for a.e. t∈ [0, a2],

where

ψ(t) = −ω0(h(t)+r+|y1|)− |(φ(σ′1(t)))
′| − |(φ(σ′2(t)))

′|,
ω0 = max{ω(s) : s∈ [0, φ(r) + |φ(y1)|]}.

So, using Theorem 7.25 with λ = −1, η = a2 and γ = y1, we get that u
is a solution of problem (7.1). ¤

Example. Assume that n∈N, c, d∈R, α∈ [1,∞), ε∈ (0,∞). Choose
a1 ∈ (0, T

2
), a2=

T
2
, h1, h2, h3 ∈L1[0, T ], where h2(t) ≥ ε a.e. on [0, T ].
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Let h3 be nonnegative a.e. on [0, T ] and vanish a.e. on [0, T
2
]. Consider

problem (7.1) where φ(y) ≡ y and

f(t, x, y) = −t−α y + h1(t) y + c (y2 + 1)− h2(t) (x2n−1 − d) + h3(t) y3

for a.e. t∈ [0, T ] and all x, y ∈R. The first term is singular at t = 0. Let
y1 = y2 = 0. We can find constant functions σ1(t)≡ r1 < 0 and σ2(t)≡ r2 > 0
which are lower and upper functions of the problem. Moreover, f satisfies
the conditions of Theorem 7.26. We see it if we put ω(s) = (|c|+ 1) (s + 1),
K = (|r1|+ r2)

2n−1+ |d| and h(t) = a−α
1 + |h1(t)|+ K h2(t) + 1.

7.3 Dirichlet problem with space singulari-

ties

Many papers studying problem (7.1) or (7.2) with a space singularity at x=0
concern the case that the nonlinearity f is positive. Such problems are re-
ferred to as positone ones in literature, see Agarwal and O’Regan [11], [12] or
Staněk [183]. The positivity of f implies that each solution of (7.2) is con-
cave and hence positive on (0, T ), and if, moreover, f has a space singular-
ity at x = 0 but not at y, then each solution has only two singular points
0, T which are of type I. This makes the study of such problems easier
than of those having sign-changing f or space singularities at y because
the latter problems can generate solutions with singular points of type II.
First we will study the singular problem (7.2) with a positive nonlinearity f
satisfying





f ∈Car([0, T ]×D), where D = (0,∞)× R,

f has a space singularity at x = 0,
(7.48)

i.e. lim supx→0+ |f(t, x, y)| = ∞ for a.e. t∈ [0, T ] and some y ∈R. In this
case we can use theorems of Section 1.3 and extend the existence results
of Section 7.1. To this aim we present here the version of Theorem 1.6 for
c0 = 0, n = 2 and A = [0,∞)×R. We will consider the sequence of regular
problems

u′′ + fk(t, u, u′) = 0, u(0) = u(T ) = 0, (7.49)

where fk ∈Car([0, T ]× R2).
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Theorem 7.27. Assume that (7.48) holds and that

{
fk(t, x, y) = f(t, x, y) for a.e. t∈ [0, T ], for each k > 2

T

and for each (x, y)∈ [0,∞)× R, x ≥ 1
k
, |y| ≥ 1

k
,

(7.50)





there exists a bounded set Ω ⊂ C1[0, T ]

such that for each k > 2
T

the regular problem (7.49) has a solution uk ∈Ω

and uk(t) ≥ 0 for t∈ [0, T ].

(7.51)

Then there exist u∈C[0, T ] and a subsequence {uk`
} ⊂ {uk} such that

lim
`→∞

uk`
(t) = u(t) uniformly on [0, T ].

If, moreover, the set of singular points S = {s∈ [0, T ] : u(s) = 0} is finite,
then

lim
`→∞

u′k`
(t) = u′(t) locally uniformly on [0, T ] \ S.

If, in addition,




on each interval [a, b] ⊂ [0, T ] \ S
the sequence {fk`

(t, uk`
(t), u′k`

(t)} is uniformly integrable,
(7.52)

then u∈AC1
loc([0, T ] \ S) and u is a w-solution of problem (7.2).

Finally, if there exists a function ψ ∈L1[0, T ] such that

fk`
(t, uk`

(t), u′k`
(t)) ≥ ψ(t) for a.e. t∈ [0, T ] and all `∈N, (7.53)

then u∈AC1[0, T ] and u is a solution of problem (7.2).

The following lemma will be useful in the subsequent proofs.

Lemma 7.28. Let ε > 0. Then there exists η > 0 such that for each
function u∈AC1[0, T ] satisfying

u(0) = u(T ) = 0, −u′′(t) ≥ ε for a.e. t∈ [0, T ]
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the estimate

u(t) ≥




η t for t∈ [0, T
2
],

η (T − t) for t∈ [T
2
, T ].

(7.54)

is valid.

Proof. Let G(t, s) be the Green function of the problem −v′′(t) = 0,
v(0) = v(T ) = 0, i.e.

G(t, s) =





t (T − s)

T
for 0 ≤ t ≤ s ≤ T,

s (T − t)

T
for 0 ≤ s ≤ t ≤ T.

Let u be an arbitrary function fulfilling −u′′(t) ≥ ε for a.e. t∈ [0, T ] and
u(0) = u(T ) = 0. Then we have

u(t) = −
∫ T

0

G(t, s) u′′(s)ds ≥ ε

∫ T

0

G(t, s)ds

=
1

2
ε t (T − t) ≥





η t for t∈ [0, T
2
],

η (T − t) for t∈ [T
2
, T ]

if we choose η ≤ εT
4
. ¤

If f(t, x, y) in (7.2) has one-sided sublinear growth in x and y, we use
Theorem 7.27 to modify Theorem 7.9 as follows.

Theorem 7.29. Let (7.48) hold and let ε, γ, δ ∈ (0,∞), α, β ∈ [0, 1). As-
sume that there exist a nonnegative function g0 ∈L1[0, T ] and a function
ψ ∈C(0,∞) positive and nonincreasing on (0,∞) satisfying

∫ T

0

(t γ + t δ) ψ(t)dt < ∞,





ε ≤ f(t, x, y) ≤ tγ T − t) δ ψ(x) + g0(t) (1 + xα + |y|β)

for a.e. t∈ [0, T ] and all x∈ (0,∞), y ∈R.

Then problem (7.2) has a solution positive on (0, T ).
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Proof. Step 1. Construction of approximate regular problems.

Choose an arbitrary k ∈N and for a.e. t∈ [0, T ] and all x, y ∈R define
the auxiliary function

fk(t, x, y) =





f(t, x, y) if |x| ≥ 1
k
,

f(t, 1
k
, y) if |x| < 1

k
.

We see that fk ∈Car([0, T ]× R2) fulfils condition (7.50) and

ε ≤ fk(t, x, y) ≤ tγ(T − t)δψ( 1
k
) + g0(t)

(
1 +

(
1
k

)α
+ |x|α + |y|β)

≤ h(t) (1 + |x|α + |y|β)

for a.e. t∈ [0, T ] and all x, y ∈R, where h(t) = tγ(T − t)δ ψ( 1
k
) + 2g0(t).

Consider the approximate regular problem

u′′ + fk(t, u, u′) = 0, u(0) = u(T ) = 0. (7.55)

Put a(t) ≡ 0 and φ(y) ≡ y. Then, by Theorem 7.9, problem (7.55) has
a solution uk.

Step 2. Convergence of the sequence {uk} of approximate solutions.

Lemma 7.28 yields η ∈ (0, 1) such that

uk(t) ≥




η t for t∈ [0, T
2
] ,

η (T − t) for t∈ [T
2
, T ] .

(7.56)

Clearly uk > 0 on (0, T ). Further, the inequality tγ (T − t)δ ψ(uk(t)) ≤ ψ̃(t)
holds for a.e. t∈ [0, T ], where

ψ̃(t) =





tγ(T − t)δψ(η t) if t∈ [0, T
2
],

tγ(T − t)δψ(η (T − t)) if t∈ [T
2
, T ].

Since ψ( 1
k
) ≤ ψ(x) if x∈ (0, 1

k
], we have

fk(t, x, y) ≤ tγ(T − t)δψ(x) + g0(t)
(
2 + xα + |y|β)
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for a.e. t∈ [0, T ] and all x∈ (0,∞), y ∈R. Therefore

−u′′k(t) ≤ ψ̃(t) + g0(t)
(
2 + uk(t)

α + |u′k(t)|β
)

for a.e. t∈ [0, T ].

We can find κ0 ∈ (0,∞) such that

∫ T

0

ψ̃(t)dt ≤ κ0 for all k ∈N.

Thus ‖ψ̃ + g0‖1 ≤ κ0 + ‖g0‖1. Consider the sequence {uk} of solutions
of problems (7.55), k ∈N. The functions uk, k ∈N, satisfy condition (7.8)

for φ(y) ≡ y, a(t) ≡ 0, h0 = ψ̃ + g0, with κ = κ0 + ‖g0‖1 and h1 = g0.
By Lemma 7.5 there exists r > 0 such that

‖uk‖∞ + ‖u′k‖∞ ≤ r for k ∈N.

Define a set Ω = {x∈C1[0, T ] : ‖x‖∞ + ‖x′‖∞ ≤ r}. Then condition (7.51)
is valid and, by Theorem 7.27, we can find a function u∈C[0, T ] and a sub-
sequence {uk`

} ⊂ {uk} such that

lim
`→∞

uk`
(t) = u(t) uniformly on [0, T ].

Step 3. The function u is a solution of problem (7.2).

By estimate (7.56), u satisfies estimate (7.54), and u∈C[0, T ] is pos-
itive on (0, T ). By virtue of assumption (7.48) we know that f has only
a singularity at x = 0. The set S of singular points is finite because it
consists of two points 0 and T. Hence, Theorem 7.27 yields

lim
`→∞

u′k`
(t) = u′(t) locally uniformly on (0, T ).

Let us choose an arbitrary interval [a, b] ⊂ (0, T ). Then there exists `0 ∈N
such that for each ` ≥ `0 the inequality uk`

≥ 1
`0

is valid on [a, b] and

fk`
(t, uk`

(t), u′k`
(t)) ≤ tγ(T − t)δψ(

1

`0

) + g0(t)(2 + rα + rβ) =: ϕ(t)

for a.e. t∈ [a, b]. Using Criterion A.1 and the fact that ϕ∈L1[a, b], we get
that the sequence {fk`

(t, uk`
(t), u′k`

(t))} is uniformly integrable on [a, b].
This yields that condition (7.52) holds and consequently, u∈AC1

loc(0, T ) is



140 Chapter 7. Dirichlet problem

a w-solution of problem (7.2). Moreover, condition (7.53) is also satisfied
because the inequality 0 ≤ fk`

(t, uk`
(t), u′k`

(t)) holds for a.e. t∈ [0, T ] and
for all `∈N. Due to Theorem 7.27, u is a solution of problem (7.2). ¤

Example. Let h1, h2 ∈L1[0, T ] be nonnegative. For a.e. t∈ [0, T ] and all
x, y ∈R define a function

f(t, x, y) = 1 +
t

3
2 (T − t)

3
2

x2
+ h1(t)

√
x + h2(t)

√
|y|.

The second term of f has a space singularity at x = 0. Further, f satisfies
the conditions of Theorem 7.29 with ε = 1, α = β = 1

2
, γ = δ = 3

2
, ψ(x) = x−2

and g0 = 1 + h1 + h2. Therefore, by Theorem 7.29, the problem

u′′ + 1 +
t

3
2 (T − t)

3
2

u2
+ h1(t)

√
u + h2(t)

√
|u′| = 0, u(0) = u(T ) = 0

has a solution positive on (0, T ).

Now, we will present conditions ensuring solvability of problems with
space singularities in the variables x and y and with singular points both
of type I and of type II. The main difficulty in the study of singular points
of type II is the fact that their location in [0, T ] is not known. This is why
there are only few papers concerning solvability of such problems in mathe-
matical literature and no results about w-solutions are known.

Consider problem (7.2) under the assumption that f satisfies

{
f ∈Car([0, T ]×D), where D = (0,∞)× (R \ {0}),
f has space singularities at x = 0 and y = 0,

(7.57)

i.e.

lim sup
x→0+

|f(t, x, y| = ∞ for a.e. t∈ [0, T ] and some y ∈R \ {0},

lim sup
y→0

|f(t, x, y| = ∞ for a.e. t∈ [0, T ] and some x∈ (0,∞).

Conditions for solvability of problem (7.2) provided f(t, x, y) is positive and
has one-sided linear growth in x and y are formulated in the next theorem
which extends Theorem 7.11.
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Theorem 7.30. Let (7.57) hold and let ε, γ, δ ∈ (0,∞). Assume that there
are nonnegative functions g, h1, h2 ∈L1[0, T ] and functions ψ1, ψ2 ∈C(0,∞)
positive and nonincreasing on (0,∞) satisfying

T ‖h1‖1 + ‖h2‖1 < 1,

∫ T

0

(tγ + tδ)ψ1(t)dt < ∞,

∫ T

0

ψ2(t)dt < ∞,





ε ≤ f(t, x, y) ≤ tγ(T − t)δ ψ1(x) + ψ2(|y|) + g(t) + h1(t)x + h2(t)|y|
for a.e. t∈ [0, T ] and all x∈ (0,∞), y ∈ (R \ {0}).

Then problem (7.2) has a solution positive on (0, T ).

Proof. Due to condition (7.57), f has also a space singularity at its last
variable y and hence we cannot use Theorem 7.27, where condition (7.48)
is involved. We will use some arguments from the proof of Theorem 1.6.

Step 1. Construction of approximate regular problems.

Choose an arbitrary k ∈N and for a.e. t∈ [0, T ] and all x, y ∈R define
the auxiliary functions

f̃k(t, x, y) =

{
f(t, |x|, y) if |x| ≥ 1

k
,

f(t, 1
k
, y) if |x| < 1

k

and

fk(t, x, y) =





f̃k(t, x, y) if |y| ≥ 1
k
,

k
2
(f̃k(t, x, 1

k
) (y + 1

k
)− f̃k(t, x,− 1

k
)(y − 1

k
))

if |y| < 1
k
.

We see that fk ∈Car([0, T ]× R2) fulfils
{

fk(t, x, y) = f(t, x, y)

for a.e. t∈ [0, T ] and all x∈ [ 1
k
,∞), |y| ∈ [ 1

k
,∞).

(7.58)

Further,




ε ≤ fk(t, x, y)

≤ tγ(T − t)δψ1(
1
k
) + ψ2(

1
k
) + g(t) + h1(t)(|x|+ 1

k
) + h2(t)(|y|+ 1

k
)
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for a.e. t∈ [0, T ] and all x, y ∈R. Put a(t) ≡ 0, φ(y) ≡ y and

h0(t) = tγ(T − t)δψ1(
1
k
) + ψ2(

1
k
) + g(t) + h1(t) + h2(t).

Then, by Theorem 7.11, problem (7.55) with fk defined in this proof has
a solution uk.

Step 2. Convergence of the sequence {uk} of approximate solutions.

Lemma 7.28 gives η ∈ (0, 1) such that uk satisfies estimate (7.56).
Clearly uk > 0 on (0, T ) and uk has a unique maximum point tk ∈ (0, T ).
Integrating the inequality ε ≤ −u′′k(t) we get

{
ε(tk − t) ≤ u′k(t) = |u′k(t)| for t∈ [0, tk],

ε(t− tk) ≤ −u′k(t) = |u′k(t)| for t∈ [tk, T ].
(7.59)

Denote

ψ̃1(t) =





tγ(T − t)δ ψ1(ηt) if t∈ [0, T
2
],

tγ(T − t)δ ψ1(η(T − t)) if t∈ [T
2
, T ]

and

ψ̃2k(t) =





ψ2(ε(tk − t)) if t∈ [0, tk],

ψ2(ε(t− tk)) if t∈ [tk, T ].

Then

tγ(T − t)δψ1(uk(t)) ≤ ψ̃1(t), ψ2(|u′k(t)|) ≤ ψ̃2k(t) for a.e. t∈ [0, T ].

Since ψ1(
1
k
) ≤ ψ1(x) if x∈ (0, 1

k
] and ψ2(

1
k
) ≤ ψ2(|y|) if |y| ≤ 1

k
, we have

fk(t, x, y) ≤ tγ(T − t)δψ1(x) + ψ2(|y|) + g(t) + h1(t)(x + 1) + h2(t)(|y|+ 1)

for a.e. t∈ [0, T ] and all x∈ (0,∞), y ∈R. Therefore

−u′′k(t) ≤ ψ̃1(t) + ψ̃2k(t) + g(t) + h1(t) (uk(t) + 1) + h2(t)(|u′k(t)|+ 1)

for a.e. t∈ [0, T ]. Without loss of generality we may assume that ε ≤ 1 and
we can find κ1,κ2 ∈ (0,∞) such that

∫ T

0

ψ̃1(t) dt ≤ κ1,

∫ T

0

ψ̃2k(t) dt ≤ κ2, for all k ∈N.
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Thus ‖ψ̃1 + ψ̃2k + g‖1 ≤ κ1 + κ2 + ‖g‖1 =: κ. Consider the sequence {uk}
of solutions of problems (7.55), k ∈N. The functions uk, k ∈N, satisfy

condition (7.12) for a(t) ≡ 0, φ(y) ≡ y and h0 = ψ̃1 + ψ̃2k + g + h1 + h2.
By Lemma 7.7 there exists r∈ (η,∞) such that ‖uk‖∞ + ‖u′k‖∞ ≤ r for
k ∈N. By the Arzelà-Ascoli theorem we can find a function u∈C[0, T ] and
a subsequence {uk`

} ⊂ {uk} such that

lim
`→∞

uk`
(t) = u(t) uniformly on [0, T ].

So, we have u(0) = u(T ) = 0 and u satisfies estimate (7.54). By esti-
mate (7.56), uk(

T
2
)≥ η T

2
for k ∈N. Since the inequality ‖u′k‖∞≤ r holds

for k ∈N, we have η T
2r
≤ tk ≤ T − η T

2r
for k ∈N. Therefore we can choose

the above subsequence so that lim`→∞ tk`
= tu ∈ (0, T ).

Step 3. Convergence of the sequence {fk} of approximate nonlinearities.

Let us choose an arbitrary interval [a, b] ⊂ (0, T ) \ {tu}. By virtue of es-
timates (7.56) and (7.59) there exists `0 ∈N such that for each ` ≥ `0

uk`
(t) ≥ 1

`0

, |u′k`
(t)| ≥ 1

`0

for a.e. t∈ [a, b] (7.60)

and



fk`
(t, uk`

(t), u′k`
(t))

≤ tγ(T−t)δψ1(
1
`0

)+ψ2(
1
`0

)+g(t)+h1(t) r + h2(t) r=:ϕ(t)

for a.e. t∈ [a, b].

(7.61)

Since ϕ∈L1[a, b], the sequence {u′k`
} is equicontinuous on [a, b]. Having

in mind that [a, b] is arbitrary and using the Arzelà-Ascoli theorem and
the diagonalization theorem, we can choose the subsequence {uk`

} in such
a way that

lim
`→∞

u′k`
(t) = u′(t) locally uniformly on (0, T ) \ {tu}.

By estimate (7.59), u′(t) 6= 0 for t∈ (0, T ) \ {tu}. Denote S = {0, tu, T}
and U = V1 ∪ V2 ∪ S, where

V1 = {t∈ [0, T ] : f(t, ·, ·) : D → R is not continuous},
V2 = {t∈ [0, T ] : the equality in condition (7.58) is not fulfilled}.
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Choose an arbitrary t∈ [0, T ] \ U . Then there exists `0 ∈N such that for
each ` ≥ `0 estimates (7.60) hold. Since t 6∈ V1 ∪ V2, we have equality
fk`

(t, uk`
(t), u′k`

(t)) = f(t, u(t), u′(t)) and consequently,

lim
`→∞

fk`
(t, uk`

(t), u′k`
(t)) = f(t, u(t), u′(t)). (7.62)

Since meas (U) = 0, equality (7.62) holds for a.e. t∈ [0, T ].

Step 4. The function u is a solution of problem (7.2).

First, we shall prove that u is a w-solution of (7.2). Choose an arbi-
trary interval [a, b] ⊂ (0, T ) \ {tu}. Since condition (7.61) holds for each
` ≥ `0, we get by equality (7.62) and the Lebesgue dominated convergence
theorem on [a, b] that f(t, u(t), u′(t))∈L1[a, b] and if we pass to the limit
in the sequence

u′k`
(t)− u′k`

(a) +

∫ t

a

fk`
(s, uk`

(s), u′k`
(s))ds, t∈ [a, b],

we get

u′(t)− u′(a) +

∫ t

a

f(s, u(s), u′(s))ds, t∈ [a, b].

Having in mind that [a, b] ⊂ (0, T )\{tu} is an arbitrary interval, we conclude
that u is a w-solution of problem (7.2).

Finally, we shall show that u is a solution of (7.2). For each ` ≥ `0 we
have

∫ T

0

fk`
(t, uk`

(t), u′k`
(t)) = u′k`

(0)− u′k`
(T ) ≤ 2 r

and

fk`
(t, uk`

(t), u′k`
(t)) ≥ ε for a.e. t∈ [0, T ].

Hence, by (7.62) and the Fatou lemma, we have f(t, u(t), u′(t))∈L1[0, T ].
Consequently, u∈AC1[0, T ], i.e. u is a solution of problem (7.2). ¤

Remark 7.31. Notice the fact that the point tu in the proof of Theorem 7.30
is a singular point of type II, because we do not know its position in (0, T ).
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Example. Let c∈ (0,∞). For a.e. t∈ [0, T ] and all x, y ∈R \ {0} define
a function

f(t, x, y) =
√

T − t

(
1 +

t2

x

)
+

c√
|y| +

1

6
√

t T

( x

T
+ |y|

)
.

The first term has a space singularity at x = 0 and the second at y = 0.
We can see that f satisfies the conditions of Theorem 7.30 if we put

γ = 2, δ =
1

2
, ψ1(x) =

1

x
, ψ2(|y|) =

c√
|y| , g(t) =

√
T − t,

h1(t) =
1

6T
√

tT
, h2(t) =

1

6
√

tT

and choose ε > 0 sufficiently small.

7.4 Dirichlet problem with mixed singulari-

ties

In this section we will study problems having the so called mixed singularities,
i.e. both time and space ones. Moreover, in some theorems we omit the
assumption that the nonlinearity f in the differential equation is positive.
In literature we can find results about the solvability of singular Dirichlet
problems with sign-changing nonlinearities which mostly concern w-solutions.
Here we will prove the existence of solutions to problem (7.1) provided f has
mixed singularities. We assume that A1, A2 are closed intervals containing 0
and




f ∈Car((0, T )×D), where D = (A1 \ {0})× (A2 \ {0}),
f has time singularities at t = 0 and at t = T

and space singularities at x = 0 and at y = 0,

(7.63)

i.e. there exists (x, y)∈D such that
∫ ε

0

|f(t, x, y)| dt = ∞ and

∫ T

T−ε

|f(t, x, y)|dt = ∞ for each ε∈ (0, T
2
),

lim sup
x→0

|f(t, x, y)| = ∞ for a.e. t∈ [0, T ] and some y ∈A2 \ {0},

lim sup
y→0

|f(t, x, y)| = ∞ for a.e. t∈ [0, T ] and some x∈A1 \ {0}.
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Since problem (7.1) contains φ –Laplacian and has mixed singularities, we
cannot use theorems of Sections 1.2 and 1.3. Hence we will prove their new
generalized version. In order to do it we will consider the sequence of regular
problems

(φ(u′))′ + fk(t, u, u′) = 0, u(0) = ak, u(T ) = bk, (7.64)

where fk ∈Car([0, T ]× R2), ak, bk ∈R, k ∈N.

Theorem 7.32 (Principle for φ – Laplacian and mixed singularities).

Let (7.63) hold, let εk > 0, ηk > 0 for k ∈N and let

lim
k→∞

εk = 0, lim
k→∞

ηk = 0.

Assume that

{
fk(t, x, y) = f(t, x, y) for a.e. t∈ [ 1

k
, T − 1

k
], for each k > 2

T

and for each (x, y)∈A1 ×A2, |x| ≥ εk, |y| ≥ ηk,
(7.65)





there exists a bounded set Ω ⊂ C1[0, T ] such that

for each k > 2
T

the regular problem (7.64) has a solution uk ∈Ω

and (uk(t), u
′
k(t))∈A1 ×A2 for t∈ [0, T ].

(7.66)

Then there exist u∈C[0, T ] and a subsequence {uk`
} ⊂ {uk} such that

lim
`→∞

uk`
(t) = u(t) uniformly on [0, T ].

Further assume that there is a finite set S = {s1, . . . , sν} ⊂ (0, T ) such that




the sequence {φ(u′k)} is equicontinuous

on each interval [a, b] ⊂ (0, T ) \ S.
(7.67)

Then u∈C1((0, T ) \ S) and

lim
`→∞

u′k`
(t) = u′(t) locally uniformly on (0, T ) \ S.
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Assume in addition limk→∞ ak = 0, limk→∞ bk = 0 and let the set S have
the form

S = {s∈ (0, T ) : u(s) = 0 or u′(s) = 0 or u′(s) does not exist}. (7.68)

Then φ(u′)∈ACloc((0, T ) \ S) and u is a w-solution of problem (7.1).

Denote s0 = 0 and sν+1 = T. Moreover, let there be η ∈ (0, T
2
), λ0, µ0,

λ1, µ1, . . . , λν+1, µν+1 ∈{−1, 1}, `0 ∈N and ψ ∈L1[0, T ] such that





λi fk`
(t, uk`

(t), u′k`
(t)) sign u′k`

(t) ≥ ψ(t)

for a.e. t∈ (si − η, si) ∩ (0, T )

and for all i∈{0, . . . ν + 1}, ` ≥ `0,

(7.69)





µi fk`
(t, uk`

(t), u′k`
(t)) sign u′k`

(t) ≥ ψ(t)

for a.e. t∈ (si, si + η) ∩ (0, T )

and for all i∈{0, . . . ν + 1}, ` ≥ `0.

(7.70)

Then φ(u′)∈AC[0, T ] and u is a solution of problem (7.1). Moreover,
(u(t), u′(t))∈A1 ×A2 holds for t∈ [0, T ].

Proof. Step 1. Convergence of the sequence {uk`
}.

Assume that conditions (7.63), (7.65) and (7.66) hold. By (7.66) there
exists r > 0 such that the sequence {uk} of solutions to problem (7.64)
satisfies

‖uk‖C1 ≤ r for k >
2

T
.

Hence, the sequence {uk} is bounded and equicontinuous on [0, T ]. Due to
the Arzelà-Ascoli theorem this yields the existence of a function u∈C[0, T ]
and a subsequence {uk`

} ⊂ {uk} such that lim`→∞ uk`
(t) = u(t) uniformly

on [0, T ].

Step 2. Convergence of the sequence {u′k`
}.

Assume in addition to Step 1 that condition (7.67) holds and choose
an arbitrary interval [a, b] ⊂ (0, T ) \ S. Then {φ(u′k)} and consequently
{u′k} is equicontinuous on [a, b]. Since {u′k} is also bounded on [a, b], we
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can use the Arzelà-Ascoli theorem and choose a subsequence {uk`
} such

that it uniformly converges on [0, T ] and lim`→∞ u′k`
(t) = u′(t) uniformly

on [a, b]. Using the diagonalization theorem we deduce that we can choose
the uniformly converging on [0, T ] subsequence {uk`

} so that

lim
`→∞

u′k`
(t) = u′(t) locally uniformly on (0, T ) \ S.

Therefore u∈C1((0, T ) \ S).

Step 3. Convergence of the approximate nonlinearities {fk`
}.

Assume in addition to Step 2 that limk→∞ ak = 0, limk→∞ bk = 0 and
that condition (7.68) holds. Then u(0) = u(T ) = 0. Define U = V1∪V2∪S,
where

V1 = {t∈ (0, T ) : f(t, ·, ·) : D → R is not continuous},
V2 = {t∈ (0, T ) : the equality in condition (7.65) is not fulfilled}.

Choose an arbitrary t∈ (0, T ) \ U . Then there exists `0 ∈N such that for
all ` ≥ `0 we have t∈ [ 1

k`
, T − 1

k`
] and

|uk`
(t)| ≥ εk`

, |u′k`
(t)| ≥ ηk`

and fk`
(t, uk`

(t), u′k`
(t)) = f(t, uk`

(t), u′k`
(t)).

Since t is an arbitrary element in (0, T ) \ U and meas (U) = 0, we get

lim
`→∞

fk`
(t, uk`

(t), u′k`
(t)) = f(t, u(t), u′(t)) a.e. on [0, T ]. (7.71)

Step 4. The function u is a w-solution.

Now, choose an arbitrary interval [a, b] ⊂ (0, T ) \ S. Then there exist
`∗ ∈N, ε∗ > 0 and η∗ > 0 such that for all ` ≥ `∗

|fk`
(t, uk`

(t), u′k`
(t))| ≤ h(t) for a.e. t∈ [a, b]

where

h(t) = sup{|f(t, x, y)| : ε∗ ≤ |x| ≤ r, η∗ ≤ |y| ≤ r}∈L1[a, b].

Therefore we can apply the Lebesgue dominated convergence theorem and
get f(t, u(t), u′(t))∈L1[a, b] and

lim
`→∞

∫ b

a

fk`
(s, uk`

(s), u′k`
(s)) ds =

∫ b

a

f(s, u(s), u′(s)) ds.
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Integrating the equality

(φ(u′k`
(t)))′ + fk`

(t, uk`
(t), u′k`

(t)) = 0 for a.e. t∈ [0, T ] (7.72)

we get

φ(u′k`
(t))− φ(u′k`

(a)) +

∫ t

a

fk`
(s, uk`

(s), u′k`
(s)) ds = 0 for t∈ [a, b],

which for ` →∞ leads to

φ(u′(t))− φ(u′(a)) +

∫ t

a

f(s, u(s), u′(s)) ds = 0 for t∈ [a, b].

Since [a, b] can be an arbitrary interval in (0, T ) \ S, we deduce that
φ(u′)∈ACloc((0, T ) \ S) and u is a w-solution of problem (7.1).

Step 5. The function u is a solution.

Assume in addition to Step 3 that there exist η ∈ (0, T
2
), λ0, . . . , λν+1,

µ0, . . . , µν+1 ∈{−1, 1}, `0 ∈N and ψ ∈L1[0, T ] such that conditions (7.69)
and (7.70) are valid. Since u is a w-solution of problem (7.1), it remains
to prove that φ(u′)∈AC[0, T ]. By Step 3, f(t, u(t), u′(t))∈L1[a, b] for each
[a, b] ⊂ (0, T ) \ S. So, it suffices to prove f(t, u(t), u′(t))∈L1[ci, di] for
i = 0, . . . , ν +1, where (ci, di) = (si−η, si +η)∩(0, T ). Choose an arbitrary
i∈{0, . . . , ν+1} and t∈ (ci, di)\S. Then u′(t) 6= 0. If we use equality (7.71)
and the fact that {u′k`

} locally uniformly converges to u′ on (0, T )\S, we
obtain

lim
`→∞

fk`
(t, uk`

(t), u′k`
(t)) sign u′k`

(t) = f(t, u(t), u′(t)) sign u′(t)

for a.e. t∈ [ci, di]. If we multiply equality (7.72) by sign u′k`
(t) and then

integrate over [ci, di], we get for ` ≥ `0

∣∣∣∣
∫ di

ci

fk`
(s, uk`

(s), u′k`
(s)) sign u′k`

(s) ds

∣∣∣∣

≤ φ(|u′k`
(di)|) + φ(|u′k`

(ci)|) ≤ 2 φ(r).

Therefore the Fatou lemma yields f(t, u(t), u′(t))∈L1[ci, di], by conditions
(7.69) and (7.70). Hence f(t, u(t), u′(t))∈L1[0, T ] and φ(u′)∈AC[0, T ]. ¤
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Remark 7.33. (i) Theorem 7.32 guarantees the existence of a solution u
which can change its sign.

(ii) According to Step 4 of the proof of Theorem 7.32 we can claim that
Theorem 7.32 remains valid if we replace (7.70) with





fk`
(t, uk`

(t), u′k`
(t)) ≥ ψ(t)

for a.e. t∈ (si − η, si + η) ∩ (0, T )

and all i∈{0, . . . ν + 1}, ` ≥ `0.

(7.73)

(iii) If f has no singularity at y = 0, then we can put ηk = 0 for k∈N
in Theorem 7.32. Moreover, due to Step 3 of the proof of Theorem 7.32,
the set S in (7.68) consists only of the zeros of u. This will be accounted
for in the next theorem where we will assume

{
f ∈Car((0, T )×D) can change its sign, D = (0,∞)× R,

and f has mixed singularities at t = 0, t = T, x = 0.
(7.74)

Theorem 7.34. Let (7.74) hold. Let σ1 and σ2 be a lower function and
an upper function of problem (7.1) and let

0 < σ1(t) ≤ σ2(t) for t∈ (0, T ).

Assume that there exist a1, a2 ∈ [0, T ], a1 < a2, a nonnegative function
h∈L1[0, T ] and a positive function ω ∈C[0,∞) fulfilling conditions (7.17),
(7.42) and





f(t, x, y) sign y ≤ ω(|φ(y)|)(h(t) + |y|)
for a.e. t∈ [0, a2] and all x∈ [σ1(t), σ2(t)], y ∈R,

f(t, x, y) sign y ≥ −ω(|φ(y)|)(h(t) + |y|)
for a.e. t∈ [a1, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.

(7.75)

Then problem (7.1) has a solution u satisfying estimate (7.16).

Proof. Choose an arbitrary k ∈N such that k > 2
T
, and denote

∆k = [0, 1
k
) ∪ (T − 1

k
, T ]

and
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∆k1 = {t∈∆k : σ1(t) = σ2(t)}, ∆k2 = {t∈∆k : σ1(t) < σ2(t)}.

Further, define

α(t, x) =

{
σ1(t) if x < σ1(t),

x if σ1(t) ≤ x

for t∈ [0, T ] and x∈R,

gk(t, x) =





(φ(σ′2(t)))
′ if x > σ2(t),

(x−σ1(t)) (φ(σ′2(t)))
′+(σ2(t)−x) (φ(σ′1(t)))

′

σ2(t)−σ1(t)

if σ1(t) ≤ x ≤ σ2(t),

(φ(σ′1(t)))
′ if x < σ1(t)

for a.e. t∈∆k2 and x∈R and

fk(t, x, y) =





f(t, α(t, x), y) if t∈ [0, T ] \∆k,

−(φ(σ′1(t)))
′ if t∈∆k1,

−gk(t, x) if t∈∆k2

for a.e. t∈ [0, T ] and x, y ∈R.

Then fk ∈Car([0, T ] × R2) and fk satisfies inequalities (7.24) where
g(t, x, y) = fk(t, x, y), y1 = y2 = 0, κ = 1

b
+ 1 with b given by (7.42)

and h0(t) = h(t)+ |(φ(σ′1(t)))
′|+ |(φ(σ′2(t)))

′|. Consider problem (7.37) with
fk defined in this proof. We see that σ1 and σ2 are also lower and upper
functions to problem (7.37). Hence, for each k ∈N, Theorem 7.18 gives a so-
lution uk of problem (7.37). Moreover, each solution uk satisfies estimate
(7.16) and ‖u′k‖∞ ≤ r, where r > 0 is the constant found in Lemma 7.16
for r0 = max{‖σ1‖∞, ‖σ2‖∞}. Define

Ω = {x∈C1[0, T ] : σ1 ≤ x ≤ σ2 on [0, T ], ‖x′‖∞ ≤ r}.

Let us put A1 = [0,∞), A2 =R, εk = max{σ1(
1
k
), σ1(T − 1

k
)} and, according

to Remark 7.33 (iii), we have ηk = 0 for k ∈N. Then conditions (7.65) and
(7.66) are valid and, by Theorem 7.32, we can find a subsequence {uk`

}⊂{uk}
uniformly converging on [0, T ] to a function u∈C[0, T ].
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Choose [a, b] ⊂ (0, T ). Then there exists k0 ∈N such that for k ≥ k0

we have [a, b] ⊂ [ 1
k
, T − 1

k
] and

|fk(t, uk(t), u
′
k(t))| ≤ h(t) for a.e. t∈ [a, b],

where

h(t) = sup{|f(t, x, y)| : r1 ≤ x ≤ σ2(t), |y| ≤ r}

and r1 = min{σ1(t) : t∈ [a, b]}> 0. Since h∈L1[a, b], we see that the se-
quence {φ(u′k)} is equicontinuous on [a, b]. Further, ak = 0, bk = 0, k ∈N.
According to Remark 7.33 (iii), the set S ⊂ (0, T ) consists only of the zeros
of u. Since u is positive on (0, T ), S is empty and we see that condi-
tions (7.67) and (7.68) hold. Hence, by Theorem 7.32, u is a w-solution
of problem (7.1).

Denote ω0 = max{ω(s) : s∈ [0, φ(r)]} and

ψ(t) = −|(φ(σ′1(t)))
′| − |(φ(σ′2(t)))

′| − ω0[h(t) + r].

The first inequality in (7.75) implies that

−fk`
(t, uk`

(t), u′k`
(t)) sign u′k`

(t) ≥ ψ(t) for a.e. t∈ [0, a2] and all ` ≥ `0,

and similarly the second inequality in (7.75) gives

fk`
(t, uk`

(t), u′k`
(t)) sign u′k`

(t) ≥ ψ(t) for a.e. t∈ [a1, T ] and all ` ≥ `0.

So, if we put ν = 0, µ0 =−1, s0 = 0 and λ1 = 1, s1 = T, η = min{a2, T−a1},
we get inequalities (7.69) and (7.70). Therefore, by Theorem 7.32, u is a
solution of problem (7.1). ¤

Example. Let α, β ∈ [1,∞), a∈R, b∈ (0, 1√
2
), c∈ (0,∞), d∈ (0, 1

b
− 2 b).

Consider problem (7.1) where φ(y) ≡ y and

f(t, x, y) =
(
(T − t)−β−t−α+a

)
(x− b t (T−t)) y + c y2− d +

t(T−t)

x

for a.e. t∈ [0, T ] and all x, y ∈R. The first term of f has time singularities
at t = 0, t = T and the last term of f has a space singularity at x = 0.
Let us put σ1(t) = b t (T−t), σ2(t) ≡ r2 ≥ T 2

4
(1

d
+b), ω(s) = (c+1) (s+1),

a1 = T
3
, a2 = T

2
. If we choose a sufficiently large positive constant K and
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put h(t) ≡ K, we can check that all conditions of Theorem 7.34 are fulfilled.
Therefore our problem has a solution u satisfying (7.16).

The next theorem deals with problem (7.1) provided f has singularities
in all its variables.

Theorem 7.35. Let ν ∈ (0, T
2
), ε∈ (0, φ(ν)

ν
), c1, c2 ∈ (ν,∞), and let as-

sumption (7.63) hold with A1 = [0,∞), A2 = [−c1, c2]. Denote

σ(t) = min{c2 t, c1 (T − t)} for t∈ [0, T ]

and assume that




f(t, σ(t), σ′(t)) = 0 for a.e. t∈ [0, T ],

0 ≤ f(t, x, y)

for a.e. t∈ [0, T ] and all x∈ (0, σ(t)], y ∈ [−c1, c2],

ε ≤ f(t, x, y)

for a.e. t∈ [0, T ] and all x∈ (0, σ(t)], y ∈ [−ν, ν].

(7.76)

Then problem (7.1) has a solution u satisfying

0 < u(t) ≤ σ(t), −c1 ≤ u′(t) ≤ c2 for t∈ (0, T ). (7.77)

Proof. Step 1. Existence of approximate solutions.

Choose k ∈ N, k > 2
T

and put εk = min{σ( 1
k
), σ(T − 1

k
)}. For x, y ∈R

define

αk(x) =





x if εk ≤ x,

εk if x < εk,
β(y) =





c2 if y > c2,

y if − c1 ≤ y ≤ c2,

−c1 if y < −c1,

and

γ(y) =





ε if |y| ≤ ν,

0 if y ≤ −c1 or y ≥ c2,

ε c2−y
c2−ν

if ν < y < c2,

ε c1+y
c1−ν

if − c1 < y < −ν.
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Further, for a.e. t∈ [0, T ] and all x, y ∈R define auxiliary functions

f̃k(t, x, y) =





γ(y) if t∈ [0, 1
k
) ∪ (T − 1

k
, T ],

f(t, αk(x), β(y)) if t∈ [ 1
k
, T − 1

k
],

and

fk(t, x, y) =





f̃k(t, x, y) if |y| ≥ 1
k
,

k
2
(f̃k(t, x, 1

k
)(y + 1

k
)− f̃k(t, x,− 1

k
)(y − 1

k
))

if |y| < 1
k
.

(7.78)

Then fk ∈Car([0, T ]× R2) and we can find a function mk ∈L1[0, T ] such
that

|fk(t, x, y)| ≤ mk(t) for a.e. t∈ [0, T ] and all x∈ [0, σ(t)], y ∈R.

Moreover, fk satisfies condition (7.65) with εk= min{σ( 1
k
), σ(T− 1

k
)}, ηk = 1

k
.

Due to (7.76) we have

fk(t, σ(t), σ′(t)) = 0, fk(t, 0, 0) ≥ 0 for a.e. t∈ [0, T ],

and σ1 ≡ 0 and σ are respectively a lower and an upper function of problem
(7.55) with fk defined in this proof. Hence, by Theorem 7.14, this problem
has a solution uk and

0 ≤ uk(t) ≤ σ(t) for t∈ [0, T ].

Step 2. A priori estimates of approximate solutions.

Since fk(t, x, y) ≥ 0 for a.e. t∈ [0, T ] and all x, y ∈R, we have

(φ(u′k(t)))
′ ≤ 0 for a.e. t∈ [0, T ].

This yields that φ(u′k) and u′k are nonincreasing functions on [0, T ]. More-
over,

−c1 ≤ u′k(t) ≤ c2 for t∈ [0, T ], (7.79)
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because uk(0) = σ(0) = uk(T ) = σ(T ) = 0 and σ′(0) = c2, σ′(T ) = −c1.
Let tk ∈ (0, T ) be a point of maximum of uk . Then u′k(tk) = 0 and





u′k(t) ≥ 0 for t∈ [0, tk],

u′k(t) ≤ 0 for t∈ [tk, T ].

(i) Let tk−ν≥ 0. Then there exists ak ∈ [0, tk) such that u′k(t)≤ ν for
t∈ [ak, tk]. Assuming ak≤ tk−ν and integrating the last inequality in as-
sumption (7.76), we get

ε (tk − t) ≤ φ(u′k(t)) for t∈ [tk − ν, tk]. (7.80)

If ak > tk − ν and u′k(t) > ν for t∈ [0, ak), then similarly

ε (tk − t) ≤ φ(u′k(t)) for t∈ [ak, tk].

Since φ(u′k(t)) > φ(ν) > ε ν > ε (tk − t) for t∈ [tk − ν, ak], we get estimate
(7.80) again. Integration of (7.80) over [tk − ν, tk] yields the estimate

uk(tk) ≥
∫ ν

0

φ−1(εs) ds = ν0 > 0. (7.81)

(ii) Let tk−ν < 0. Then tk +ν ≤ T and there exists bk ∈ (tk, T ] such that
−u′k(t) ≤ ν for t∈ [tk, bk]. Assuming bk ≥ tk + ν and integrating the last
inequality in assumption (7.76) we obtain

ε (t− tk) ≤ −φ(u′k(t)) for t∈ [tk, tk + ν]. (7.82)

If bk < tk + ν and u′k(t) < −ν for t∈ (bk, T ], then similarly

ε (t− tk) ≤ −φ(u′k(t)) for t∈ [tk, bk].

Since −φ(u′k(t)) > φ(ν) > εν > ε(t − tk) for t∈ [bk, tk + ν], we get in-
equality (7.82) again. Integration of (7.82) over [tk, tk + ν] yields estimate
(7.81). Using this estimate and the fact the u′k is nonincreasing on [0, T ]
we conclude that

αk(t) ≤ uk(t) ≤ σ(t) for t∈ [0, T ],

where
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αk(t) =





ν0

T
t for t∈ [0, tk],

ν0

T
(T − t) for t∈ (tk, T ].

Step 3. Convergence of the sequence of approximate solutions.

Consider the sequence of solutions {uk}, k > 2
T
. Define

Ω = {x∈C1[0, T ] : 0 ≤ x ≤ σ(t), −c1 ≤ x′ ≤ c2 on [0, T ]}.

Then condition (7.66) is valid and by Theorem 7.32 we can choose a sub-
sequence {uk`

} ⊂ {uk} which is uniformly converging on [0, T ] to a func-
tion u∈C[0, T ]. By estimates (7.79) and (7.81) we get 0 < ν0

c2
≤ tk and

tk ≤ T − ν0

c1
< T for k ∈N. So, we can choose a subsequence {uk`

} in such
a way that lim`→∞ tk`

= tu ∈ (0, T ) and

αu(t) ≤ u(t) ≤ σ(t) for t∈ [0, T ], (7.83)

where

αu(t) =





ν0

T
t for t∈ [0, tu],

ν0

T
(T − t) for t∈ (tu, T ].

Put S = {tu} and choose [a, b] ⊂ (0, tu). Then there exists k0 ∈N such
that for k ≥ k0 we have |tk − tu| ≤ 1

2
(tu − b), [a, b] ⊂ ( 1

k
, tk),

uk(t) ≥ ν0 a

T
=: m0, φ(u′k(t)) ≥

ε

2
(tu − b) =: m1 on [a, b].

Thus for a.e. t∈ [a, b]

|fk(t, uk(t), u
′
k(t))| ≤ h(t)∈L1[a, b],

where h(t) = sup{|f(t, x, y)| : m0 ≤ x ≤ σ(t), φ−1(m1) ≤ y ≤ c2}. If
we choose [a, b] ⊂ (tu, T ), we argue similarly and obtain also a Lebesgue
integrable majorant for fk, k ≥ k0, on [a, b]. So, we have proved that
condition (7.67) holds. By Theorem 7.32, we get u∈C1((0, T ) \ S) and
lim`→∞ u′k`

(t) = u′(t) locally uniformly on (0, T ) \ S.
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Step 4. The function u is a solution.

Since u′k is nonincreasing on [0, T ] for k ≥ k0, u′ is nonincreasing
on (0, tu) and on (tu, T ). Therefore

0 ≤ u′(t) ≤ c2 for t∈ [0, tu), −c1 ≤ u′(t) ≤ 0 for t∈ (tu, T ] (7.84)

and the limits limt→tu− u′(t) and limt→tu+ u′(t) exist.

(i) Let limt→tu− u′(t) = 0. Assume that there exists t∗ ∈ (0, tu) such that
u′(t∗) = 0. Then u′(t) = 0 for t∈ [t∗, tu] and, by the last inequality in as-
sumption (7.76),

0 < φ−1(ε(tu − t)) ≤ u′(t) for t∈ [t∗, tu),

a contradiction. Similarly for limt→tu+ u′(t) = 0.

(ii) Let limt→tu− u′(t) > 0. Since u′ is nonincreasing, we have u′(t) > 0
for t∈ [0, tu). Similarly for limt→tu+ u′(t) < 0. Hence we have shown that
tu is the unique point in [0, T ] where either u′(tu) = 0 or u′(tu) does
not exist. By estimate (7.83) u is positive in (0, T ). This implies that S
satisfies condition (7.68). Having in mind that ak = bk = 0, k ∈N, we
get by Theorem 7.32 that φ(u′)∈ACloc((0, T ) \ S) and u is a w-solution
of problem (7.1). Finally, by assumption (7.76) and definition (7.78), we have

fk`
(t, uk`

(t), u′k`
(t)) ≥ 0 for a.e. t∈ [0, T ], `∈N.

Hence condition (7.73) holds. According to Theorem 7.32 and Remark 7.33,
u is a solution of problem (7.1). Estimates (7.83) and (7.84) yield the re-
quired estimate (7.77). ¤

Example. Let α1, α2, β1, β2 ∈ (0,∞), and let functions hi ∈Lloc(0, T ),
i = 1, 2, 3, 4, be nonnegative. For a.e. t∈ [0, T ] and all x, y ∈R define

f(t, x, y)

= (1−y2)

(
1

2 t
+ h1(t) xα1 + h2(t) |y|α2 + h3(t)

1

xβ1
+ h4(t)

1

|y|β2

)
.

We can check that f satisfies the conditions of Theorem 7.35.
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Chapter 8

Periodic Problem

The main goal of this chapter is to present existence results for singular
periodic problems of the form

(φ(u′))′ = f(t, u, u′), (8.1)

u(0) = u(T ), u′(0) = u′(T ), (8.2)

where 0 < T < ∞, φ : R → R is an increasing and odd homeomorphism
such that φ(R) = R and

{
f ∈Car([0, T ]× ((0,∞)× R))

and f has a space singularity at x = 0.
(8.3)

In accordance with Section 1.3, this means that

lim sup
x→0+

|f(t, x, y)| = ∞ for a.e. t∈ [0, T ] and some y ∈R.

Physicists say that f has an attractive singularity at x = 0 if

lim inf
x→0+

f(t, x, y) = −∞ for a.e. t∈ [0, T ] and some y ∈R

since near the origin the force is directed inward. Alternatively, f is said to
have a repulsive singularity at x = 0 if

lim sup
x→0+

f(t, x, y) = ∞ for a.e. t∈ [0, T ] and some y ∈R

Second order nonlinear differential equations or systems with singularities
appear naturally in the description of particles subject to Newtonian type
forces or to forces caused by compressed gases. Their mathematical study
started in the sixties by Forbat and Huaux [91], Huaux [106], Derwidué [70]
and Faure [87] , who considered positive solutions of equations describing
e.g. the motion of a piston in a cylinder closed at one extremity and sub-
ject to a periodic exterior force, to the restoring force of a perfect gas and

159
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to a viscosity friction. The equations they studied may be after suitable
substitutions transformed to

u′′ + c u′ =
β

u
+ e(t),

where c 6= 0 and β 6= 0 can be either positive or negative. Equations of this
form are usually called Forbat equations and their Liénard type generaliza-
tions like

u′′ + h(u) u′ = g(t, u) + e(t)

are sometimes also referred to as the generalized Forbat equations.

In the setting of Section 1.3, problem (8.1), (8.2) is investigated on the set
[0, T ]×A, where A = [0,∞)×R. In contrast to the Dirichlet problem (7.1),
where each solution vanishes at t = 0 and t = T and hence enters the space
singularity x = 0 of f, all known existence results for the periodic problem
(8.1), (8.2) under assumption (8.3) concern positive solutions which do not
touch the space singularity x = 0 of the function f.

Definition 8.1. A function u : [0, T ] → R is called a solution of problem
(8.1), (8.2) if φ(u′)∈AC[0, T ], (u(t), u′(t)) ∈ A for t ∈ [0, T ],

(φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t∈ [0, T ]

and condition (8.2) is satisfied. If u > 0 on [0, T ], then u is called a positive
solution.

By Definition 8.1 and assumption (8.3) and with respect to the choice
A = [0,∞) × R we see that each solution of problem (8.1), (8.2) must be
nonnegative and can vanish just on a set of zero measure. The restriction
to positive solutions causes that the general existence principles in Theo-
rems 1.6 and 1.7 about the limit of a sequence of approximate solutions need
not be employed here. On the other hand, the singular problem (8.1), (8.2)
will be also investigated through regular approximate periodic problems gov-
erned by differential equations of the form

(φ(u′))′ = h(t, u, u′), (8.4)
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where h∈Car([0, T ] × R2). As usual, by a solution of the regular problem
(8.4), (8.2) we understand a function u such that φ(u′)∈AC[0, T ], (8.2) is
true and

(φ(u′(t)))′ = h(t, u(t), u′(t)) for a.e. t∈ [0, T ].

Notice that the requirement φ(u′)∈AC[0, T ] implies that u∈C1[0, T ].

In this chapter we will extensively utilize the Leray-Schauder degree and
its finite dimensional special case – the Brouwer degree. For the definitions
and basic properties of these notions we refer to Appendix C. In particular,
see the Leray-Schauder degree theorem, the Borsuk antipodal theorem and
Remark C.4.

We will also discuss various special cases of equation (8.1) including the
classical one with φ(y) ≡ y or those with f not depending on u′ or with
f depending on u′ linearly. Let us notice that the assumption that φ
is an odd function is only technical. We employ it just to simplify some
formulas occurring in this section.

8.1 Method of lower and upper functions

Regular problems

First, we will consider problem (8.4), (8.2), where h∈Car([0, T ] × R2).
We bring some results which will be exploited in the investigation of the sin-
gular problem (8.1), (8.2). The lower and upper functions method combined
with the topological degree argument is an important tool for proofs of solv-
ability of regular periodic problems.

Definition 8.2. We say that a function σ ∈C[0, T ] is a lower function
of problem (8.4), (8.2) if there is an at most finite set Σ ⊂ (0, T ) such that
φ(σ′)∈ACloc([0, T ] \ Σ),

σ′(t+) := lim
τ→t+

σ′(τ)∈R, σ′(t−) := lim
τ→t−

σ′(τ)∈R for each t∈Σ,

(φ(σ′(t)))′ ≥ h(t, σ(t), σ′(t)) for a.e. t∈ [0, T ], (8.5)

σ(0) = σ(T ), σ′(0) ≥ σ′(T ) and σ′(t+) > σ′(t−) for all t∈Σ. (8.6)
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If the inequalities in (8.5) and (8.6) are reversed, σ is called an upper func-
tion of problem (8.4), (8.2).

Remark 8.3. It follows immediately from Definition 8.2 that ‖σ′1‖∞ < ∞
and ‖σ′2‖∞ < ∞ hold for each lower function σ1 and each upper function
σ2 of problem (8.4), (8.2).

The role of lower and upper functions is demonstrated by the following
maximum principle:

Lemma 8.4. Let σ1 and σ2 be lower and upper functions of problem (8.4),

(8.2) and let σ1 ≤ σ2 on [0, T ]. Then for each f̃ ∈Car([0, T ] × R2) and
each d∈ [σ1(0), σ2(0)] such that





f̃(t, x, y) < h(t, σ1(t), σ
′
1(t)) for a.e. t∈ [0, T ], all x∈ (−∞, σ1(t))

and all y ∈R such that |y − σ′1(t)| <
σ1(t)− x

σ1(t)− x + 1
,

f̃(t, x, y) > h(t, σ2(t), σ
′
2(t)) for a.e. t∈ [0, T ], all x∈ (σ2(t),∞)

and all y ∈R such that |y − σ′2(t)| <
x− σ2(t)

x− σ2(t) + 1
,

(8.7)

any solution u of the problem

(φ(u′))′ = f̃(t, u, u′), u(0) = u(T ) = d (8.8)

satisfies σ1 ≤ u ≤ σ2 on [0, T ].

Proof. Let u be a solution of the auxiliary Dirichlet problem (8.8). Denote
v = u− σ1 and assume that

v(t0) = min{v(t) : t∈ [0, T ]} < 0.

Since d∈ [σ1(0), σ2(0)] and thanks to property (8.6) where σ = σ1, we may
assume that t0 ∈ (0, T ) \ Σ, v′(t0) = 0, and there is t1 ∈ (t0, T ] such that
(t0, t1] ∩ Σ = ∅ and

v(t) < 0 and |v′(t)| < −v(t)

1− v(t)
for all t∈ [t0, t1].
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Using property (8.5) and the first inequality in (8.7), we obtain

(φ(u′(t))−φ(σ′1(t)))
′
<h(t, σ1(t), σ

′
1(t))− (φ(σ′1(t)))

′≤ 0 for a.e. t∈ [t0, t1].

Hence

0 >

∫ t

t0

(φ(u′(s))−φ(σ′1(s)))
′
ds = φ(u′(t))−φ(σ′1(t)) for a.e. t∈ (t0, t1],

which leads to a contradiction with the definition of t0, i.e. u≥ σ1 on [0, T ].
Similarly we can show that u ≤ σ2 on [0, T ]. ¤

Remark 8.5. Let h∈Car([0, T ]×R) and let σ1, σ2 ∈C[0, T ] be such that
σ1 <σ2 on [0, T ]. Furthermore, assume that there is ψ ∈L1[0, T ] such that

|h(t, x, y)| ≤ ψ(t) for a.e. t∈ [0, T ] and all (x, y)∈ [σ1(t), σ2(t)]× R.

Then it is always possible to construct a function f̃ ∈Car([0, T ]×R2) having
the following properties:

(i) f̃(t, x, y) = h(t, x, y) whenever x∈ [σ1(t), σ2(t)],

(ii) there is ψ̃ ∈L1[0, T ] such that |f̃(t, x, y)| ≤ ψ̃(t) for a.e. t∈ [0, T ]
and all (x, y)∈R2.

(iii) f̃ satisfies inequalities (8.7).

Indeed, let us define

ωi(t, ζ) = sup
z ∈R, |σ′i(t)−z|≤ζ

|h(t, σi(t), σ
′
i(t))− h(t, σi(t), z)|

for i = 1, 2 and (t, ζ)∈ [0, T ]× [0, 1] and

f̃(t, x, y) =





h(t, σ1(t), y)−ω1

(
t,

σ1(t)− x

σ1(t)−x + 1

)
− σ1(t)−x

σ1(t)− x + 1

if x<σ1(t),

h(t, x, y) if x∈ [σ1(t), σ2(t)],

h(t, σ2(t), y) + ω2

(
t,

x− σ2(t)

x− σ2(t) + 1

)
+

x−σ2(t)

x−σ2(t) + 1

if x>σ2(t)
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for a.e. t∈ [0, T ] and (x, y)∈R2.

One can verify that the functions ωi, i = 1, 2 , belong to the class
Car([0, T ]× [0, 1]) and map the set [0, T ]× [0, 1] into [0,∞). In particular,

f̃ ∈Car([0, T ]×R2). Furthermore, it is easy to verify that f̃ has properties

(i) and (ii). We will show that f̃ satisfies also the first inequality in (8.7).
Indeed, let

x < σ1(t) and |y − σ′1(t)| <
σ1(t)− x

σ1(t)− x + 1
.

Then, since ω1 is nondecreasing in the second variable, we have

|h(t, σ1(t), σ
′
1(t))− h(t, σ1(t), y)| ≤ ω1

(
t,

σ1(t)− x

σ1(t)− x + 1

)
,

i.e.

h(t, σ1(t), y) ≤ h(t, σ1(t), σ
′
1(t)) + ω1

(
t,

σ1(t)− x

σ1(t)− x + 1

)

for a.e. t∈ [0, T ]. Consequently,

f̃(t, x, y) = h(t, σ1(t), y)− ω1

(
t,

σ1(t)− x

σ1(t)− x + 1

)
− σ1(t)− x

σ1(t)− x + 1

< h(t, σ1(t), σ
′
1(t)) for a.e. t∈ [0, T ].

Similarly, we can show that f̃ satisfies also the second inequality in (8.7).

Now we will transform problem (8.4), (8.2) to a fixed point problem.
Having in mind that the periodic conditions (8.2) can be equivalently written
as

u(0) = u(T ) = u(0) + u′(0)− u′(T ),

we can proceed similarly to the proof of Theorem 7.4:

Let us consider the quasilinear Dirichlet problem

(φ(x′))′ = b(t) a.e. on [0, T ], x(0) = x(T ) = d (8.9)
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with b∈L1[0, T ] and d ∈ R. A function x∈C1[0, T ] is a solution of (8.9)
if and only if there is γ ∈ R such that

x(t) = d +

∫ t

0

φ−1
(
γ +

∫ s

0

b(τ) dτ
)

ds for t∈ [0, T ]

and∫ T

0

φ−1
(
γ +

∫ s

0

b(τ) dτ
)

ds = 0.

As in the proof of Theorem 7.4, we can see that for each `∈C[0, T ] there
is a uniquely determined c := γ(`)∈R such that

∫ T

0

φ−1(c + `(s)) ds = 0.

The functional γ : C[0, T ] → R is continuous and maps bounded sets to
bounded sets (see Step 3 of the proof of Theorem 7.4). Thus, we can define
an operator K : C[0, T ] → C1[0, T ] by

(K(`))(t) =

∫ t

0

φ−1
(
γ(`) + `(s)

)
ds. (8.10)

Due to the continuity of γ and of φ−1, the operator K is continuous as
well. Let N : C1[0, T ] → C[0, T ] and F : C1[0, T ] → C1[0, T ] be given by

(N (u))(t) =

∫ t

0

h(s, u(s), u′(s)) ds

and

(F(u))(t) = u(0) + u′(0)− u′(T ) + (K(N (u)))(t). (8.11)

In view of the definition of F , a function u∈C1[0, T ] is a solution to prob-
lem (8.4), (8.2) if and only if it is a fixed point of F . Furthermore, since
the operators K and N are continuous, it follows that F is continuous.
The properties of the operator F are summarized by the following lemma.

Lemma 8.6. Let F : C1[0, T ] → C1[0, T ] be defined by (8.11). Then F is
completely continuous and u∈C1[0, T ] is a solution to problem (8.4), (8.2)
if and only if F(u) = u.
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Proof. It remains to show that F is completely continuous. Let {un} be
an arbitrary sequence bounded in C1[0, T ]. Denote vn = F(un) for n ∈ N.
Then

v′n(t) = φ−1
(
γ(N (un)) + (N (un))(t)

)
for t∈ [0, T ] and n∈N.

We can see that the sequences {vn} and {v′n} are bounded on [0, T ]. In
particular, the sequence {vn} is equicontinuous on [0, T ]. Further, since
h∈Car([0, T ]× R2), there is m∈L1[0, T ] such that

|h(t, un(t), u′n(t))| ≤ m(t) for a.e. t∈ [0, T ] and all n∈N.

So, for t1, t2 ∈ [0, T ] we get

|φ(v′n(t1))− φ(v′n(t2))| = |(N (un))(t1)− (N (un))(t2)| ≤
∣∣∣∣
∫ t2

t1

m(s)ds

∣∣∣∣ .

Therefore the sequence {φ(v′n)} is bounded and equicontinuous on [0, T ].
Making use of the Arzelà-Ascoli theorem we can find subsequences {vkn}
and {φ(v′kn

)} uniformly convergent on [0, T ]. Then {v′kn
} is also uniformly

convergent on [0, T ] and so, {vkn} is convergent in C1[0, T ]. We have
proved that the operator F maps any sequence bounded in C1[0, T ] to a set
relatively compact in C1[0, T ]. Since we already know that F is continuous,
we can conclude that it is completely continuous in C1[0, T ]. ¤

The next lemma describes the relationship between lower and upper func-
tions and the Leray-Schauder degree. We will consider the class of auxiliary
problems

(φ(v′))′ = η(v′) h(t, v, v′), v(0) = v(T ), v′(0) = v′(T ), (8.12)

where η may be an arbitrary continuous function mapping R into [0, 1].

Lemma 8.7. Let σ1 and σ2 be lower and upper functions of problem (8.4)
(8.2) and let σ1 <σ2 on [0, T ]. Furthermore, assume that there exists r∗ > 0
such that




‖v′‖∞ < r∗ for each continuous η : R→ [0, 1] and

for each solution v of (8.12) such that σ1 ≤ v ≤ σ2 on [0, T ].
(8.13)
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Finally, assume that F : C1[0, T ] → C1[0, T ] is defined by (8.11) and, for
ρ > 0, denote

Ωρ =
{
u∈C1[0, T ] : σ1 < u < σ2 on [0, T ] and ‖u′‖∞ < ρ

}
. (8.14)

Then

deg(I − F , Ωρ) = 1 for each ρ ≥ r∗ such that F(u) 6= u on ∂Ωρ.

Proof. Step 1. The Leray-Schauder degree of an auxiliary operator F̃ .

Denote Ω = Ωr∗ and assume

F(u) 6= u for all u∈ ∂Ω. (8.15)

Furthermore, since σ′1, σ
′
2 ∈L∞[0, T ] (see Remark 8.3), we can define

R∗ = r∗+‖σ′1‖∞+‖σ′2‖∞ and η(y) =





1 if |y| ≤R∗,

2−|y|
R∗ if R∗ < |y|< 2 R∗,

0 if |y| ≥ 2 R∗.

(8.16)

Then σ1 and σ2 are lower and upper functions for problem (8.12) and there
exists a function ψ ∈L1[0, T ] satisfying

|η(y) h(t, x, y)| ≤ ψ(t) for a.e. t∈ [0, T ] and all (x, y)∈ [σ1(t), σ2(t)]× R.

Now, let f̃ ∈Car([0, T ]× R2) and ψ̃ ∈L1[0, T ] be such that

{
f̃(t, x, y) = η(y) h(t, x, y)

for a.e. t∈ [0, T ] and all (x, y)∈ [σ1(t), σ2(t)]× R,
(8.17)

|f̃(t, x, y)| ≤ ψ̃(t) for a.e. t∈ [0, T ] and all (x, y)∈R2 (8.18)

and f̃ satisfies inequalities (8.7) with η(y) h(t, x, y) in place of h(t, x, y).
Such a function can be certainly constructed, see Remark 8.5.

Let an operator F̃ : C1[0, T ] → C1[0, T ] be given by

F̃(u) = α(u(0) + u′(0)− u′(T )) +K(Ñ (u)), (8.19)

where
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(Ñ (u))(t) =

∫ t

0

f̃(s, u(s), u′(s)) ds for u∈C1[0, T ] and t∈ [0, T ],

α(x) =





σ1(0) if x < σ1(0),

x if σ1(0) ≤ x ≤ σ2(0),

σ2(0) if x > σ2(0)

and K : C[0, T ] → C1[0, T ] is defined by (8.10). According to Lemma 8.6,

the operator F̃ is completely continuous. Moreover, it follows from the
definition of the operator F̃ that the problem

(φ(u′))′ = f̃(t, u, u′), u(0) = u(T ) = α(u(0) + u′(0)− u′(T )) (8.20)

is equivalent to the operator equation F̃(u) = u. Due to relations (8.18)
and (8.19) we can find r0 ∈ (0,∞) such that for any λ∈ [0, 1], each fixed

point u of the operator λ F̃ belongs to the set

B(r0) = {x∈C1[0, T ] : ‖x‖∞ + ‖x′‖∞ < r0}.
So, by the normalization property and the homotopy property from the
Leray-Schauder degree theorem, where

H(λ, x) = (I − λ F̃)(x) and Ω = B(r0),

we get

deg(I − F̃ ,B(r0)) = deg(I,B(r0)) = 1. (8.21)

Step 2. Fixed points of the operator F̃ .

Denote

Q =
{
u∈Ω: σ1(0) < u(0) + u′(0)− u′(T ) < σ2(0)

}
.

Obviously, F̃ = F on Q and σ1(0) < u(0) = u(0) + u′(0)− u′(T ) < σ2(0)
whenever F(u) = u and u∈Ω. In other words, we have

(
F(u) = u and u ∈ Ω

)
=⇒ u ∈ Q. (8.22)

We shall show that the implication
(
F̃(u) = u

)
=⇒ u∈Q (8.23)
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is true, as well. To this end, assume that F̃(u) = u. Then

σ1(0) ≤ u(0) = u(T ) = α(u(0) + u′(0)− u′(T )) ≤ σ2(0). (8.24)

This, together with Lemma 8.4, proves that the estimate

σ1 ≤ u ≤ σ2 on [0, T ] (8.25)

holds. Furthermore, taking into account relation (8.17), we conclude that

f̃(t, u(t), u′(t)) = η(u′(t)) h(t, u(t), u′(t)) for a.e. t∈ [0, T ]. (8.26)

We already know that u(0) = u(T ). We shall show that u satisfies the sec-
ond condition from (8.2), i.e. that u′(0) = u′(T ) holds. By virtue of (8.19),
this is true whenever

σ1(0) ≤ u(0) + u′(0)− u′(T ) ≤ σ2(0). (8.27)

If the inequality u(0) + u′(0) − u′(T ) > σ2(0) were valid then, in accor-
dance with property (8.6) of lower functions, with inequality (8.24) and with
the definition of α, we would obtain

u(0) = u(T ) = σ2(0) = σ2(T ) and u′(0) > u′(T ).

However, this together with the already justified estimate (8.25) can hold
only if σ′2(0) ≥ u′(0) > u′(T ) ≥ σ′2(T ), which contradicts property (8.6) of
lower functions. Therefore, u(0)+u′(0)−u′(T ) ≤ σ2(0). Similarly we could
prove that u(0)+u′(0)−u′(T ) ≥ σ1(0) is true as well. Consequently, rela-
tion (8.27) and hence also the equality u′(0) = u′(T ) hold. To summarize, if

F̃(u) = u, then u solves problem (8.20), satisfies the periodicity condition
(8.2) and relation (8.26). Therefore, it is a solution to problem (8.12). Fur-
thermore, having in mind that (8.25) holds and by virtue of relations (8.13)
and (8.16), we conclude that

‖u′‖∞ < r∗ ≤ R∗. (8.28)

Therefore η(u′(t))≡1 on [0, T ] and u is a solution to problem (8.4), (8.2)
(cf. (8.16)). In other words, F(u) = u and u∈Ω due to relations (8.15),
(8.25) and (8.28). Now, recalling that σ1(0) <u(0) + u′(0)−u′(T ) <σ2(0)
holds whenever F(u) = u and u∈Ω, we conclude that u∈Q. This com-
pletes the proof of implication (8.23).
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Step 3. The Leray-Schauder degree of the operator F .

Having in mind implication (8.22) and applying the excision property
of the Leray-Schauder degree we get

deg(I − F , Ω) = deg(I − F ,Q).

The equality F̃ = F on Q implies that deg(I − F ,Q) = deg(I − F̃ ,Q).
On the other hand, implication (8.23) gives

deg(I − F̃ ,Q) = deg(I − F̃ ,B(R0)).

Therefore, by (8.21),

deg(I − F , Ω) = deg(I − F ,Q) = deg(I − F̃ ,B(R0)) = 1.

Finally, notice that due to assumption (8.13) the implication
(
F(u) = u and σ1 < u < σ2 on [0, T ]

)
=⇒ u∈Ω

is valid. So, we have proved that

deg(I − F , Ωρ) = deg(I − F , Ω) = 1

for each ρ ≥ r∗ such that F(u) 6= u on ∂Ωρ. ¤

Lemma 8.7 offers a possibility to get existence results for problems having
a pair of lower and upper functions σ1 and σ2 satisfying

σ1 ≤ σ2 on [0, T ]. (8.29)

In such a case we say that σ1 and σ2 are well-ordered and the existence
of a constant r∗ with property (8.13) is usually ensured by conditions of
Nagumo type. A suitable version of such conditions is provided by the next
lemma.

Lemma 8.8. Let α, β ∈C[0, T ] be such that α ≤ β on [0, T ] and assume
that





ψ ∈L1[0, T ] is nonnegative, ε1, ε2 ∈{−1, 1},

ω ∈C(R) is positive and

∫ 0

−∞

dt

ω(t)
=

∫ ∞

0

dt

ω(t)
= ∞.

(8.30)
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Then there is an r∗ > 0 such that

‖u′‖∞ < r∗ (8.31)

holds for each function u∈C1[0, T ] fulfilling the periodicity conditions (8.2)
and, in addition, possessing the following properties: φ(u′)∈AC[0, T ],

α ≤ u ≤ β on [0, T ]

and



ε1 (φ(u′(t)))′ ≤ (ψ(t) + u′(t)) ω(φ(u′(t))) if u′(t) > 0,

ε2 (φ(u′(t)))′ ≤ (ψ(t)− u′(t)) ω(φ(u′(t))) if u′(t) < 0

for a.e. t∈ [0, T ].

(8.32)

Proof. Denote

Q = {u∈C1[0, T ] : φ(u′)∈AC[0, T ], u(0) = u(T ), u′(0) = u′(T ),

α ≤ u ≤ β on [0, T ]}
and

Nu = {t∈ [0, T ] : u′(t) = 0} for u∈Q .

Let a function u∈Q fulfilling inequalities (8.32) a.e. on [0, T ] be given.
We want to show that then the a priori estimate (8.31) holds with r∗ in-
dependent of the choice of u∈Q. Without any loss of generality we may
assume that ‖u′‖∞ > 0. Let tu ∈ [0, T ] be such that |u′(tu)| = ‖u′‖∞.
Since u(0) = u(T ), we have Nu 6= ∅.
(i) First, let u′(tu) > 0 and ε1 = 1. We may assume that tu ∈ (0, T ].
Moreover, let Nu ∩ [0, tu) 6= ∅. Then there is t1 ∈Nu ∩ [0, tu) such that
u′(t) > 0 on (t1, tu]. Hence, in view of estimates (8.32), we have

(φ(u′(t)))′ ≤ (ψ(t) + u(t)) ω(u′(t)) for a.e. t∈ [t1, tu].

Consequently,

∫ φ(‖u′‖∞)

0

dt

ω(t)
=

∫ tu

t1

(φ(u′(t)))′

ω(u′(t))
dt ≤

∫ tu

t1

(ψ(t) + u(t)) dt

≤ ‖ψ‖1 + 2‖u‖∞ ≤ ‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞),
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i.e.

∫ φ(‖u′‖∞)

0

dt

ω(t)
≤ ‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞). (8.33)

On the other hand, if Nu ∩ [0, tu) = ∅, then u′ > 0 on [0, tu]. Therefore,
u′(T ) = u′(0) > 0 and there is t2 ∈Nu such that u′ > 0 on (t2, T ]. Using
estimates (8.32), we get

∫ φ(u′(0))

0

dt

ω(t)
=

∫ φ(u′(T ))

φ(u′(t2))

dt

ω(t)
=

∫ T

t2

(φ(u′(t)))′

ω(u′(t))
dt

≤
∫ T

t2

(ψ(t) + u(t)) dt ≤ ‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞)

and∫ φ(u′(tu))

φ(u′(0))

dt

ω(t)
=

∫ tu

0

(φ(u′(t)))′

ω(u′(t))
dt

≤
∫ tu

0

(ψ(t) + u(t)) dt ≤ ‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞).

Thus,

∫ φ(‖u′‖∞)

0

dt

ω(t)
=

∫ φ(u′(0))

0

dt

ω(t)
+

∫ φ(u′(tu))

φ(u′(0))

dt

ω(t)

≤ 2 (‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞)) ,

i.e. ∫ φ(‖u′‖∞)

0

dt

ω(t)
≤ 2 (‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞)) . (8.34)

(ii) Now, let u′(tu) > 0 and ε1 = − 1. Since u(0) = u(T ), we may assume
that tu ∈ [0, T ). Moreover, let Nu∩(tu, T ] 6= ∅. Then there is t3 ∈Nu∩(tu, T ]
such that u′ > 0 on [tu, t3). Using estimates (8.32) we obtain

(φ(u′(t)))′ ≥ − (ψ(t) + u(t)) ω(u′(t)) for a.e. t∈ [tu, t3].
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Therefore,

∫ φ(‖u′‖∞)

0

dt

ω(t)
= −

∫ t3

tu

(φ(u′(t)))′

ω(u′(t))
dt ≤

∫ t3

tu

(ψ(t) + u(t)) dt

≤ ‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞),

i.e. (8.33) holds also in this case.

If Nu∩(tu, T ] = ∅, then u′ > 0 on [tu, T ]. Furthermore, u′(0)=u′(T )>0
and there is t4 ∈Nu such that u′ > 0 on [0, t4). Using estimates (8.32), we
obtain

(φ(u′(t)))′ ≥ − (ψ(t) + u(t)) ω(u′(t)) for a.e. t∈ [0, t4] ∪ [tu, T ].

Hence

∫ φ(‖u′‖∞)

0

dt

ω(t)
=

∫ φ(u′(0))

0

dt

ω(t)
+

∫ φ(u′(tu))

φ(u′(0))

dt

ω(t)

= −
∫ t4

0

(φ(u′(t)))′

ω(u′(t))
dt−

∫ T

tu

(φ(u′(t)))′

ω(u′(t))
dt

≤ 2 (‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞)) ,

i.e. (8.34) is again true.

To summarize, inequality (8.34) is true whenever u′(tu) > 0. Analogously
we can prove that

∫ 0

−φ(‖u′‖∞)

dt

ω(t)
≤ 2 (‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞)) (8.35)

holds provided u′(tu) < 0.

On the other hand, conditions (8.30) imply that we can choose r∗ > 0
such that

min

{∫ 0

−φ(r∗)

dt

ω(t)
,

∫ φ(r∗)

0

dt

ω(t)

}
> 2 (‖ψ‖1 + 2 (‖α‖∞ + ‖β‖∞)) .
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However, this may hold simultaneously with inequalities (8.34) and (8.35)
only if estimate (8.31) is true for all u∈Q fulfilling (8.32). ¤

In the case that the given problem possesses only lower and upper func-
tions σ1 and σ2 which are not well-ordered , i.e. if

σ1(τ) > σ2(τ) for some τ ∈ [0, T ], (8.36)

the following a priori estimate is available.

Lemma 8.9. Let ψ ∈L1[0, T ], r∗=φ−1(‖ψ‖1) and ε∈{−1, 1}. Then the es-
timate ‖u′‖∞≤ r∗ holds for each u∈C1[0, T ] fulfilling the periodicity con-
ditions (8.2) and such that φ(u′)∈AC[0, T ] and

ε (φ(u′(t)))′ ≥ ψ(t) for a.e. t∈ [0, T ].

Analogously, ‖u′‖∞ <r∗ holds for each u∈C1[0, T ] fulfilling the periodicity
conditions (8.2) and such that φ(u′)∈AC[0, T ] and

ε (φ(u′(t)))′ > ψ(t) for a.e. t∈ [0, T ].

Proof. Let u∈C1[0, T ] fulfil φ(u′)∈AC[0, T ], the periodicity conditions
(8.2) and let

(φ(u′(t)))′ > ψ(t) for a.e. t∈ [0, T ].

Put v = φ(u′). Then v ∈AC[0, T ], v(0) = v(T ), v′ > ψ a.e. on [0, T ]
and there is a tv ∈ (0, T ) such that v(tv) = 0. We have

−‖ψ‖1 ≤ −
∫ t

tv

|ψ(s)| ds < v(t) for t∈ (tv, T ] (8.37)

and

−‖ψ‖1 ≤ −
∫ tv

t

|ψ(s)| ds < −v(t) for t∈ [0, tv).

In particular, since v(0) = v(T ),

−‖ψ‖1 ≤ −
∫ T

tv

|ψ(s)| ds < v(T ) = v(0) <

∫ tv

0

|ψ(s)| ds ≤ ‖ψ‖L. (8.38)
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Furthermore, if t∈ [0, tv], then using (8.37) and (8.38) we obtain

v(t) ≥ v(0)−
∫ t

0

|ψ(s)| ds > −
∫ T

tv

|ψ(s)| ds−
∫ t

0

|ψ(s)| ds ≥ −‖ψ‖1.

Similarly, for t∈ [tv, T ] we get

v(t) < v(T ) +

∫ T

t

|ψ(s)| ds <

∫ tv

0

|ψ(s)| ds +

∫ T

t

|ψ(s)| ds ≤ ‖ψ‖1.

Summarizing, we can see that the estimates ‖v‖∞ = ‖φ(u′)‖∞ < ‖ψ‖1 and
‖u′‖∞ < φ−1(‖ψ‖1) are satisfied.

In the cases (φ(v′(t)))′ <ψ(t) or ε (φ(v′(t)))′≥ψ(t) the proof follows
a similar argument. ¤

The next assertion provides an existence principle which covers also the
case (8.36):

Theorem 8.10. Let σ1 and σ2 be lower and upper functions of prob-
lem (8.4), (8.2) and let assumption (8.36) hold. Furthermore, let there be
m∈L1[0, T ] and ε∈{−1, 1} such that

ε h(t, x, y) > m(t) for a.e. t∈ [0, T ] and all x, y ∈R

and let ψ = −(|m|+ 2).

Then problem (8.4), (8.2) has a solution u satisfying

‖u′‖∞ < φ−1(‖ψ‖1) (8.39)

and{
min{σ1(τu), σ2(τu)} ≤ u(τu) ≤ max{σ1(τu), σ2(τu)}

for some τu ∈ [0, T ].
(8.40)

Proof. Let ε = 1.

Step 1. Auxiliary problem and operator representation.

Put r∗ = φ−1(‖ψ‖1). By Lemma 8.9 we have

{
‖u′‖∞ <r∗ for each u∈C1[0, T ] fulfilling (8.2) and such that

φ(u′)∈AC[0, T ] and (φ(u′(t))′ > ψ(t) for a.e. t∈ [0, T ].
(8.41)
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Furthermore, put c∗ = ‖σ1‖∞ + ‖σ2‖∞ + T r∗ and define for a.e. t∈ [0, T ]
and all (x, y)∈R2

f̃(t, x, y) =





−(|m(t)|+ 1) if x ≤ −(c∗ + 1),

h(t, x, y) + (x + c∗) (|m(t)|+ 1 + h(t, x, y))

if − (c∗ + 1) < x < −c∗,

h(t, x, y) if − c∗ ≤ x ≤ c∗,

h(t, x, y) + (x− c∗) |m(t)| if c∗ < x < c∗ + 1,

h(t, x, y) + |m(t)| if x ≥ c∗ + 1.

Let us consider the auxiliary problem

(φ(u′))′ = f̃(t, u, u′), u(0) = u(T ), u′(0) = u′(T ). (8.42)

We have



f̃(t, x, y) < 0 if x ≤ −(c∗ + 1),

f̃(t, x, y) > 0 if x ≥ c∗ + 1,

f̃(t, x, y) = h(t, x, y) if x∈ [−c∗, c∗]

for a.e. t∈ [0, T ] and all x, y ∈R

(8.43)

and

f̃(t, x, y) > ψ(t) for a.e. t∈ [0, T ] and all x, y ∈R. (8.44)

Furthermore, σ1 and σ2 are lower and upper functions of (8.42) and, more-
over, σ3(t) ≡ −c∗ − 2 and σ4(t) ≡ c∗ + 2 form another pair of lower and
upper functions for (8.42). We have

σ3 < min{σ1, σ2} ≤ max{σ1, σ2} < σ4 on [0, T ].

Denote

Ω0 = {u∈C1[0, T ] : σ3 < u < σ4 on [0, T ], ‖u′‖∞ < r∗},
Ω1 = {u∈Ω0 : σ3 < u < σ2 on [0, T ]},
Ω2 = {u∈Ω0 : σ1 < u < σ4 on [0, T ]}

and

Ω = Ω0 \ Ω1 ∪ Ω2.
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Let F be given by (8.11). Clearly, Ω is the set of all u∈Ω0 for which
the relations ‖u′‖∞ < r∗ and

u(tu) < σ1(tu) and u(su) > σ2(su) for some tu, su ∈ [0, T ] (8.45)

are satisfied. Furthermore, Ω1 ∩ Ω2 = ∅ and ∂ Ω = ∂ Ω0 ∪ ∂ Ω1 ∪ ∂ Ω2.

By Lemma 8.6, problem (8.42) is equivalent to the operator equation

F̃(u) = u in C1[0, T ], where

(Ñ (u))(t) =

∫ t

0

f̃(s, u(s), u′(s)) ds

and

F̃(u) = u(0) + u′(0)− u′(T ) +K(Ñ (u))

and K : C[0, T ] → C1[0, T ] is given by (8.10). Let F be given by (8.11).

Clearly, F̃(u) = F(u) for u∈C1[0, T ] such that ‖u‖∞ ≤ c∗.

Step 2. First a priori estimate.

We will prove the implication
(
F̃(u) = u and u∈Ω0

)
=⇒ u∈Ω0. (8.46)

To this aim, first notice that by (8.41) and (8.44) the implication
(
F̃(u) = u

)
=⇒ ‖u′‖∞ < r∗ (8.47)

holds. Now, assume that F̃(u) = u and u∈ ∂ Ω0. Taking into account
(8.47), we can see that this can happen only if

u(α) = max
t∈ [0,T ]

u(t) = c∗ + 2 or u(α) = min
t∈ [0,T ]

u(t) = −(c∗ + 2) (8.48)

for some α∈ [0, T ). In the former case, we have u′(α) = 0 and u(t) > c∗+1
on [α, β] for some β ∈ (α, T ]. Due to (8.43), we have also

(φ(u′(t)))′ = f̃(t, u(t), u′(t)) > 0 for a.e. t∈ [α, β],

i.e. u′(t) > 0 on (α, β], a contradiction. Similarly we can prove that
the latter case in (8.48) is impossible. This shows that u satisfies the esti-
mate

‖u‖∞ < c∗ + 2, (8.49)
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wherefrom, with respect to (8.47), implication (8.46) follows.

Step 3. Second a priori estimate.

Next we will prove that the implication

(
F̃(u) = u and u∈Ω

)
=⇒ ‖u‖∞ < c∗ (8.50)

is true. Indeed, let F̃(u) = u and u∈ ∂ Ω. By (8.47) we have ‖u′‖∞ < r∗

and (8.49). Consequently, either u∈ ∂ Ω1 or u∈ ∂ Ω2. This means that
there is a τu ∈ [0, T ] such that either u(τu) = σ1(τu) or u(τu) = σ2(τu).
In both these cases we have |u(τu)| ≤ ‖σ1‖∞ + ‖σ2‖∞. Consequently,

|u(t)| ≤ |u(τu)|+
∫ t

τu

|u′(s)| ds < ‖σ1‖∞ + ‖σ2‖∞ + T r∗ = c∗.

This completes the proof of estimate (8.50).

Step 4. Existence of a solution to problem (8.4), (8.2).

(i) Let F̃(u) = u and u∈ ∂Ω. By (8.50), we have F(u) = F̃(u) = u and
u is a solution to problem (8.4), (8.2).

(ii) Let F̃(u) 6= u on ∂Ω. Then using successively Lemma 8.7 for three
well-ordered couples: {σ3, σ4}, {σ3, σ2} and {σ1, σ4} of lower and upper
functions for problem (8.4), (8.2), we get

deg(I − F̃ , Ω0) = deg(I − F̃ , Ω1) = deg(I − F̃ , Ω2) = 1.

Since by (8.36) we have Ω1 ∩ Ω2 = ∅, the additivity property of the degree
yields that the equalities

deg(I − F̃ , Ω) = deg(I − F̃ , Ω0)− deg(I − F̃ , Ω1)− deg(I − F̃ , Ω2) = −1

hold. So F̃ has a fixed point u in Ω. Moreover, by Step 3, we have
‖u‖∞ < c∗ and hence

f̃(t, u(t), u′(t)) = h(t, u(t), u′(t))

holds for a.e. t∈ [0, T ]. This means that u is a solution to (8.4), (8.2).

We can proceed analogously when ε = −1. ¤
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Singular problems

Now we are going to consider problem (8.1), (8.2) where f satisfies
condition (8.3). We will present sufficient conditions in terms of lower and
upper functions for the existence of positive solutions to the singular problem
(8.1), (8.2). Lower and upper functions σ1 and σ2 are defined similarly
to those for the regular problem (8.4), (8.2) (see Definition 8.2). However,
since problem (8.1), (8.2) is investigated on [0, T ]×A where A = [0,∞)×R,
only such σ1 and σ2 which are positive a.e. on [0, T ] make sense.

Definition 8.11. We say that a function σ ∈C[0, T ] is a lower function
of problem (8.1), (8.2) provided σ(t)∈ (0,∞) for a.e. t∈ [0, T ] and there is
a finite set Σ ⊂ (0, T ) such that φ(σ′)∈ACloc([0, T ] \ Σ) and (8.5) and
(8.6) are satisfied.

If the inequalities in (8.5) and (8.6) are reversed, σ is called an upper
function of problem (8.4), (8.2).

The first existence result concerns problem (8.1), (8.2) possessing well-
ordered lower and upper functions.

Theorem 8.12. Let there exist lower and upper functions σ1 and σ2 of
problem (8.1), (8.2) such that σ2 ≥ σ1 > 0 on [0, T ]. Furthermore, let for
a.e. t∈ [0, T ] and each (x, y)∈ [σ1(t), σ2(t)]× R the inequalities

{
ε1 f(t, x, y) ≤ (ψ(t) + y) ω(φ(y)) if y > 0,

ε2 f(t, x, y) ≤ (ψ(t)− y) ω(φ(y)) if y < 0
(8.51)

hold with ε1, ε2, ω and ψ satisfying (8.30).

Then problem (8.1), (8.2) has a positive solution u such that

σ1 ≤ u ≤ σ2 on [0, T ]. (8.52)

Proof. Step 1. The case σ1 < σ2 .

Assume that σ1 < σ2 on [0, T ]. Consider the auxiliary regular problem
(8.4), (8.2) with h defined for a.e. t∈ [0, T ] and (x, y)∈R2 by

h(t, x, y) =





f(t, σ1(t), y) if x < σ1(t),

f(t, x, y) if x∈ [σ1(t), σ2(t)],

f(t, σ2(t), y) if x > σ2(t).



180 Chapter 8. Periodic problem

Clearly, h∈Car([0, T ] × R2) and σ1 and σ2 are a lower and an upper
function of problem (8.4), (8.2). Choose an arbitrary continuous function
η : R→ [0, 1] and let v be an arbitrary solution of problem (8.12) fulfilling
σ1 ≤ v ≤ σ2 on [0, T ]. Since (8.51) is satisfied with h instead of f, we
have for a.e. t∈ [0, T ]

ε1 (φ(v′(t)))′ = ε1 η(v′(t)) h(t, v(t), v′(t))

≤ η(v′(t)) (ψ(t) + v′(t)) ω(φ(v′(t)))

≤ (ψ(t) + v′(t)) ω(φ(v′(t))) if v′(t) > 0

and

ε2 (φ(v′(t)))′ ≤ (ψ(t)− v′(t)) ω(φ(v′(t))) if v′(t) < 0.

Hence we can apply Lemma 8.8 to deduce that (8.13) is satisfied. Let
F : C1[0, T ] → C1[0, T ] and Ω = Ωr∗ be defined by (8.11) and (8.14),
respectively. Then there are two possibilities: either F has a fixed point
u∈ ∂Ω or F(u) 6= u on ∂Ω.

(i) Let F(u) = u for some u∈ ∂Ω. In view of Lemma 8.6 and of the
definition of h, it follows that u is a solution to (8.1), (8.2) fulfilling (8.52).

(ii) If F(u) 6= u on ∂Ω, then by Lemma 8.7 we have deg(I − F , Ω) = 1,
which implies that F has a fixed point u∈Ω. As in (a), this fixed point is
a solution to (8.1), (8.2) fulfilling (8.52).

Step 2. The case σ1 ≤ σ2 .

For each k ∈N the function σ̃k = σ2 + 1
k

is also an upper function
of problem (8.4), (8.2) and σ1 < σ̃k on [0, T ]. Hence, in the general case
when the strict inequality between σ1 and σ2 need not hold, we can use
Step 1 to show that for each k ∈N there exists a solution uk to (8.4), (8.2)
such that

uk(t)∈ [σ1(t), σ2(t) + 1
k
] for t∈ [0, T ] and ‖u′k‖∞ < r∗,

where r∗ > 0 is the constant given by Lemma 8.8 where α = σ1 and
β = σ2 + 1. Using the Arzelà-Ascoli theorem and the Lebesgue dominated
convergence theorem for the sequences {uk} and {h(t, uk(t), u

′
k(t))} we get

a solution u of (8.1), (8.2) as the limit of a subsequence of {uk} on C1[0, T ].
¤
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Remark 8.13. Let functions α and β continuous on [0, T ] and such
that β ≥ α > 0 on [0, T ] be given. We say that a function f satis-
fies the Nagumo conditions with respect to the couple α, β if there are
ε1, ε2 ∈{−1, 1} and functions ω, ψ having properties (8.30) and such that
(8.51) is satisfied for a.e. t∈ [0, T ] and all (x, y)∈ [α(t), β(t)] × R. Notice
that the Nagumo conditions with respect to α, β are satisfied in particular if
f(t, x, y)=−h(x)y + g(t, x), where h∈C[0,∞) and g ∈Car([0, T ]× (0,∞)).
Indeed, for a.e. t∈ [0, T ] and each (x, y)∈ [α(t), β(t)]× R we have

|f(t, x, y)| ≤ |h(x)| |y|+ |g(t, x)| ≤ K (ψ(t) + |y|)
where

K = 1 + max{|h(x)| : x∈ [δ, ‖β‖∞]}, ψ(t) = sup{|g(t, x)| : x∈ [δ, ‖β‖∞]}
and δ = min{α(t) : t∈ [0, T ]}. (By assumption, we have δ > 0.)

Example. Theorem 8.12 provides the existence of a positive solution to
problem (8.1), (8.2) also for

f(t, x, y) = g(t, x) y2n+1 + h(x) y φ(y)− a x−λ1 + b xλ 2

for a.e. t∈ [0, T ] and all (x, y)∈ (0,∞) × R, where g ∈Car([0, T ] × R) is
nonnegative, n ∈ N, a, b, λ1, λ 2 ∈ (0,∞) and h∈C[0,∞).

The last result of this section concerns the case when the given problem
possesses lower and upper functions, but no pair of them is well-ordered. We
will restrict ourselves to the equation

(φ(u′))′ = g(u) + p(t, u, u′) , (8.53)

where p is a well-behaved function (p∈Car([0, T ]×R2)) and g has a sin-
gularity at the origin. Recall that problem (8.53), (8.2) is investigated on the
set [0, T ]×A, where A = [0,∞)× R.

The key assumption is that

lim
x→0+

∫ 1

x

g(s) ds = +∞. (8.54)

Clearly, condition (8.54) implies that

lim sup
x→0+

g(x) = +∞, (8.55)
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which means that g has a space repulsive singularity at the origin. Repul-
sive singularities having property (8.54) are called strong singularities and
the function g is then usually said to be a strong repulsive singular force.
We will refer to condition (8.54) as to the strong repulsive singularity condi-
tion . On the other hand, if condition (8.55) is satisfied together with

lim
x→0+

∫ 1

x

g(s) ds∈R,

then the singularity of f at x = 0 is called a weak singularity and g is
said to be a weak repulsive singular force.

The meaning of the strong repulsive singularity condition is revealed by
the following lemma.

Lemma 8.14. Let p∈Car([0, T ]×R2) and let g ∈C(0,∞). Furthermore,
let g satisfy the strong repulsive singularity condition (8.54) and let there be
a function m∈L1[0, T ] such that

g(x) + p(t, x, y) > m(t) for a.e. t∈ [0, T ] and all x > 0, y ∈R. (8.56)

Then each lower function σ1 of problem (8.53), (8.2) is positive on the whole
interval [0, T ].

Proof. Let σ1 be a lower function for (8.53), (8.2) and ρ := ‖σ′1‖∞. Then
ρ < ∞ and, by virtue of the property (8.5) for σ = σ1, we have

(φ(σ′1(t)))
′ (σ′1(t)− ρ)≤ g(σ1(t)) (σ′1(t)− ρ) + p(t, σ1(t), σ

′
1(t)) (σ′1(t)− ρ)

for a.e. t∈ [0, T ]. Furthermore, due to (8.54) there is δ > 0 such that

lim
x→0+

∫ δ′

x

g(s) ds = ∞ for all δ′ ∈ (0, δ). (8.57)

Let an arbitrary ε> 0 be given. Since in view of Definition 8.11 we have
σ1 > 0 a.e. on [0, T ], we can choose t0 ∈ (0, ε] in such a way that σ1(t0) > 0.
Put t∗ = sup{t∈ [t0, T ] : σ1(s) > 0 on [t0, t]}. Let σ1(t

∗) = 0. Then there is
a t′ ∈ (t0, t

∗) such that

σ1(t)∈ [0, δ) for all t∈ [t′, t∗]. (8.58)
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Let tn ∈ (t′, t∗) be an increasing sequence such that limn→∞ tn = t∗. Then

lim
n→∞

σ1(tn) = σ1(t
∗) = 0 (8.59)

and
∫ tn

t′
(φ(σ′1(t)))

′ (σ′1(t)− ρ) dt

≤
∫ tn

t′
g(σ1(t)) (σ′1(t)− ρ) dt +

∫ tn

t′
p(t, σ1(t), σ

′
1(t)) (σ′1(t)− ρ) dt

= −
∫ σ1(t′)

σ1(tn)

g(s) ds− ρ

∫ tn

t′
(g(σ1(t)) + p(t, σ1(t), σ

′
1(t)) dt

+

∫ tn

t′
p(t, σ1(t), σ

′
1(t)) σ′1(t) dt.

Therefore, for each n∈N we have

∫ σ1(t′)

σ1(tn)

g(s) ds

≤
∫ tn

t′
|(φ(σ′1(t)))

′| |σ′1(t)− ρ| dt +

∫ tn

t′
|p(t, σ1(t), σ

′
1(t)| |σ′1(t)| dt

− ρ

∫ tn

t′
(g(σ1(t)) + p(t, σ1(t), σ

′
1(t)) dt ≤ c,

where c = ρ

(
2‖φ(σ′1)

′‖1 +

∫ T

0

|p(t, σ1(t), σ
′
1(t))| dt + ‖m‖1

)
< ∞.

On the other hand, thanks to relations (8.57)– (8.59) we have

lim
n→∞

∫ σ1(t′)

σ1(tn)

g(s) ds = ∞,

a contradiction. Thus, σ1(t
∗) > 0. It follows that t∗ = T, since otherwise

we would get a contradiction with the definition of t∗. In particular, we can
see that σ1(t) is positive on any interval (ε, T ], ε > 0, and, as we also have
σ1(0) = σ1(T ) > 0 in view of the periodicity condition (8.6), this completes
the proof of the lemma. ¤
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Remark 8.15. Lemma 8.14 says, in particular, that under assumptions
(8.54) and (8.56), where m∈L1[0, T ], each solution u∈C1[0, T ] of problem
(8.53), (8.2) must be positive at each t∈ [0, T ].

Theorem 8.16. Let p∈Car([0, T ] × R2) and g ∈C(0,∞). Furthermore,
let the strong repulsive singularity condition (8.54) and condition (8.56) with
some m∈L1[0, T ] be satisfied. Finally, let there be lower and upper func-
tions σ1 and σ2 of problem (8.53), (8.2) such that relation (8.36) is true
and σ2 > 0 on [0, T ].

Then problem (8.53), (8.2) possesses a positive solution u having prop-
erties (8.39) and (8.40).

Proof. Put r∗ = φ−1(‖ψ‖1), where ψ = |m|+ 2. Let us define

R = ‖σ1‖∞ + ‖σ2‖∞, r = r∗ + ‖σ′1‖∞ and B = R + r∗ T. (8.60)

Since p∈Car([0, T ]× R2), there is p̃∈L1[0, T ] such that

|p(t, x, y)| ≤ p̃(t) for a.e. t∈ [0, T ] and all (x, y)∈ [0, B]× [−r, r]. (8.61)

By Lemma 8.14, σ1 > 0 on [0, T ]. Since we assume σ2 > 0 on [0, T ], it
follows that δ := min {{σ1(t), σ2(t)} : t∈ [0, T ]} > 0. Now, put

K = ‖p̃‖1 r∗ +

∫ B

δ

|g(s)| ds.

By (8.54) there exists ε∈ (0, δ) such that g(ε) > 0 and

∫ δ

ε

g(s) ds > K. (8.62)

For a.e. t∈ [0, T ] and all (x, y)∈R2, define

h(t, x, y) = g̃(x) + p(t, x, y), where g̃(x) =

{
g(ε) if x < ε,

g(x) if x ≥ ε.

Then h∈Car([0, T ]× R2), σ1 and σ2 are a lower and an upper function
of problem (8.4), (8.2) and, by assumption (8.56),

h(t, x, y) > m(t) for a.e. t∈ [0, T ] and all x > 0, y ∈R.
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By Theorem 8.10, problem (8.4), (8.2) has a solution u satisfying estimate
(8.39) and δ ≤ u(tu) ≤ R for some tu ∈ [0, T ]. In particular, u ≤ B for all
t∈ [0, T ]. It remains to show that u ≥ ε on [0, T ]. Let t0, t1 ∈ [0, T ] be
such that

u(t0) = min{u(t) : t∈ [0, T ]} and u(t1) = max{u(t) : t∈ [0, T ]}.
We have u′(t0) = u′(t1) = 0 and u(t1)∈ [δ, B]. Put v(t) = φ(u′(t)) for
t∈ [0, T ]. Then u′(t) = φ−1(v(t)) on [0, T ], v(t0) = v(t1) = φ(0) and

∫ t1

t0

(φ(u′(s)))′ u′(s) ds =

∫ t1

t0

v′(s) φ−1(v(s)) ds =

∫ v(t1)

v(t0)

φ−1(y) dy = 0.

Thus, multiplying both sides of the equality

(φ(u′(t)))′ = h(t, u(t), u′(t))

by u′(t) and integrating from t0 to t1, we get
∫ u(t1)

u(t0)

g̃(s) ds ≤
∫ t1

t0

|p(t, u(t), u′(t))| |u′(t)| dt ≤ ‖p̃‖1 r∗.

Therefore

g(ε) (ε− u(t0)) +

∫ δ

ε

g(s) ds =

∫ δ

u(t0)

g̃(s) ds

≤
∫ u(t1)

u(t0)

g̃(s) ds +

∫ B

δ

|g(s)| ds ≤ ‖p̃‖1 r∗ +

∫ B

δ

|g(s)| ds = K.

Since g(ε) > 0, this contradicts inequality (8.62) whenever

u(t0) = min{u(t) : t∈ [0, T ]} ≤ ε.

Hence, u(t) > ε on [0, T ], which means that u is a solution to problem
(8.53), (8.2). ¤

Example. Let

g(x) = a x−λ1 + b xλ 2 for x∈ (0,∞),

where a, b, λ 2 ∈ (0,∞) and λ1 ≥ 1. Then Theorem 8.16 provides the exis-
tence of a positive solution to problem (8.53), (8.2) if p∈Car([0, T ] × R2)
is bounded below, i.e. there is m∈L1[0, T ] such that p(t, x, y) ≥ m(t) for
a.e. t ∈ [0, T ] and all (x, y) ∈ R2.
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8.2 Attractive singular forces

This section is devoted to the singular problem (8.1), (8.2) where f has
an attractive singularity at x = 0, which means that, in addition to (8.3),
it has also the following property:

lim inf
x→0+

f(t, x, y) = −∞ for a.e. t∈ [0, T ] and some y ∈R.

Such a situation can be treated by means of lower and upper functions asso-
ciated with the problem. We can decide whether the problem has constant
lower and upper functions and to find them provided they exist. In general,
however, it is easy neither to find lower and upper functions which need not
be constant nor to prove their existence, which can make the application of
theorems like Theorem 8.12 difficult. A simple possibility how to find non-
constant lower or upper functions to problem (8.1), (8.2) is offered by the
following lemma. In what follows we use the standard notation for mean
values of integrable functions: for y ∈L1[0, T ], the symbol y stands for

y :=
1

T

∫ T

0

y(t) dt.

Lemma 8.17. (i) Let there exist A > 0 and b∈L1[0, T ] such that b ≥ 0,
{

f(t, x, y) ≥ b(t)

for a.e. t∈ [0, T ] and all x∈ [A,B], |y| ≤ φ−1(‖b‖1),
(8.63)

where B − A ≥ 2 T φ−1
(‖b‖1).

Then problem (8.1), (8.2) possesses an upper function σ2 such that

A ≤ σ2 ≤ B on [0, T ].

(ii) If A,B and b∈L1[0, T ] satisfy analogous conditions but with b ≤ 0
and

{
f(t, x, y) ≤ b(t)

for a.e. t∈ [0, T ] and all x∈ [A,B], |y| ≤ φ−1(‖b‖1),
(8.64)

then problem (8.1), (8.2) possesses a lower function σ1 such that

A ≤ σ1 ≤ B on [0, T ].
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Proof. (i) Assume that b ≥ 0 and relation (8.63) is true. For a given
d∈R, let xd be a solution of the quasilinear auxiliary Dirichlet problem
(8.9). Then

φ(x′d(t)) = φ(x′d(t0)) +

∫ t

t0

b(s) ds for all t, t0 ∈ [0, T ].

Since b ≥ 0, it follows that x′d(T ) ≥ x′d(0). Since xd(0) = xd(T ), there is
a td ∈ (0, T ) such that x′d(td) = 0. Thus

φ(x′d(t)) =

∫ t

td

b(s) ds for t∈ [0, T ]

and so ‖x′d‖∞ ≤ φ−1(‖b‖1) for each d∈R and ‖x0‖∞ ≤ T φ−1(‖b‖1). Put
σ2 = A + T φ−1(‖b‖1) + x0. Then

A ≤ σ2 ≤ A + 2 T φ−1(‖b‖1) ≤ B on [0, T ].

Having in mind assumption (8.63) and the definition of xd, we can see that
σ2 is an upper function of problem (8.1), (8.2).

(ii) If b ≤ 0 and assumption (8.64) is valid, then σ1 = A+T φ−1(‖b‖1)+x0

is a lower function of problem (8.1), (8.2) and A ≤ σ1 ≤ B on [0, T ]. ¤

Corollary 8.18. Let there exist r > 0, A > r and b∈L1[0, T ] such that
b ≥ 0, (8.63) with B − A ≥ 2 T φ−1

(‖b‖1) and

f(t, r, 0) ≤ 0 for a.e. t∈ [0, T ]

hold. Furthermore, let for a.e. t∈ [0, T ] and each (x, y)∈ [r, B]×R inequal-
ities (8.51) be true with ε1, ε2, ω, ψ satisfying (8.30).

Then problem (8.1), (8.2) has a positive solution u such that

r ≤ u ≤ B on [0, T ]. (8.65)

Proof. By Lemma 8.17, problem (8.1), (8.2) has an upper function σ2 such
that σ2 ∈ [A,B] on [0, T ]. Furthermore, σ1 = r is a lower function of (8.1),
(8.2) and 0 < σ1 < σ2 on [0, T ]. By Theorem 8.12, problem (8.1), (8.2) has
a positive solution u satisfying (8.65). ¤
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Now, let us consider the Liénard equation

(φ(u′))′ + h(u) u′ = g(u) + e(t), (8.66)

where

h∈C[0,∞), g ∈C(0,∞), e∈L1[0, T ] (8.67)

and g has an attractive space singularity at x = 0, i.e.

lim inf
x→0+

g(x) = −∞. (8.68)

The next lemma shows that problem (8.66), (8.2) possesses an upper
function whenever

lim inf
x→∞

[g(x) + e] > 0. (8.69)

Lemma 8.19. Let conditions (8.67) and (8.69) hold. Furthermore, assume
that there exists α∈ (0,∞) such that

lim inf
|y|→∞

|φ(y)|
|y|α > 0. (8.70)

Then for an arbitrary r∈ (0,∞), problem (8.66), (8.2) possesses an upper
function σ2 such that σ2 > r on [0, T ].

Proof. Step 1. Construction of operator Fλ.

Choose r∈ (0,∞). By assumption (8.69) there is R > r such that

g(x) + e > 0 for x ≥ R. (8.71)

Take an arbitrary c∈R and consider the auxiliary Dirichlet problem

(φ(v′))′ + λh(v + c) v′ = λ b(t), v(0) = v(T ) = 0, (8.72)

where b(t) = g0 + e(t) for a.e. t ∈ [0, T ], g0 = inf{g(x) : x∈ [R,∞)}
and λ∈ [0, 1] is a parameter. For a given λ∈ [0, 1] define an operator
Fλ : C1[0, T ]×R→ C1[0, T ]×R by

Fλ : (v, a) →
(∫ t

0

φ−1(a + λ

∫ s

0

[b(τ)− h(v(τ) + c) v′(τ)] dτ) ds,

a−
∫ T

0

φ−1(a + λ

∫ s

0

[b(τ)− h(v(τ) + c) v′(τ)] dτ) ds

)
.
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Taking into account that the second component of Fλ has a finite dimen-
sional range and using an argument analogous to those applying to the proof
of Lemma 8.6 (see also the proof of Theorem 7.4) we can show that the op-
erator Fλ is completely continuous for each λ∈ [0, 1]. Furthermore, v is
a solution of the Dirichlet problem (8.72) satisfying φ(v′(0)) = a if and only
if Fλ(v, a) = (v, a).

Step 2. A priori estimates of fixed points of Fλ.

Choose λ∈ (0, 1] and assume that (v, a)∈C1[0, T ]×R is a fixed point
of the operator Fλ. We have

(φ(v′(t)))′ + λh(v(t) + c) v′(t) = λ b(t) for a.e. t∈ [0, T ], (8.73)

v(0) = v(T ) = 0 and φ(v′(0)) = a. Multiplying equality (8.73) by v(t) and
integrating over [0, T ], we get

−
∫ T

0

φ(v′(t)) v′(t) dt = λ

∫ T

0

b(t) v(t) dt. (8.74)

Let α∈ (0,∞) be such that relation (8.70) holds. Then there are k > 0 and
y0 > 0 such that

φ(|y|)
|y|α >

k

2
for |y| ≥ y0.

Consequently, if we define β(y) = φ(y)− k y α for y ≥ 0, then β ∈C[0,∞)
and

−β(y)

yα
<

k

2
for y ≥ y0. (8.75)

Next, since φ is odd, we have φ(y) y ≥ 0 and |φ(y)| = φ(|y|) for each
y ∈R. In particular, φ(|y|) |y| = φ(y) y for all y ∈R. Relation (8.74) can
be now rewritten as

−k‖v′‖α+1
α+1 −

∫ T

0

β(|v′(t)|) |v′(t)| dt = λ

∫ T

0

b(t) v(t) dt. (8.76)

Denote J = {t∈ [0, T ] : |v′(t)| ≥ y0} and M = max{β(y) : y ∈ [0, y0]} and
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assume that ‖v‖∞ ≥ 1. Then relations (8.75) and (8.76) imply

k‖v′‖α+1
α+1 ≤ ‖b‖1‖v‖∞ + My0T −

∫

J

β(|v′(t)|)
|v′(t)|α |v′(t)|α+1 dt

≤ (‖b‖1 + My0T ) ‖v‖∞ +
k

2
‖v′‖α+1

α+1 ,

i.e.

‖v′‖α+1
α+1 ≤

2

k
(‖b‖1 + My0T ) ‖v‖∞.

Further, as the Hölder inequality yields

‖v‖∞ ≤
∫ T

0

|v′(s)| ds ≤ T
α

α+1‖v′‖α+1, (8.77)

we conclude that

‖v′‖α+1 ≤
(

2

k

(‖b‖1 + My0T
)) 1

α

T
1

α+1 .

Now, using (8.77) once more, we get

‖v‖∞ ≤ T

(
2

k

(‖b‖1 + My0T
)) 1

α

.

Thus, including into our consideration also the case ‖v‖∞ < 1, we conclude
that v satisfies the estimate

‖v‖∞ < d := T

(
2

k

(‖b‖1 + My0T
)) 1

α

+ 1. (8.78)

As v(0) = v(T ), there is τ0 ∈ (0, T ) such that v′(τ0) = 0. Hence, integrat-
ing equality (8.73) we obtain

φ(v′(t)) + λ

∫ v(t)

v(τ0)

h(x + c) dx = λ

∫ t

τ0

b(s) ds for t∈ [0, T ],

wherefrom the estimate

|φ(v′(t))| ≤ κ := ‖b‖1 + 2 d max{|h(x)| : |x| ≤ |c|+ d} for all t∈ [0, T ]
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follows. Consequently,

‖v′‖∞ ≤ φ−1(κ) and |a| = |φ(v′(0))| ≤ κ. (8.79)

On the other hand, it is easy to see that F0(v, a) = (v, a) if and only if
(v, a) = (0, 0). This, together with (8.79), imply that if we choose

ρ > d + φ−1(κ) + κ,

we get (v, a) ∈ B(ρ), where

B(ρ) = {(v, a)∈C1[0, T ]× R : ‖v‖∞ + |a|< ρ}.

Step 3. Properties of the Leray-Schauder degree of Fλ.

By Step 2 and by the homotopy property from the Leray-Schauder degree
theorem, where H(λ, x) = (I − Fλ)(x) and Ω = B(ρ), we get

deg(I − F1,B(ρ)) = deg(I − F0,B(ρ)).

Moreover, F0 is an odd mapping, and hence by the Borsuk antipodal theo-
rem we see that

deg(I − F0,B(ρ)) 6= 0.

Therefore, by the existence property of the Leray-Schauder degree, we deduce
that for each c∈R the operator F1 has a fixed point (vc, ac). It follows
from the construction of the operator F1 that vc is a solution of the aux-
iliary Dirichlet problem (8.72) with λ = 1 and ac = φ(v′c(0)). Moreover,
‖vc‖∞ < d on [0, T ] holds due to (8.78).

Step 4. Construction of an upper function σ2.

Put c = R + d and σ2 = vc + c. Then σ2(0) = σ2(T ) = c and, due to
(8.71), we have

φ(σ′2(T ))− φ(σ′2(0)) = T b = T (g0 + e) ≥ 0.

Furthermore, σ2(t) > c − d = R on [0, T ]. Therefore, due to inequality
(8.71),

(φ(σ′2(t)))
′ = −h(σ2(t)) σ′2(t) + g0 + e(t)

≤ −h(σ2(t)) σ′2(t) + g(σ2(t)) + e(t) for a.e. t∈ [0, T ].
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This shows that σ2 is an upper function for (8.66), (8.2). ¤

The following alternative assertion can be proved by an argument analo-
gous to that used in the proof of the previous lemma.

Lemma 8.20. Assume (8.67) and

lim sup
x→∞

[g(x) + e] < 0.

Then for an arbitrary r∈ (0,∞), problem (8.66), (8.2) possesses a lower
function σ1 such that σ1 > r on [0, T ].

A straightforward application of Theorem 8.12 and Lemma 8.19 gives the
following result.

Theorem 8.21. Assume (8.67)– (8.70) and let there exist r∈ (0,∞) such
that

g(r) + e(t) ≤ 0 for a.e. t∈ [0, T ].

Then problem (8.66), (8.2) has a positive solution u such that u ≥ r on
[0, T ].

Proof. Let r∈ (0,∞) be such that g(r)+ e(t) ≤ 0 for a.e. t∈ [0, T ]. Then
σ1(t) ≡ r is a lower function of problem (8.66), (8.2). Furthermore, due
to assumption (8.70) and Lemma 8.19, problem (8.66), (8.2) has an upper
function σ2 such that σ2 > r = σ1 > 0 on [0, T ]. Thus, by Theorem 8.12
and Remark 8.13, problem (8.66), (8.2) has a positive solution u such that
u(t)∈ [r, σ2(t)] for each t∈ [0, T ]. ¤

Example. Let g ∈C(0,∞) satisfy (8.68). Then we can guarantee the exis-
tence of a positive constant r for which the inequality g(r)+e(t) ≤ 0 holds
a.e. on [0, T ] provided

lim inf
x→0+

(g(x) + ‖e‖∞) < 0.

This occurs e.g. if sup ess{e(t) : t∈ [0, T ]} < ∞. In particular, Theorem 8.21
applies to problem (8.66), (8.2) if

φ = φp, p∈ (1,∞), e > 0, sup ess{e(t) : t∈ [0, T ]} < ∞
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and g(x) = −a x−λ1 + b xλ 2 , where a, b, λ1, λ 2 ∈ (0,∞).

Further, notice that condition (8.70) is satisfied e.g. by

φ(y) = (|y| y + y) ln(1 +
1

|y|) or φ(y) = y (exp(y2)− 1).

8.3 Strong repulsive singular forces

In this section we study the singular problem (8.1), (8.2) with f having
a repulsive singularity at x = 0. Recall that this means that, in addition
to (8.3), the relation

lim sup
x→0+

f(t, x, y) = ∞ for a.e. t∈ [0, T ] and some y ∈R

is true. In general, in this case, the existence of a pair of associated lower
and upper functions having the opposite order is typical. This causes that
such a case is more difficult and more interesting than that of an attractive
singularity.

The next assertion deals with equation (8.53) and is a direct corollary
of Theorem 8.16.

Theorem 8.22. Assume that g ∈C(0,∞) and p∈Car([0, T ]×R2) satisfy
the strong repulsive singularity condition (8.54) and inequality (8.56) with
some m∈L1[0, T ]. Furthermore, let there be a function b∈L1[0, T ] and
constants r, A, B ∈ (0,∞) such that

b ≤ 0, A > r, B − A ≥ 2 T φ−1
(‖b‖1),

g(r) + p(t, r, 0) ≥ 0 for a.e. t∈ [0, T ]

and{
g(x) + p(t, x, y) ≤ b(t)

for a.e. t∈ [0, T ] and all x∈ [A,B] and |y| ≤ φ−1(‖b‖1).

Then problem (8.53), (8.2) has a positive solution u such that

u(tu)∈ [r, B] for some tu ∈ [0, T ].



194 Chapter 8. Periodic problem

Proof. By Lemma 8.17 (ii) there is a lower function σ1 of problem (8.53),
(8.2) such that A ≤ σ1 ≤ B on [0, T ]. Moreover, by our assumptions,
σ2(t) ≡ r is an upper function of problem (8.53), (8.2). Using Theorem 8.16
we complete the proof. ¤

In particular, Theorem 8.22 provides for the Duffing equation with the
φ –Laplacian

(φ(u′))′ = g(u) + e(t) (8.80)

the following immediate corollary.

Corollary 8.23. Let e∈L1[0, T ], inf ess{e(t) : t∈ [0, T ]}> −∞ and let
g ∈C(0,∞) satisfy the strong repulsive singularity condition (8.54). Further,
let

g∗ := inf{g(x) : x∈ (0,∞)} > −∞

and let there be A > 0 such that

g(x) + e ≤ 0 for x∈ [A,B], where B − A ≥ 2 T φ−1(‖e− e‖1).

Then problem (8.80), (8.2) has a positive solution u such that u(tu) ≤ B
for some tu ∈ [0, T ].

Proof. By the strong singularity condition (8.54) we have (8.55). Since,
moreover, we assume inf ess{e(t) : t∈ [0, T ]} > −∞, we can certainly find
an r∈ (0, A) such that g(r)+e(t) ≥ 0 for a.e. t∈ [0, T ]. The assertion then
follows by Theorem 8.22 if we put b(t) = e(t)−e and m(t) = g∗+e(t) a.e.
on [0, T ]. ¤

In the remaining part of the section we will consider the Liénard equation

(φp(u
′))′ + h(u) u′ = g(u) + e(t) (8.81)

with the p-Laplacian φp(y) = |y|p−2 y. To this aim, the following continua-
tion type principle will be helpful.

Lemma 8.24. Let p∈ (1,∞), h∈C[0,∞), g ∈C(0,∞) and e∈L1[0, T ].
Furthermore, assume that there exist r > 0, R > r and R′ > 0 such that
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(i) the inequalities r < v < R on [0, T ] and ‖v′‖∞ < R′ hold for each
λ∈ (0, 1] and for each positive solution v of the problem

{
(φp(v

′))′ = λ (−h(v) v′ + g(v) + e(t)),

v(0) = v(T ), v′(0) = v′(T ),
(8.82)

(ii) (g(x) + e = 0) =⇒ r < x < R,

(iii) (g(r) + e) (g(R) + e) < 0.

Then problem (8.81), (8.2) has at least one solution u such that r < u < R
on [0, T ].

Proof. Step 1. Construction of the operator Fλ.

First, notice that integrating the differential equation in (8.82) over the in-
terval [0, T ] and taking into account the periodicity conditions we arrive at





0 =

∫ T

0

g(v(s)) ds + T e

for all solutions u of problem (8.82).

(8.83)

Let us consider the problems

(φp(v
′))′ = fλ(t, v)(t), v(0) = v(T ), v′(0) = v′(T ), (8.84)

where λ∈ [0, 1] and

fλ(t, v)(t) = λ
(−h(v(t)) v′(t) + g(v(t)) + e(t)

)
+ (1− λ) w0(v),

w0(v) =
1

T

(∫ T

0

g(v(s)) ds + T e

)

for v ∈C1[0, T ] and for a.e. t∈ [0, T ]. Due to (8.83), we can see that for
each λ∈ [0, 1] problems (8.82) and (8.84) are equivalent. Furthermore, for
λ = 1 problem (8.84) reduces to problem (8.81), (8.2) (with v instead of u).

As in the proof of Theorem 7.4 (see also the introduction to Lemma 8.6
in Section 8.1), we denote by γ the functional on C[0, T ] which is uniquely
determined by the relation

∫ T

0

φ−1(γ(`) + `(s)) ds = 0. (8.85)
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Similarly, the operator K : C[0, T ] → C1[0, T ] is defined by (8.10), i.e.

(K(`))(t) =

∫ t

0

φ−1(γ(`) + `(s)) ds.

Recall that both γ and K are continuous. Now, for λ∈ [0, 1], we define
operators Nλ : C1[0, T ] → C[0, T ] and Fλ : C1[0, T ] → C1[0, T ] by





Nλ(u)(t) =

∫ t

0

fλ(s, u)(s) ds,

and

Fλ(u)(t) = u(0) + u′(0)− u′(T ) +K(Nλ(u)).

(8.86)

Arguing as in the proof of Lemma 8.6, we can show that for each λ∈ [0, 1]
the operator Fλ is completely continuous. Moreover, a function v ∈C1[0, T ]
solves problem (8.84) if and only if it is a fixed point of Fλ. In particular,
u∈C1[0, T ] is a solution of (8.81), (8.2) if and only if F1(u) = u.

Step 2. Properties of the fixed points of Fλ.

We state that

Fλ(v) 6= v for all λ∈ [0, 1] and v ∈ ∂ Ω, (8.87)

where

Ω = {v ∈C1[0, T ] : r < v < R and |v′| < R′ on [0, T ]}.
Indeed, if λ > 0, then relation (8.87) follows from assumption (i), while for
λ = 0 it is a corollary of the following claim.

Claim . v ∈C1[0, T ] is a fixed point of F0 if and only if there is x∈ (r, R)
such that v(t) ≡ x on [0, T ] and

g(x) + e = 0. (8.88)

Proof of Claim . For each v ∈C1[0, T ] and each t ∈ [0, T ] we have
f0(t, v)(t) = w0(v) and (N0(v))(t) = t w0(v). Let c ∈ R. If w0(v) 6= 0,
then

∫ T

0

φ−1
p (c +N0(v)(t)) dt=

∫ T

0

φq(c + t w0(v)) dt=
|c + Tw0(v)|q − |c|q

q w0(v)
,
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where q = p
p−1

. In particular,

∫ T

0

φ−1
p (c +N0(v)(t)) dt = 0 if and only if c = −T

2
w0(v).

On the other hand, if w0(v) = 0, then

∫ T

0

φ−1
p (c +N0(v)(t)) dt = T φ−1

p (c) = 0 if and only if c = 0.

Since γ(N0(v)) is the only solution of equation (8.85) with ` = N0(v), we
can summarize that

c = γ (N0(v)) = −T
2

w0(v) for v ∈C1[0, T ].

Inserting this into the definition of F0, we get

F0(v)(t) = v(0) + v′(0)− v′(T ) +

∫ t

0

φ−1
p

(
w0(v)

(
s− T

2

))
ds

= v(0) + v′(0)− v′(T ) + 1
q
φq

(
w0(v)

) (∣∣t− T
2

∣∣q − (
T
2

)q)
.

Consequently, v ∈C1[0, T ] is a fixed point of F0 if and only if

v(t) = v(0) + v′(0)− v′(T ) + 1
q
φq(w0(v))

(∣∣t−T
2

∣∣q − (
T
2

)q)
for t∈ [0, T ].

In particular, for t = 0, this relation reduces to v(0) = v(0)+ v′(0)− v′(T ),
which yields v′(0) = v′(T ). Similarly, inserting t = T gives v(T ) = v(0).
On the other hand,

v′(t) = φq

(
w0(v)

) ∣∣t−T
2

∣∣q−1
sign

(
t−T

2

)
for t 6= T

2

and

v′(T )− v′(0) = 2 φq

(
w0(v)

) (
T
2

)q−1
.

Thus, v′(0) = v′(T ) can hold if and only if w0(v) = 0, which gives v(t) ≡
v(0) on [0, T ]. Denoting x = v(0), we can see that w0(v) = 0 if and only if
g(x)+e = 0. However, by assumption (ii), any x∈R satisfying this equation
must belong to the interval (r, R). On the other hand, if g(x) + e = 0 and
v ≡ x on [0, T ], then v is obviously a fixed point of F0. This completes
the proof of the claim. ♦
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Step 3. Properties of the Leray-Schauder degree of Fλ.

By (8.87) and by the homotopy property of the degree we have

deg(I − F1, Ω) = deg(I − F0, Ω). (8.89)

Denote

X = {v ∈C1[0, T ] : v(t) ≡ v(0) on [0, T ]} and Ω0 = Ω ∩ X.

Then Ω0 = {v ∈X : r < v(0) < R} and, by Claim in Step 2, each fixed
point of F0 belongs to Ω0. Consequently, the excision property of the topo-
logical degree yields

deg(I − F0, Ω) = deg(I − F0, Ω0). (8.90)

Step 4. Construction and properties of the operator F̃µ.

For µ∈ [0, 1] define F̃µ : X→ C1[0, T ] by

F̃µ(v)(t) = v(0) + φq

(
g(v(0)) + e

) [
1−µ+µ

q

(∣∣t−T
2

∣∣q − (
T
2

)q)]
.

We have

F̃0(v) = v(0) + φq (g(v(0)) + e) and F̃1(v) = F0(v) for v ∈X.

Similarly to Fλ, the operators F̃µ, µ∈ [0, 1], are also completely continu-

ous. By Claim in Step 2, F̃1(v) 6= v for all v ∈ ∂Ω0. Let i be the natural
isometrical isomorphism R→ X, i.e.

i(x)(t) ≡ x for x∈R and i−1(v) = v(0) for v ∈X.

Assume that µ∈ [0, 1), x∈R, v = i(x) and F̃µ(v) = v. Then

φq (g(x) + e)
[
1−µ + µ

q

(∣∣t−T
2

∣∣q − (
T
2

)q)]
= 0 for all t∈ [0, T ].

If t = 0, this relation reduces to g(x) + e = 0, which is due to assumption
(ii) possible only if x∈ (r, R). To summarize,

F̃µ(v) 6= v for all v ∈ ∂ Ω0 and all µ∈ [0, 1].
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Therefore, using the homotopy property of the degree and taking into account
that dimX = 1, we conclude that

deg(I − F0, Ω0) = deg(I − F̃1, Ω0) = dB(I − F̃0, Ω0), (8.91)

where dB(I−F̃0, Ω0) stands for the Brouwer degree of I−F̃0 with respect
to Ω0.

Step 5. The Brouwer degree of I − F̃0.

Define Φ: R→ R by Φ(x) = g(x) + e. Then

(I − F̃0)(i(x)) = i(Φ(x)) for each x∈R.

In other words, Φ = i−1 ◦ (I − F̃0) ◦ i. Consequently, by Remark C.4, we
have

dB(I − F̃0, Ω0) = dB(Φ, (r, R)). (8.92)

Put

Ψ(x) = Φ(r)
R− x

R− r
+ Φ(R)

x− r

R− r
.

Then Ψ has a unique zero x0 ∈ (r, R) and

Ψ′(x0) =
Φ(R)− Φ(r)

R− r
.

Hence, by the definition of the Brouwer degree in R we have

dB(Ψ, (r, R)) = sign Ψ′(x0) = sign (Φ(R)− Φ(r)) .

By the homotopy property and thanks to our assumption (iii), we conclude
that

dB(Φ, (r, R)) = dB(Ψ, (r, R)) = sign (Φ(R)− Φ(r)) 6= 0. (8.93)

Step 6. Fixed point of F1.

To summarize, by (8.89)– (8.93) we have

deg(I − F1, Ω) 6= 0,
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which, in view of the existence property of the topological degree, shows that
F1 has a fixed point u∈Ω. By Step 1 this means that problem (8.81), (8.2)
has a solution. ¤

Lemma 8.24 enables us to prove the following result, where we meet
the symbol πp defined for p∈ (1,∞) by

πp =
2 π (p− 1)

1
p

p sin (π
p
)

.

Clearly π2 = π. Furthermore, (πp

T
)p is the first eigenvalue of the quasilinear

Dirichlet problem

(φp(u
′))′ + λφp(u) = 0, u(0) = u(T ) = 0

(see Appendix D).

Theorem 8.25. Assume that p∈ (1,∞), h∈C[0,∞), e∈L1[0, T ]. Fur-
thermore, let g ∈C(0,∞) satisfy the strong repulsive singularity condition
(8.54) and conditions

lim inf
x→0+

[g(x) + e ] > 0 > lim sup
x→∞

[g(x) + e ] (8.94)

and{
there exist nonnegative constants a, γ such that a<

(πp

T

)p

and g(x) x ≥ −(a xp + γ) for all x > 0.
(8.95)

Then problem (8.81), (8.2) has a positive solution.

Proof. We will verify that the assumptions of Lemma 8.24 are satisfied.

Step 1. One-point estimate.

First, we will show that




there are R0 > 0 and R1 > R0 such that

v(tv)∈ (R0, R1) for some tv ∈ [0, T ]

holds for each λ∈ (0, 1] and each positive solution v of (8.82).

(8.96)
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So, assume that λ∈ (0, 1] and that v is a positive solution to the auxiliary
problem (8.82). By the first inequality in assumption (8.94), there is R0 > 0
such that

g(x) + e > 0 whenever x∈ (0, R0). (8.97)

If g(v(t)) + e > 0 were valid on [0, T ], we would have

∫ T

0

(g(v(t)) + e(t)) dt =

∫ T

0

(g(v(t)) + e) dt > 0,

which contradicts (8.83). This shows that max{v(t) : t∈ [0, T ]} > R0.

Similarly, by the second inequality in assumption (8.94), there is R1 > R0

such that

g(x) + e < 0 whenever x > R1 (8.98)

and min{v(t) : t∈ [0, T ]} < R1. This proves (8.96).

Step 2. Upper estimate of solutions to the auxiliary problem (8.82).

We claim that



there is R > 0 such that

v < R on [0, T ]

holds for each λ∈ (0, 1] and each positive solution v of (8.82).

(8.99)

Indeed, assume that λ∈ (0, 1] and v is a positive solution to the auxiliary
problem (8.82). Multiplying the differential equation in (8.82) by v(t) and
integrating over [0, T ] we get

−‖v′‖p
p =

∫ T

0

g(v(s)) v(s) ds +

∫ T

0

e(s) v(s) ds,

and using assumption (8.95) we arrive at the inequality

‖v′‖p
p ≤ a‖v‖p

p + ‖e‖1‖v‖∞ + γ T. (8.100)

Further, by (8.96) we have

0 < v(t) = v(tv) +

∫ t

tv

v′(s) ds < R1 + T
1
q ‖v′‖p for t∈ [0, T ], (8.101)
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where q = p
p−1

. Now put

y(t) =





v(t + tv)− v(tv) if 0 ≤ t ≤ T − tv,

v(t + tv − T ))− v(tv) if T − tv ≤ t ≤ T.

Since y ∈C1[0, T ], y(0) = y(T ) = 0 and ‖y+v(tv)‖p
p = ‖v‖p

p, we can apply
the sharp Poincaré inequality (see Lemma D.2) to show that

‖y‖p ≤ T
πp
‖y′‖p = T

πp
‖v′‖p.

Now, we can see that for arbitrary positive numbers ε and c0 we can
always find a positive constant c2 such that (x+c0)

p ≤ (1+ε) xp +c2 holds
for each x ≥ 0. Indeed, the inequality (x+c0)

p < (1+ε) xp holds whenever
x > x0 := c0 ((1 + ε)1/p − 1)−1 and the expression |(x + c0)

p − (1 + ε) xp| is
certainly bounded on the interval [0, x0]. As a result, we can state that for
an arbitrary ε > 0 there is c1 > 0 such that

‖v‖p
p ≤

(
‖y‖p + v(tv) T

1
p

)p

≤ (1 + ε)
(

T
πp

)p

‖v′‖p
p + c1.

Inserting this into inequality (8.100), choosing ε∈ (
0, 1

a
(πp

T
)p − 1

)
and hav-

ing in mind estimate (8.101), we deduce that we can choose c2 > 0 such
that

α ‖v′‖p
p ≤ T

1
q ‖e‖1 ‖v′‖p + c2

holds with

α =
(
1− a(1 + ε)

(
T
πp

)p )
> 0.

However, this is possible only if there is Rp ∈ (0,∞) independent of λ and
v and such that ‖v′‖p < Rp. Therefore

0 < v(t) < R1 + T
1
q Rp + 1 on [0, T ]

for each λ∈ (0, 1] and each positive solution v of (8.82), i.e., statement

(8.99) is true with R = R1 + T
1
q Rp + 1.

Step 3. Estimate of the derivatives of solutions to problem (8.82).
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Now we show that




there is R′ > 0 such that

|v′| < R′ on [0, T ]

for each λ∈ (0, 1] and each positive solution v of (8.82).

(8.102)

Let λ∈ (0, 1] and let v be a positive solution to the auxiliary problem
(8.82). In particular, we have v(0) = v(T ) and, therefore, there is t′ ∈ [0, T ]
such that v′(t′) = 0. Integrating the differential equation in (8.82) over the
interval [t′, t] and taking into account statement (8.99), we obtain




|v′(t)|p−1≤λ

(∫ R

0

|h(x)| dx + ‖e‖1 +

∣∣∣∣
∫ t

t′
|g(v(s))| ds

∣∣∣∣
)

for t∈ [0, T ].

(8.103)

Thanks to assumption (8.94), we can choose b > 0 in such a way that
inf{g(x) : x∈ (0, R]} ≥ −b and, by (8.99), also g(v(t)) ≥ −b on [0, T ].
Therefore, |g(v(t))| ≤ g(v(t)) + 2 b holds for all t∈ [0, T ]. From this in-
equality, using (8.83), we deduce that

∣∣∣∣
∫ t

t′
|g(v(s))| ds

∣∣∣∣ ≤ 2 b T + ‖e‖1,

which inserted into (8.103) yields (8.102) with

R′ =
( ∫ R

0

|h(x)| dx + 2 (b T + ‖e‖1)
) 1

p−1
> 0.

Step 4. Lower estimate of solutions to problem (8.82).

Choose λ∈ (0, 1] and let v be a positive solution of problem (8.82). Put

H = max{|h(x)| : x∈ [0, R]} and K = R′2 T H +

∫ R

R0

|g(x)| dx + R′‖e‖1.

By (8.54) there is r∈ (0, R0) such that

∫ R0

x

g(x) dx > K for all x∈ (0, r]. (8.104)
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Let t1, t2 ∈ [0, T ] be such that

v(t1) = min{v(t) : t∈ [0, T ]} and v(t2) = max{v(t) : t∈ [0, T ]}.
In view of (8.2) we have v′(t1) = v′(t2) = 0. Denote w(t) = φp(v

′(t)) for
t∈ [0, T ]. Then v′(t) = φ−1

p (w(t)) on [0, T ] and w(t1) = w(t2) = φp(0) = 0.
Let, as before, q = p

p−1
. Then φq = φ−1

p and we have also

∫ t2

t1

(φp(v
′(t)))′ v′(t) dt =

∫ t2

t1

w′(t) φq(w(t)) dt =

∫ w(t2)

w(t1)

φq(x) dx = 0.

Thus, multiplying the differential equation in (8.82) by v′(t) and integrating
from t1 to t2 yields

0 = −
∫ t2

t1

h(v(t)) v′ 2(t) dt+

∫ R0

v(t1)

g(x) dx+

∫ v(t2)

R0

g(x) dx+

∫ t2

t1

e(t) v′(t) dt.

It follows that
∫ R0

v(t1)

g(x) dx ≤ R′ 2 T H +

∫ R

R0

|g(x)| dx + R′‖e‖1,

which is, owing to (8.104), possible only when v(t1) > r.

Step 5. Final conclusion.

To summarize, there are r, R and R′ such that assumption (i) from
Lemma 8.24 is satisfied. Furthermore, since by Step 1 we have

g(x) + e > 0 if 0 < x < R0 and g(x) + e < 0 if x > R1

and 0 < r < R0 < R1 < R, it is easy to see that also assumptions (ii) and
(iii) of Lemma 8.24 are satisfied. Hence, applying Lemma 8.24, we complete
the proof of the theorem. ¤

The following two results are consequences of Theorem 8.25 and its proof.

Corollary 8.26. Let all assumptions of Theorem 8.25 be satisfied but with
(8.95) replaced by

lim inf
x→∞

g(x)

xp−1
> − (πp

T

)p
.

Then problem (8.81), (8.2) has a positive solution.
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Proof. Let

lim inf
x→∞

g(x)

xp−1
> −a > − (πp

T

)p
.

Then there exists A > 0 such that

g(x) x ≥ −a xp for all x ≥ A.

Furthermore, by (8.94) we have g∗ = inf{g(x) : x∈ (0, A)} > −∞. There-
fore, g(x) x ≥ −|g∗|A > −∞ for all x∈ (0, A). So, we can summarize
that condition (8.95) is satisfied. The proof is completed by means of Theo-
rem 8.25. ¤

Corollary 8.27. Let all assumptions of Theorem 8.25 be satisfied but with
(8.95) replaced by

e∈L2[0, T ] and h(x) ≥ h∗ > 0 (or h(x) ≤ −h∗ < 0) for all x∈ [0,∞).

Then problem (8.81), (8.2) has a positive solution.

Proof. Assume that the dissipativity condition

h(x) ≥ h∗ > 0 for all x∈ [0,∞)

is satisfied. Then the proof is analogous to that of Theorem 8.25, just the
estimate (8.99) is now obtained more easily. Indeed: let λ∈ (0, 1] and let v
be a positive solution of (8.82). Let R0, R1 and tv be found as in (8.96),
i.e., R0 is such that (8.97) is true, R1 > R0, g(x)+ e < 0 for x ≥ R1 and
v(tv)∈ (R0, R1). Put w(t) = φ(v′(t)) for t∈ [0, T ]. Then v′(t) = φ−1(w(t))
on [0, T ], w(0) = φ(v′(0)) = φ(v′(T )) = w(T ) and

∫ T

0

(φ(v′(s)))′ v′(s) ds =

∫ T

0

w′(s) φ−1(w(s)) ds =

∫ w(T )

w(0)

φ−1(y) dy = 0.

Thus, multiplying the differential equation in (8.82) by v′ and integrating
over the interval [0, T ], we obtain h∗‖v′‖2 ≤ ‖e‖2 and, consequently,

v(t) = v(tv) +

∫ t

tv

v′(s) ds < R1 +
√

T
‖e‖2

h∗
+ 1 for all t∈ [0, T ].

Thus, (8.99) is true with R = R1+
√

T ‖e‖2
h∗

+1. Now, we can repeat Steps 3–5
of the proof of Theorem 8.25. ¤
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Examples. (i) Clearly, if g ∈C(0,∞) fulfils condition (8.94) and, in ad-
dition, also lim infx→∞ g(x) > −∞, it satisfies also condition (8.95) and,
hence, in such a case Theorem 8.25 ensures the existence of a positive solu-
tion to problem (8.81), (8.2). In particular, Theorem 8.25 implies that prob-
lem (8.81), (8.2) with g(x) = β x−α on (0,∞), β > 0, α ≥ 1, h∈C[0,∞)
and e∈L1[0, T ] has a positive solution if e < 0. Moreover, integrating both
sides of the differential equation in (8.81) over [0, T ] and taking into account
that g is positive on (0,∞), we can see that the condition e < 0 is also
necessary for the existence of a positive solution to (8.81), (8.2).

(ii) Let p∈ (1,∞), h∈C[0,∞), 0 < a < (πp

T
)p, β > 0 and α ≥ 1. Then,

by Corollary 8.26, the problem

(|u′|p−2 u′)′ + h(u) u′ = −a up−1 +
β

uα
+ sin u + e(t),

u(0) = u(T ), u′(0) = u′(T )

has a positive solution for each e∈L1[0, T ].

Similarly, if in addition p > 2, m is the integer part of p− 2 and

g(x) = −a xp−1 +
m∑

i=0

ci x
i +

β

xα
for x > 0,

then, by Corollary 8.26, problem (8.81), (8.2) has a positive solution for
arbitrary coefficients ci ∈R, i = 0, 1, . . . , m, and each e∈L1[0, T ].

(iii) Let p∈ (1,∞), c 6= 0, a > 0, β > 0, α ≥ 1. Then, by Corollary 8.27,
the problem

(|u′|p−2 u′)′ + c u′ =
β

uα
− a exp(u) + e(t), u(0) = u(T ), u′(0) = u′(T )

has a solution for each e∈L2[0, T ].

8.4 Weak repulsive singular forces

Here, unlike the previous section, we do not assume the strong singularity
condition. We will restrict ourselves to the case that f does not depend
on u′, i.e., we consider the equation

(φp(u
′))′ = f(t, u), (8.105)
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where f ∈Car([0, T ]× (0,∞)) can have a weak repulsive singularity at the
origin, i.e.

lim sup
x→0+

f(t, x) = ∞ for a.e. t ∈ [0, T ]

can hold.

The next existence principle relies on the comparison of the given problem
with the related quasilinear problem fulfilling the antimaximum principle.

Theorem 8.28. Let f ∈Car([0, T ] × (0,∞)) and p∈ [2,∞). Further, let
r∈ (0,∞), A∈ [r,∞) and µ∈L1[0, T ], β ∈L1[0, T ] be such that µ(t)≥ 0
for a.e. t ∈ [0, T ], µ > 0, β ≤ 0,

f(t, x) ≤ β(t) for a.e. t∈ [0, T ] and all x∈ [A,B] (8.106)

and

f(t, x) + µ(t) φp(x− r) ≥ 0 for a.e. t∈ [0, T ] and all x∈ [r, B], (8.107)

where



B − A ≥ T
2

φ−1
p (‖m‖1),

m(t)= max
{

sup{f(t, x) : x∈[r, A]}, β(t), 0
}

for a.e. t∈ [0, T ]
(8.108)

and




v ≥ 0 on [0, T ] holds for each v ∈C1[0, T ] such that

φp(v
′)∈AC[0, T ],

(φp(v
′(t)))′ + µ(t) φp(v(t)) ≥ 0 for a.e. t∈ [0, T ],

v(0) = v(T ), v′(0) = v′(T ).

(8.109)

Then problem (8.105), (8.2) has a solution u such that

r ≤ u ≤ B on [0, T ] and ‖u′‖∞ < φ−1
p (‖m‖1). (8.110)

Proof. Part I. First, assume that β < 0.

Step 1. Upper and lower functions of an auxiliary regular problem.
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Put

f̃(t, x) =





f(t, r)− µ(t) φp(x− r) if x ≤ r,

f(t, x) if x∈ [r, B],

f(t, B) if x ≥ B

(8.111)

and consider an auxiliary problem

(φp(u
′))′ = f̃(t, u), u(0) = u(T ), u′(0) = u′(T ). (8.112)

We have f̃ ∈Car([0, T ]×R). Furthermore, by (8.106), (8.107) and (8.111),
the inequalities

f̃(t, x) ≤ β(t) if x∈ [A,∞) (8.113)

and

f̃(t, x) + µ(t) φp(x− r) ≥ 0 for all x∈R (8.114)

are valid for a.e. t∈ [0, T ]. In particular, in view of (8.111) we have

f̃(t, x) ≥ h(t) := −µ(t) φp(B−r) for a.e. t∈ [0, T ] and all x∈R, (8.115)

with h∈L1[0, T ].

By (8.114), σ2 ≡ r is an upper function of (8.112). Further, if b = β−β,
then b∈L1[0, T ] and b = 0 and, similarly to the proofs of Lemma 8.6 or
of Theorem 7.4, we can see that there is a uniquely defined σ0 ∈C1[0, T ]
such that φp(σ

′
0)∈AC[0, T ],

(φp(σ
′
0(t)))

′ = b(t) for a.e. t∈ [0, T ] and σ0(0) = σ0(T ) = 0.

Now, let us choose c∗ > 0 such that c∗ + σ0 ≥ A on [0, T ] and define
σ1 = c∗+σ0. We have σ1(0) = σ1(T ) = c∗, φp(σ

′
0(T ))−φp(σ

′
0(0)) = T b = 0

and, by (8.113),

(φp(σ
′
1(t)))

′
= b(t) = β(t)− β > β(t) ≥ f̃(t, σ1(t)) for a.e. t∈ [0, T ].

Consequently, σ1 is a lower function of (8.112). Therefore, by (8.115) and
by Theorem 8.10, the regular problem (8.112) has a solution u such that
u(tu) ≥ r for some tu ∈ [0, T ].
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Step 2. A priori estimates of the solution u of the regular problem.

We shall show that

u(t) ≥ r for t ∈ [0, T ]. (8.116)

To this aim, set v = u− r. By virtue of (8.114) we have

(φp(v
′(t)))′ + µ(t) φp(v(t)) = f̃(t, u(t)) + µ(t) φp(u(t)− r) ≥ 0

for a.e. t∈ [0, T ]. By (8.109) it follows that v(t) ≥ 0 on [0, T ], i.e. (8.116)
is true.

Now, we show that

u(t) ≤ B for t ∈ [0, T ]. (8.117)

Indeed, by the definition of m and by (8.111) and (8.113) we have

f̃(t, x) ≤ m(t) for a.e. t∈ [0, T ] and all x ≥ r.

Hence, we can use Lemma 8.9 to get the estimate

‖u′‖∞ ≤ φ−1
p (‖m‖1). (8.118)

If u ≥ A were valid on [0, T ], then taking into account the periodicity of
u′ and (8.113) we would get

0 =

∫ T

0

f̃(t, u(t)) dt ≤
∫ T

0

β(t) dt = T β < 0,

a contradiction. Hence,

min{u(s) : s∈ [0, T ]} < A.

Now, assume that

u∗ := max{u(s) : s∈ [0, T ]} > A

and extend u to be T – periodic on R. There are s1, s2 and s∗ ∈R such
that

s1 < s∗ < s2, s2 − s1 < T, u(s1) = u(s2) = A and u(s∗) = u∗ > A.
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In particular, due to (8.118),

2 (u(s∗)− A) =

∫ s∗

s1

u′(s) ds +

∫ s∗

s2

u′(s) ds ≤ T φ−1
p (‖m‖1),

wherefrom the estimate

u(t)− A ≤ T
2

φ−1
p (‖m‖1) ≤ B − A on [0, T ]

follows. Thus, (8.117) is true.

Estimates (8.116) and (8.117) mean that r ≤ u ≤ B holds on [0, T ].
In view of (8.111), we conclude that u is a solution to (8.1), (8.2).

Part II. Now, let β = 0. Put n0 = max{1
r
, 1

B−A
, 3}. For an arbitrary

n∈N, define

f̃n(t, x) =





f(t, r) if x ≤ r,

f(t, x) if x∈ [r, A],

f(t, x)− µ(t) φp

(
1
n

x−A
x−A+1

)
if x∈ (A,B],

f(t, B)− µ(t) φp

(
1
n

B−A
B−A+1

)
if x ≥ B.

(8.119)

If x∈ [A + 1
n
, B], then using (8.106) we deduce that

f̃n(t, x)= f(t, x)−µ(t)φp

(
1
n

x−A
x−A+1

) ≤ β(t)−µ(t)φp

(
1
n

x−A
x−A+1

)

≤ β(t)− µ(t) φp

(
1

n (n+1)

)
≤ β(t)− µ(t) φp

(
1

2n2

)

is true for a.e. t∈ [0, T ] and all n∈N such that n ≥ n0. Similarly, if
x > B, then

f̃n(t, x) = f(t, B)− µ(t) φp

(
1
n

B−A
B−A+1

) ≤ β(t)− µ(t) φp

(
1

2n2

)
.

Thus,





f̃n(t, x) ≤ βn(t) := β(t)− µ(t) φp

(
1

2n2

)

for x ≥ A + 1
n

, for a.e. t∈ [0, T ] and all n ≥ n0.
(8.120)
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Clearly,

βn < 0 and βn(t) ≤ β(t) for a.e. t∈ [0, T ]. (8.121)

Furthermore, by (8.107) and (8.119) we have

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)
) ≥ f(t, r) ≥ 0 if x∈ [r − 1

n
, r],

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)
) ≥ f(t, x) + µ(t) φp (x− r) ≥ 0

if x∈ [r, A]

and, taking into account that ξ p−1 +η p−1≤ (ξ +η)p−1 holds for all ξ, η ≥ 0
and each p ≥ 2,

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)
)

= f(t, x)− µ(t) φp

(
1
n

x−A
x−A+1

)
+ µ(t) φp

(
x− r + 1

n

)

≥ f(t, x) + µ(t) φp (x− r) ≥ 0 if x∈ [A,B]

and

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)
)

= f(t, B)− µ(t) φp

(
1
n

B−A
B−A+1

)
+ µ(t) φp

(
x− r + 1

n

)

≥ f(t, B) + µ(t) φp (B − r) ≥ 0 if x ≥ B.

To summarize,

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)
) ≥ 0 for all x ≥ r − 1

n
. (8.122)

For a.e. t∈ [0, T ] and all n∈N, put

m̃n(t) := max
{

sup{f̃n(t, x) : x∈ [r − 1
n
, A + 1

n
]}, βn(t), 0

}
.

In view of (8.119) and (8.121) we have

0 ≤ m̃n(t) ≤ m(t) for a.e. t∈ [0, T ] and n ≥ n0.

This together with (8.120)– (8.122) means that, for each n∈N large enough,
Part I of this proof ensures the existence of a solution un to the auxiliary
problem

(φp(u
′
n))′ = f̃n(t, un), un(0) = un(T ), u′n(0) = u′n(T )
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which satisfies the estimates

r − 1
n
≤ un(t) ≤ B + 1

n
on [0, T ] and ‖u′n‖∞ ≤ φ−1

p (‖m‖1).

Now, notice that

|f̃n(t, x)− h(t, x)| ≤µ(t) φp

(
1
n

)

for a.e. t∈ [0, T ], all x∈R and all n∈N,

where

h(t, x) =





f(t, r) if x ≤ r,

f(t, x) if x∈ [r,B],

f(t, B) if x ≥ B.

In particular, h∈Car([0, T ]× R),

lim
n→∞

f̃n(t, x) = h(t, x) for a.e. t ∈ [0, T ] and all x ∈ R

and the sequence {f̃n(t, un(t))} has a common Lebesgue integrable majorant
on [0, T ]. Thus, using the Arzelà-Ascoli theorem and the Lebesgue domi-

nated convergence theorem for the sequences {un} and {f̃n(t, un(t))}, we
can show that the sequence {un} contains a subsequence which converges
in C1[0, T ] to a solution u of the problem

(φp(u
′))′ = h(t, u), u(0) = u(T ), u′(0) = u′(T ).

Since u satisfies estimate (8.110), u solves also problem (8.1), (8.2). ¤

The next supplementary assertion concerning the case p∈ (1, 2) follows
immediately from the first part of the previous proof.

Theorem 8.29. Let all assumptions of Theorem 8.28 be satisfied, with the
exceptions that 1 <p < 2 is allowed and β < 0 is required in (8.106). Then
problem (8.105), (8.2) has a solution u such that (8.110) is true.

It is well-known that the function

G(t, s) = T
2 π

sin
(

π
T
|t− s|) , t, s ∈ [0, T ],
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is the Green function for the linear periodic problem

v′′ +
(

π
T

)2
v = 0, v(0) = v(T ), v′(0) = v′(T )

and G(t, s) is nonnegative on [0, T ] × [0, T ]. Therefore, each T -periodic
function v ∈AC1[0, T ] fulfilling the inequality

v′′(t) +
(

π
T

)2
v(t) ≥ 0 for a.e. t ∈ [0, T ]

must be nonnegative on [0, T ]. More generally, for linear periodic problems
the following antimaximum principle is valid:

Let µ∈L1[0, T ] be such that 0 ≤ µ(t) ≤ (
π
T

)2
for a.e. t ∈ [0, T ] and

µ > 0 and let v ∈AC1[0, T ] satisfy the periodic conditions (8.2) and

v′′(t) + µ(t) v(t) ≥ 0 for a.e. t ∈ [0, T ].

Then v is nonnegative on [0, T ].

Next, we will show that for quasilinear periodic problems an analogous
assertion holds although, in general, no tools like the Green function are
available.

Theorem 8.30. Let 1 <p <∞ and µ∈L1[0, T ] be such that

µ > 0 and 0 ≤ µ(t) ≤ (πp

T

)p
for a.e. t ∈ [0, T ] (8.123)

and let v ∈C1[0, T ] be such that φp(v
′)∈AC[0, T ],

(φp(v
′(t)))′ + µ(t) φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ] (8.124)

and

v(0) = v(T ), v′(0) = v′(T ). (8.125)

Then v ≥ 0 on [0, T ].

Proof. Let v ∈C1[0, T ] be such that φp(v
′)∈AC[0, T ] and (8.123)– (8.125)

hold. Without any loss of generality we may assume that v is not trivial.

Step 1. First, we show that

v∗ := max{v(t) : t ∈ [0, T ]} > 0. (8.126)
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Assuming, on the contrary, that v ≤ 0 on [0, T ], we get by (8.124)

(φp(v
′(t)))′ ≥ −µ(t) φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ].

Therefore, v′ is nondecreasing on [0, T ] and, taking into account (8.125),
we deduce that v′ = 0 on [0, T ]. Consequently, v(t) ≡ v(0) ≤ 0 on [0, T ].
Hence, (8.124) reduces to

−µ(t) (−v(0))p−1 ≥ 0 for a.e. t ∈ [0, T ].

However, as µ ≥ 0 a.e. on [0, T ] and µ > 0, this is possible if and only if
v(0) = 0, i.e. v ≡ 0 on [0, T ], which contradicts our assumption that v
does not vanish identically on [0, T ]. Thus, (8.126) is true.

Step 2. Assume that min{v(t): t ∈ [0, T ]} < 0. Let us extend v and µ
to T – periodic functions on R. In view of Step 1, there are a, b ∈ R such
that v > 0 on (a, b), v(a) = v(b) = 0 and

0 < b− a < T. (8.127)

In virtue of (8.123) and (8.124), we have





(φp(v
′(t)))′ +

(πp

T

)p
φp(v(t))≥ (φp(v

′(t)))′ + µ(t) φp(v(t))≥ 0

for a.e. t∈ [a, b].
(8.128)

Furthermore, put

a0 = a− 1
2
(T − b + a), b0 = a0 + T > b

and

σ2(t) = d T
πp

sinp

((πp

T

)
(t− a0)

)
for t ∈ R

with d > 0 such that σ2(t) > v(t) ≥ 0 on [a, b]. We have

(φp(σ
′
2(t)))

′
+

(πp

T

)p
φp(σ2(t)) = 0 for a.e. t∈ [a, b]. (8.129)

Thus, σ2 is an upper function for the problem

(φp(u
′))′ + λφp(u) = 0, u(a) = u(b) = 0. (8.130)



8.4 . Weak repulsive singular forces 215

Moreover, in view of (8.128), σ1 = v is a lower function for (D.3). It follows
easily from Theorem 7.14 where we put g(t, x, y) = − (πp

T

)p
φp(x) for t,

x, y ∈ R, that there exists a nontrivial solution u to (8.130). This, due to
(8.127), contradicts Lemma D.2. ¤

Theorems 8.28– 8.30 yield the following new existence criterion.

Theorem 8.31. Let f ∈Car([0, T ]×(0,∞)) and 1 <p <∞. Furthermore,
let r∈ (0,∞), A∈ [r,∞) and β ∈L1[0, T ] be such that estimates (8.106)
and (8.108) hold, where β < 0 if 1 <p < 2 and β ≤ 0 if 2≤ p<∞.

Finally, let µ∈L1[0, T ] be such that µ > 0

0 ≤ µ(t) ≤ (πp

T

)p
for a.e. t∈ [0, T ]

and estimate (8.107) is true.

Then problem (8.105), (8.2) has a solution u such that (8.110) is true.

In particular, for the Duffing equation (φp(u
′))′ = g(u) + e(t) we have

Corollary 8.32. Let 1 <p <∞. Suppose that f(t, x) = g(x) + e(t) for
x∈ (0,∞) and a.e. t ∈ [0, T ], where g ∈C(0,∞), e∈L1[0, T ],

e + lim sup
x→∞

g(x) < 0 (8.131)

and



there exists r > 0 such that

e(t) + g(x) +
(πp

T

)p
(x−r)p−1≥ 0

for a.e. t∈ [0, T ] and all x≥ r.

(8.132)

Then problem (8.1), (8.2) has a solution u such that u(t) ≥ r on [0, T ].

Proof. Denote f(t, x) = g(x)+ e(t). Due to (8.131) we can find A≥ r such
that

g(x) + e < 1
2

(
e + lim sup

x→∞
g(x)

)
< 0 for x∈ [A,∞).
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Consequently,

f(t, x) = g(x) + e + e(t)− e < 1
2

(
e + lim sup

x→∞
g(x)

)
+ e(t)− e

for a.e. t ∈ [0, T ] and all x∈ [A,∞). Therefore (8.106) holds with

β(t) := e(t) + 1
2

(
lim sup

x→∞
g(x)− e

)
,

β < 0 and B > A arbitrarily large. Furthermore, by virtue of (8.132), we
have

f(t, x) +
(πp

T

)p
(x− r)p−1 ≥ 0 for x∈ [r,∞).

The assertion now follows by Theorem 8.31. ¤

Remark 8.33. Notice that the assertion of Corollary 8.32 remains valid also
when assumption (8.131) is replaced by a slightly weaker assumption that
there is an A > r such that g(x) + e ≤ 0 for x ≥ A.

Example. Consider the problem

(φp(u
′))′ = g(u) + e(t), u(0) = u(T ), u′(0) = u′(T ), (8.133)

with 1 <p <∞, e ∈ L1[0, T ] essentially bounded below and

g(x) := −k xp−1 +
a

xα
for x > 0; a > 0, α > 0, k ≥ 0.

We will apply Corollary 8.32. To this aim we need to verify that conditions
(8.131) and (8.132) are satisfied.

It is easy to see that if k > 0, then assumption (8.131) of Corollary 8.32
is satisfied for all e∈L1[0, T ], while in the case k = 0 this condition holds
whenever e< 0.

Furthermore, denote e∗ := inf ess{e(t) : t∈ [0, T ]}, µ =
(πp

T

)p
,





h(x, r) :=
a

xα
+ µ (x− r)p−1 − k xp−1

for r > 0 and x≥ r or r = 0 and x> r

and
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κ(r) := inf{h(x, r) : x ∈ (r,∞)} for r≥ 0.

Then condition (8.132) is satisfied if and only if there is r > 0 such that
e∗ +κ(r)≥ 0. We can show that this occurs if e∗ +κ(0) > 0. Notice that





κ(0) = a

(
α + p− 1

p− 1

)(
(p− 1) (µ− k)

α a

) α
α + p− 1

if k ∈ [0, µ) and 1 <p≤∞,

κ(0) = 0 if k = µ and 1 <p≤ 2.

Thus, making use of Corollary 8.32, we can summarize that problem (8.133)
has a positive solution if

k = 0, 1 <p <∞, e < 0 and e∗ > −a

(
α+p−1

p−1

)(
(p−1) µ

α a

) α
α+p−1

or

0 <k < µ, 1 <p <∞ and e∗ > −a

(
α+p−1

p−1

)(
(p−1) (µ−k)

α a

) α
α+p−1

or

k = µ, 1 <p≤ 2 and e∗ > 0.

Notice that limx→∞ h(x, r) =−∞ if k > µ, p > 1 and r≥ 0 and also if
k = µ, p > 2 and r > 0. We have κ(r) =−∞ in these cases. In particu-
lar, condition (8.132) cannot be satisfied when

k > µ, p> 1 or k = µ, p > 2.

8.5 Periodic problem with time singularities

In this section we will study the periodic problem (8.1), (8.2) under the as-
sumption

f ∈ Car((0, T )× R2) has time singularities at t = 0, t = T, (8.134)

i.e., there exist x, y ∈ R such that

∫ ε

0

|f(t, x, y)|dt = ∞ and

∫ T

T−ε

|f(t, x, y)|dt = ∞
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for each sufficiently small ε > 0.

We will provide conditions for the existence of solutions to problem (8.1),
(8.2) which can change their sign on [0, T ]. Solutions of problem (8.1), (8.2)
are understood in the sense of Definition 8.1 where A = R2.

Theorem 8.34. Let (8.134) hold. Assume that there exist a1, a2 ∈ [0, T ],
a1 < a2, α, γ, r1, r2 ∈ R, a nonnegative function h0 ∈ L1[0, T ] and a pos-
itive function ω ∈ C[0,∞) fulfilling condition (7.17) such that




r1 + t γ ≤ α ≤ r2 + t γ for t ∈ [0, T ],

f(t, r1 + t γ, γ) ≤ 0, f(t, r2 + tγ, γ) ≥ 0 for a.e. t ∈ [0, T ],
(8.135)





f(t, x, y) sign(y − γ) ≥ −ω(|φ(y)− φ(γ)|) (h0(t) + |y − γ|)
for a.e. t ∈ [0, a2] and all x ∈ [r1 + t γ, r2 + t γ], y ∈ R,

(8.136)





f(t, x, y) sign(y − γ) ≤ ω(|φ(y)− φ(γ)|) (h0(t) + |y − γ|)
for a.e. t∈ [a1, T ] and all x∈ [r1 + t γ, r2 + t γ], y ∈ R.

(8.137)

Further assume that r is the constant given by Lemma 7.16 for y1 = y2 = γ,
r0 = max{|r1|, |r2|}+T |γ|, κ=1 and that there exist η ∈ (0, T

2
), ψ0 ∈L1[0, T ]

and a nonnegative function h∈Lloc(0, T ) satisfying (A.20), (A.24),
{

f(t, x, y) sign(y − γ) ≥ h(t) |φ(y)− φ(γ)|+ ψ0(t)

for a.e. t∈ (0, η) and all x∈ [r1+t γ, r2+t γ], y ∈ [−r, r],
(8.138)

and{
f(t, x, y) sign(y − γ) ≤ −h(t) |φ(y)− φ(γ)|+ ψ0(t)

for a.e. t∈ [T−η, T ] and all x∈ [r1+t b, r2+t b], y ∈ [−r, r].
(8.139)

Then problem (8.1), (8.2) has a solution u satisfying

u(0) = u(T ) = α, u′(0) = u′(T ) = γ. (8.140)

Proof. Step 1. Approximate regular problems.

Choose an arbitrary k ∈ N, k > 2
T

, and for x, y ∈ R define the auxiliary
function

fk(t, x, y) =




−f(t, x, y) for a.e. t ∈ [0, T ] \∆k,

0 for a.e. t ∈ ∆k,
(8.141)
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where ∆k = [0, 1
k
) ∪ (T − 1

k
, T ]. We see that fk ∈ Car([0, T ] × R2) fulfils

the inequalities

fk(t, x, y) sign(y − γ) ≤ ω(|φ(y)− φ(γ)|)(h0(t) + |y − γ|)

for a.e. t ∈ [0, a2] and all x ∈ [r1 + tγ, r2 + tγ], y ∈ R, and

fk(t, x, y) sign(y − γ) ≥ −ω(|φ(y)− φ(γ)|)(h0(t) + |y − γ|)

for a.e. t∈[a1, T ] and all x∈[r1+t γ, r2+t γ], y∈R. Let us put σ1(t)= r1 + t b,
σ2(t)=r2+t b for t∈ [0, T ]. Then fk satisfies condition (7.24) with g=fk,
y1 = y2 = γ, κ=1. Moreover, by assumption (8.135) and Definition 7.13, the
functions σ1 and σ2 are respectively lower and upper functions of the reg-
ular Dirichlet problem

(φ(u′))′ + fk(t, u, u′) = 0, u(0) = u(T ) = α. (8.142)

Hence, by Theorem 7.18, problem (8.142) has a solution uk satisfying

r1 + tγ ≤ uk(t) ≤ r2 + tγ for t ∈ [0, T ], ‖u′k‖∞ ≤ r. (8.143)

Step 2. Convergence of the sequence of approximate solutions {uk}.
Condition (8.143) implies that the sequence {uk} is bounded and equi-

continuous on [0, T ]. By the Arzelà-Ascoli theorem this yields a function
u∈C[0, T ] and a subsequence uniformly converging to u on [0, T ]. There-
fore the limit u satisfies

u(0) = u(T ) = α. (8.144)

Choose an arbitrary interval [a, b] ⊂ (0, T ). Since the sequence {u′k} is
also bounded, assumption (8.134) and formula (8.141) provide a function
m ∈ L1[0, T ] such that for each k > 2

T

|fk(t, uk(t), u
′
k(t))| ≤ m(t) for a.e. t ∈ [a, b]. (8.145)

Hence the equation in (8.142) yields

|φ(u′k(t2))− φ(u′k(t1))| ≤
∣∣∣∣
∫ t2

t1

m(s) ds

∣∣∣∣
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for k > 2
T

t1, t2 ∈ [a, b], which implies that the sequence {φ(u′k)} is
equicontinuous on [a, b]. By virtue of the uniform continuity of φ−1 on
compact intervals, the sequence {u′k} is also equicontinuous on [a, b]. The
Arzelà-Ascoli theorem guarantees that for each compact subset K ⊂ (0, T )
a subsequence of {u′k} uniformly converging to u′ on K can be chosen.
Therefore, using the diagonalization theorem, we can choose a subsequence
{uk`

} satisfying





lim`→∞ uk`
(t) = u(t) uniformly on [0, T ],

lim`→∞ u′k`
(t) = u′(t) locally uniformly on (0, T ).

(8.146)

By (8.143) the limit u fulfils

r1 + tγ ≤ u(t) ≤ r2 + tγ for t ∈ [0, T ], ‖u′‖∞ ≤ r.

Step 3. Convergence of the sequence of approximate nonlinearities {fk}.
Let V1 be the set of all t ∈ [0, T ] such that f(t, ·, ·) : R2 → R is not

continuous and let V2 be the set of all t ∈ [0, T ] such that the equality
in (8.141) is not satisfied. Then meas (V1 ∪ V2) = 0. Choose an arbitrary
ξ ∈ (0, T ) \ (V1 ∪ V2). Then there exists `0 ∈ N such that for ` ≥ `0 we
have

fk`
(ξ, uk`

(ξ), u′k`
(ξ)) = −f(ξ, uk`

(ξ), u′k`
(ξ))

and, by (8.146),

lim
`→∞

fk`
(ξ, uk`

(ξ), u′k`
(ξ)) = −f(ξ, u(ξ), u′(ξ)).

Hence,

lim
`→∞

fk`
(t, uk`

(t), u′k`
(t)) = −f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. (8.147)

Step 4. The function u is a w-solution of problem (8.1), (8.144).

Choose an arbitrary t∈ (0, T ). Then there exists an interval [a, b]⊂(0, T )
such that t, T

2
∈ [a, b]. Integrate the equality

(φ(u′k`
(t)))′ + fk`

(t, uk`
(t), u′k`

(t)) = 0 for a.e. t ∈ [0, T ].
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We get

φ(u′k`
(t))− φ(u′k`

(T
2
)) +

∫ t

T
2

fk`
(s, uk`

(s), u′k`
(s)) ds = 0.

According to conditions (8.145), (8.147) and the Lebesgue dominated conver-
gence theorem on [a, b], we can deduce that the limit u solves the equation

φ(u′(t))− φ(u′(T
2
))−

∫ t

T
2

f(s, u(s), u′(s)) ds = 0 for t ∈ (0, T ), (8.148)

φ(u′) ∈ ACloc(0, T ) and u is a w-solution of problem (8.1), (8.144).

Step 5. The function u is a solution of problem (8.1), (8.2).

First we prove that

f(t, u(t), u′(t)) ∈ L1[0, η] and f(t, u(t), u′(t)) ∈ L1[T − η, T ].

Assumption (8.138), formula (8.141) and estimate (8.143) imply

−fk(t, uk(t), u
′
k(t)) sign(u′k(t)− γ) ≥ −|ψ0(t)|

for a.e. t ∈ (0, η) and all k > 2
T
. By conditions (8.146) and (8.147) we have

lim
`→∞

(−fk`
(t, uk`

(t), u′k`
(t)) sign(u′k`

(t)−γ)) = f(t, u(t), u′(t)) sign(u′(t)−γ)

for a.e. t ∈ [0, T ] and all k > 2
T
. Finally, having in mind that sign(y−γ) =

sign(φ(y)− φ(γ)) for y ∈ R, we compute
∣∣∣∣
∫ η

0

fk`
(t, uk`

(t), u′k`
(t)) sign(u′k`

(t)− γ) dt

∣∣∣∣ ≤
∫ η

0

|φ(u′k`
(t))− φ(γ)|′ dt

≤ φ(|u′k`
(η)|) + 2φ(|γ|) + φ(|u′k`

(0)|) ≤ 2 φ(r) + 2 φ(|γ|)
for each ` ∈ N. Therefore, the Fatou lemma implies f(t, u(t), u′(t)) ∈
L1[0, η]. The condition f(t, u(t), u′(t)) ∈ L1[T − η, T ] can be proved simi-
larly. Hence f(t, u(t), u′(t)) ∈ L1[0, T ] and u ∈ AC1[0, T ].

In order to prove that u fulfils condition (8.2) we put

g∗(t) = |ψ0(t)|, h∗(t) = 0 for a.e. t ∈ [0, T ]

and
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vk(t) = φ(u′k(t))− φ(γ) for t ∈ [0, T ].

Then, according to (8.141) and (8.142),

v′k(t) =





f(t, uk(t), u
′
k(t)) for a.e. t ∈ [0, T ] \∆k,

0 for a.e. t ∈ ∆k.

By estimate (8.143) there exists β0 ∈ (0,∞) such that

|vk(η)| ≤ β0, |vk(T − η)| ≤ β0.

Further, due to assumption (8.138), we have

v′k(t) sign vk(t) ≥ h(t)|vk(t)| − g∗(t) for a.e. t ∈ [ 1
k
, η].

So, we see that conditions (A.21), (A.22) and (A.23) are fulfilled and, by
Criterion A.12, the sequence {vk} is equicontinuous at 0 from the right and
limk→∞ vk(0) = 0. Similarly, due to (8.139) we have

v′k(t) sign vk(t) ≤ −h(t)|vk(t)|+ g∗(t) for a.e. t ∈ [T − η, T − 1
k
].

Hence, conditions (A.17), (A.18) and (A.19) hold and Criterion A.11 guar-
antees that the sequence {vk} is equicontinuous at T from the left and
limk→∞ vk(T ) = 0. Consequently, the sequences {φ(u′k)} and {u′k} are
also equicontinuous at 0 from the right and at T from the left and

lim
k→∞

u′k(0) = γ, lim
k→∞

u′k(T ) = γ.

This yields that for each ε > 0 there exists δ > 0 such that for each
t ∈ (0, δ) we can find kt ∈ N such that

|u′(t)− γ| ≤ |u′(t)− u′kt
(t)|+ |u′kt

(t)− u′kt
(0)|+ |u′kt

(0)− γ| < 3ε.

So, limt→0+ u′(t) = γ. The relation limt→T− u′(t) = γ can be proved simi-
larly. This together with (8.144) yields that u satisfies the periodic condi-
tions (8.2). ¤

Corollary 8.35. Let all assumptions of Theorem 8.34 be fulfilled and let
α= 0 and γ 6= 0. Then problem (8.1), (8.2) has a sign-changing solution.
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Example. Assume that λ, µ ∈ (1,∞), γ, c, r ∈ R, n∈N and that
ψ ∈L1[0, T ] is positive. For a.e. t∈ [0, T ] and all x, y ∈R define the func-
tion

f(t, x, y) =

(
1

tλ
− 1

(T − t)µ

)
(φ(y)− φ(γ)) + c φ(y) y + ψ(t) (x− r)2n−1.

Then for an arbitrary α ∈ R the conditions of Theorem 8.34 are satisfied.
Indeed, choose α ∈ R and a1, a2 ∈ (0, T ), a1 < a2. Then we can find
a large positive number r2 and a negative number r1 with a large modulus
such that condition (8.135) holds. Denote

ψ1(t) = ψ(t) max{|x−r|2n−1 : r1 + t γ≤ x≤ r2 + t γ} for a.e. t ∈ [0, T ]

and

ψ2(t) =





(T − t)−µ for a.e. t ∈ [0, a1),

(T − t)−µ + t−λ for a.e. t ∈ [a1, a2],

t−λ for a.e. t ∈ (a2, T ].

Then ψ1, ψ2 ∈ L1[0, T ] are positive and for a.e. t ∈ [0, a2] and for each
x ∈ [r1 + tγ, r2 + tγ], y ∈ R we have

f(t, x, y) sign(y − γ) = f(t, x, y) sign(φ(y)− φ(γ))

> − 1

(T − t)µ
|φ(y)− φ(γ)| − |c||φ(y)− φ(γ)||y| − |c||φ(γ)||y| − ψ1(t)

> −(|φ(y)− φ(γ)|+ 1)(|c|+ 1)(|φ(γ)|+ 1)(ψ1(t) + ψ2(t) + |y|).
So, if we put

ω(s) = (s + 1) (|c|+ 1) (|φ(γ)|+ 1) and h0 = ψ1 + ψ2,

we get inequality (8.136). Similarly we can derive inequality (8.137).

Finally, let us assume that r is the constant given by Lemma 7.16 for
y1 = y2 = γ, r0 = max{|r1|, r2}+ T |γ|, κ = 1, and put

h(t) =





t−λ for a.e. t ∈ (0, η),

0 for a.e. ∈ [η, T − η],

(T − t)−µ for a.e. t ∈ (T − η, T ),

ψ3(t) = |c|φ(r)r + ψ2(t)(φ(r) + |φ(γ)|) + ψ1(t),

and
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ψ0(t) =





−ψ3(t) for a.e. t ∈ (0, η),

0 for a.e. ∈ [η, T − η],

ψ3(t) for a.e. t ∈ (T − η, T ).

Then ψ0 ∈ L1[0, T ], h ∈ Lloc(0, T ) and h is nonnegative and satisfies
conditions (A.20) and (A.24). Further, for a.e. t ∈ (0, η) and for each x ∈
[r1 + tγ, r2 + tγ], y ∈ [−r, r] we obtain

f(t, x, y) sign(y − γ) = f(t, x, y) sign(φ(y)− φ(γ))

>
1

tλ
|φ(y)− φ(γ)| − |c|φ(r)r − ψ2(t)(φ(r) + |φ(γ)|)− ψ1(t)

= h(t)|φ(y)− φ(γ)|+ ψ0(t).

Hence condition (8.138) is valid. Similarly we show that condition (8.139)
holds. Therefore, by Theorem 8.34, problem (8.1), (8.2), where f is defined
at the beginning of our example, has a solution u satisfying (8.140). Since
α is chosen arbitrarily, problem (8.1), (8.2) has infinitely many solutions. In
particular, if we choose α = 0 and γ 6= 0, the corresponding solution of
problem (8.1), (8.2) changes its sign on [0, T ].
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Theorem3.5]. The assertion of Theorem 8.27 is due to Jebelean and Mawhin,
see [107, Theorem 2] and [108, Theorem 3]. The results of Section 8.4 are
taken from the paper by Cabada, Lomtatidze and Tvrdý [52]. Section 8.5 is
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The singular periodic problem for ordinary differential equations (when
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Manásevich and Montero [68], Omari and Ye [146], Zhang [202] and [204],
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of weak singularity, first results were delivered by Rach̊unková, Tvrdý and
Vrkoč in [171]. Further results were delivered later also by Bonheure and De
Coster [45] and Torres [192]. For more historical details and more detailed
description of some of the above results, see also Rach̊unková, Staněk and
Tvrdý [163].





Chapter 9

Mixed problem

Various mathematical models of phenomena from physics, chemistry and
technical practice take on the form of partial differential equations subject
to initial or boundary conditions. For the investigation of stationary solu-
tions many of these models can be reduced to singular ordinary differential
equations of the second order, especially when, due to symmetries in the
geometry of the problem data, polar, cylindrical or spherical coordinates
can be used. We can refer to the Thomas-Fermi equation occuring in prob-
lems from quantum mechanics and astrophysics in Chan and Hon [57] and
the Ginzburg-Landau equation describing ferromagnetic systems and arising
in superconductivity models in Rentrop [174]. Further examples are singu-
lar Sturm-Liouville eigenvalue problems in Reddien [173], problems in the
theory of diffusion and reaction according to Langmuir-Hinshelwood kinet-
ics in Bobisud [43], [44], problems from chemical reactor theory in Parter,
M.L. Stein and P.R. Stein [149] and applications from mechanics, especially
from the buckling theory of spherical shells in Drmota, Scheidl, Troger and
Weinmüller [79].

In this chapter we will study a class of nonlinear singular boundary value
problems whose importance is derived, in part, from the fact that they arise
when searching for positive, radially symmetric solutions to the nonlinear
elliptic partial differential equation

∆ u + g(r, u) = 0 on Ω, u |Γ= 0,

where ∆ is the Laplace operator, Ω is the open unit disk in Rn (centered
at the origin), Γ is its boundary, and r is the radial distance from the origin.
Radially symmetric solutions to this problem are solutions of the ordinary
differential equation

u′′ +
n− 1

t
u′ + g(t, u) = 0

with mixed boundary conditions u′(0) = 0, u(1) = 0. See e.g. Berestycki,
Lions and Peletier [36] or Gidas, Ni and Nirenberg [96].
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9.1 Problem with singularities in all variables

Similarly to Chapter 7 we will assume that φ is an increasing odd home-
omorphism with φ(R) = R and consider now the singular mixed problem
of the form

(φ(u′))′ + f(t, u, u′) = 0, u′(0) = u(T ) = 0. (9.1)

We will investigate problem (9.1) on the set [0, T ]×A, where A is a closed
subset of R2, and we will assume that f has singularities, i.e. f does not
satisfy the Carathéodory conditions on the whole set [0, T ]×A. Singularities
of f will be specified later for each problem under consideration. Since
the mixed and the Dirichlet problem are close to each other, a lot of results
and comments are valid for both of them. In accordance with Chapters 1
and 7 we define:

Definition 9.1. A function u : [0, T ] → R with φ(u′)∈AC[0, T ] is a so-
lution of problem (9.1) if u satisfies (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 a.e.
on [0, T ] and fulfils the boundary conditions u′(0) = u(T ) = 0. If A 6= R2

we impose on u in addition the condition (u(t), u′(t)) ∈ A for t ∈ [0, T ].

A function u∈C[0, T ] is a w-solution of problem (9.1) if there exists
a finite number of singular points tν ∈ [0, T ], ν = 1, . . . , r, such that if we
denote J = [0, T ] \ {tν}r

ν=1, then φ(u′)∈ACloc(J), u satisfies

(φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 for a.e. t ∈ [0, T ]

and fulfils the boundary conditions u′(0) = u(T ) = 0. If A 6= R2, then
(u(t), u′(t)) ∈ A for t ∈ J.

First, we consider the auxiliary regular mixed problem of the form

(φ(u′))′ + g(t, u, u′) = 0, u′(0) = 0, u(T ) = 0, (9.2)

where g ∈Car([0, T ] × R2). In the previous chapters we have defined solu-
tions of regular problems in the same way as those of singular ones. In par-
ticular, we define:

Definition 9.2. A function u : [0, T ]→R with φ(u′)∈AC[0, T ] is a so-
lution of problem (9.2) if u satisfies (φ(u′(t)))′ + g(t, u(t), u′(t)) = 0 a.e. on
[0, T ] and fulfils the boundary conditions u′(0) = 0, u(T ) = 0.
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All theorems of Section 7.1 can be modified to suit problem (9.2). How-
ever, we present here only one of them which is based on the existence of lower
and upper functions to problem (9.2) and will be used further in the inves-
tigation of the singular mixed problem (9.1).

Definition 9.3. A function σ ∈C[0, T ] is called a lower function of problem
(9.2) if there exists a finite set Σ ⊂ (0, T ) such that φ(σ′)∈ACloc([0, T ]\Σ),
σ′(τ+) := limt→τ+ σ′(t)∈R, σ′(τ−) := limt→τ− σ′(t)∈R for each τ ∈Σ,





(φ(σ′(t)))′ + g(t, σ(t), σ′(t)) ≥ 0 for a.e. t∈ [0, T ],

σ′(0) ≥ 0, σ(T ) ≤ 0, σ′(τ−) < σ′(τ+) for each τ ∈Σ.
(9.3)

If the inequalities in (9.3) are reversed, then σ is called an upper function
of problem (9.2).

The next theorem can be proved similarly to Theorem 7.14 of Section 7.1.

Theorem 9.4. Let σ1 and σ2 be a lower function and an upper function
of problem (9.2) and let σ1(t) ≤ σ2(t) for t∈ [0, T ]. Assume that there is
a function h∈L1[0, T ] satisfying

|g(t, x, y)| ≤ h(t) for a.e. t∈ [0, T ] and all x∈ [σ1(t), σ2(t)], y ∈R.

Then problem (9.2) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t) for t∈ [0, T ]. (9.4)

We will apply Theorem 9.4 to the singular mixed problem (9.1) under the
assumption





f ∈Car((0, T )×D), D = (0,∞)× (−∞, 0),

f has time singularities at t = 0, t = T

and space singularities at x = 0, y = 0.

(9.5)

We are interested in the existence of a solution positive and decreasing
on [0, T ) and so we will investigate problem (9.1) on the set [0, T ] × A,
where A = [0,∞)× (−∞, 0].
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Theorem 9.5. Let (9.5) hold. Assume that there exist c ∈ (ν,∞), ν ∈ (0, T )

and ε∈ (0, φ(ν)
ν

) such that





f(t, c (T − t),−c) = 0 for a.e. t∈ [0, T ],

0 ≤ f(t, x, y)

for a.e. t∈ [0, T ] and all x∈ (0, c (T − t)], y ∈ [−c, 0),

ε ≤ f(t, x, y)

for a.e. t∈ [0, ν] and all x∈ (0, c (T − t)], y ∈ [−ν, 0).

(9.6)

Then problem (9.1) has a solution u∈AC1[0, T ] satisfying

0 < u(t) ≤ c (T − t), −c ≤ u′(t) < 0 for t ∈ (0, T ). (9.7)

Proof. Step 1. Approximate solutions.

Choose k ∈N such that k > 2
T
. For t∈ [ 1

k
, T − 1

k
], x, y ∈R put

αk(t, x) =





c (T − t) if x > c (T − t),

x if c
k
≤ x ≤ c (T − t),

c
k

if x < c
k
,

βk(y) =





− ε
k

if y > − ε
k
,

y if − c ≤ y ≤ − ε
k
,

−c if y < −c,

γ(y) =





ε if y ≥ −ν,

ε
c + y

c− ν
if −c < y < −ν,

0 if y ≤ −c.

For a.e. t∈ [0, T ] and all x, y ∈R define

fk(t, x, y) =





γ(y) if t∈ [0, 1
k
),

f(t, αk(t, x), βk(y)) if t∈ [ 1
k
, T − 1

k
],

0 if t∈ (T − 1
k
, T ].

Then fk ∈Car([0, T ]× R2) and there is ψk ∈L1[0, T ] such that

|fk(t, x, y)| ≤ ψk(t) for a.e. t∈ [0, T ] and all x, y ∈R. (9.8)
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Moreover, assumption (9.6) yields

fk(t, c (T − t),−c) = 0 and fk(t, 0, 0) ≥ 0 for a.e. t∈ [0, T ].

We have arrived at the auxiliary regular problem

(φ(u′))′ + fk(t, u, u′) = 0, u′(0) = 0, u(T ) = 0. (9.9)

Put σ1(t) = 0, σ2(t) = c (T − t) for t∈ [0, T ]. Then σ1 is a lower function
and σ2 is an upper function of problem (9.9). Hence, by Theorem 9.4,
problem (9.9) has a solution uk and

0 ≤ uk(t) ≤ c (T − t) for t∈ [0, T ].

Step 2. A priori estimates of the approximate solutions uk.

Since fk(t, x, y)≥0 for a.e. t∈[0, T ] and all x, y∈R, we get that φ(u′k(t))
as well as u′k(t) are nonincreasing on [0, T ]. Therefore u′k(0)=0 implies
u′k(t)≤0 on [0, T ]. By uk(T )=0 we get uk(T )−uk(t)≥c (T − t), which
yields u′k(T )≥−c and

−c ≤ u′k(t) ≤ 0 for t∈ [0, T ]. (9.10)

Due to u′k(0) = 0, there is tk ∈ (0, T ] such that

−ν ≤ u′k(t) ≤ 0 for t∈ [0, tk].

If tk ≥ ν, the last inequality in assumption (9.6) implies

φ(u′k(t)) ≤ −ε t for t∈ [0, ν]. (9.11)

Assume that tk < ν and u′k(t) < −ν for t∈ (tk, ν]. Then

φ(u′k(t)) ≤ −ε t for t∈ [0, tk].

Since φ(u′k(t)) < −φ(ν) < −εt for t∈ (tk, ν], we get inequality (9.11) again.
Integrating (9.11) over [0, ν] and using the the fact that u′k is nonincreasing
on [0, T ] and so uk is concave here we deduce that

ν0

T
(T − t) ≤ uk(t) ≤ c (T − t) on [0, T ],

where ν0 =

∫ ν

0

φ−1(εs)ds > 0.
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Step 3. Convergence of the sequences {uk} and {u′k}.
Consider the sequence {uk}. Choose an arbitrary interval [a, b] ⊂ (0, T ).

By virtue of estimates (9.10) and (9.11) there is k0 ∈N such that for each
k ∈N, k ≥ k0,

c

k0

≤ uk(t) ≤ c(T − t), −c ≤ u′k(t) ≤ − ε

k0

for t∈ [a, b], (9.12)

and hence there is ψ ∈L1[a, b] such that

|fk(t, uk(t), u
′
k(t))| ≤ ψ(t) for a.e. t∈ [a, b]. (9.13)

The sequences {uk} and {u′k} are bounded on [0, T ] and, due to inequality
(9.13), {u′k} is equicontinuous on [a, b]. Therefore, using the Arzelà-Ascoli
theorem and the diagonalization theorem, we can choose u∈C[0, T ]∩C1(0, T )
and a subsequence of {uk} (which we denote for the sake of simplicity in
the same way) such that





lim
k→∞

uk = u uniformly on [0, T ],

lim
k→∞

u′k = u′ locally uniformly on (0, T ).
(9.14)

Consequently, we have u(T ) = 0.

Step 4. Convergence of the sequence of approximate nonlinearities {fk} .

Let ξ ∈ (0, T ) be such that f(ξ, ·, ·) is continuous on (0,∞)× (−∞, 0).
By estimate (9.12) there exist an interval [aξ, bξ] ⊂ (0, T ) and kξ ∈N such
that ξ ∈ [aξ, bξ] and for each k ≥ kξ

c(T − ξ) ≥ uk(ξ) >
c

kξ

, −c ≤ u′k(ξ) < − ε

kξ

, [aξ, bξ] ⊂ [ 1
k
, T − 1

k
].

Therefore fk(ξ, uk(ξ), u
′
k(ξ)) = f(ξ, uk(ξ), u

′
k(ξ)) and, by virtue of property

(9.14), we get

lim
k→∞

fk(t, uk(t), u
′
k(t)) = f(t, u(t), u′(t)) for a.e. t∈ [0, T ]. (9.15)
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Step 5. The function u is a solution.

Choose an arbitrary t∈(0, T ). Then there exists an interval [a, b]⊂(0, T )
such that t, T

2
∈ [a, b] and inequality (9.13) holds for all sufficiently large k

with ψ ∈ L1[a, b]. Integrating the equality in (9.9) we get

φ(u′k(
T
2
))− φ(u′k(t)) =

∫ t

T
2

fk(s, uk(s), u
′
k(s)) ds.

Letting k →∞ and using conditions (9.13), (9.14), (9.15) and the Lebesgue
dominated convergence theorem on [a, b], we get

φ(u′(T
2
))− φ(u′(t)) =

∫ t

T
2

f(s, u(s), u′(s)) ds for each t∈ (0, T ).

Therefore φ(u′)∈ACloc(0, T ) satisfies

(φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 for a.e. t∈ [0, T ]. (9.16)

Further, according to problem (9.9), we have

∫ T

0

fk(s, uk(s), u
′
k(s)) ds = −φ(u′k(T )) ≤ φ(c) for each k > 2

T
,

which together with the nonnegativity of fk and equality (9.15) yields,
by the Fatou lemma, that f(t, u(t), u′(t))∈L1[0, T ]. Therefore, by equal-
ity (9.16), we have φ(u′)∈AC[0, T ]. Moreover,

|φ(u′k(t))|

≤
∫ t

0

|fk(s, uk(s), u
′
k(s))−f(s, u(s), u′(s))| ds +

∫ t

0

|f(s, u(s)u′(s))| ds.

for each k > 2
T

and t∈ (0, T ). So, by (9.15), for each ε0 > 0 there exists
δ > 0 such that

|φ(u′k(t))| < ε0 for all t ∈ [0, δ], k > 2
T
.

Then

|φ(u′(t))| ≤ |φ(u′(t))− φ(u′k(t))|+ |φ(u′k(t))|
< |φ(u′(t))− φ(u′k(t))|+ ε0 for all t ∈ (0, δ], k > 2

T
.
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Hence, by property (9.14),

|φ(u′(t))| ≤ lim
k→∞

|φ(u′(t))− φ(u′k(t))|+ ε0 = ε0 for each t ∈ (0, δ).

It means that u′(0) = limt→0+ u′(t) = 0. We have proved that u is a solution
of problem (9.1). ¤

Example. Let α > 0, β, γ, δ ≥ 0 be arbitrary numbers. By Theorem 9.5
the problem

u′′ +
1

tγ (1− t)δ

(
1

uα
+ uβ + 1

)
(1 + (u′)3) = 0, u′(0) = u(1) = 0

has a solution u∈AC1[0, 1] satisfying

0 < u(t) ≤ 1− t, −1 ≤ u′(t) < 0 for t∈ (0, 1).

Note that Theorem 9.5 guarantees solvability of our problem even for the
nonlinearity

f(t, x, y) =
1

tγ(1− t)δ

(
1

xα
+ xβ + 1

)
(1 + y3)

having a strong space singularity (α ≥ 1) at x = 0.

9.2 Problem arising in the shallow membrane

caps theory

Now we will investigate solvability of the singular differential equation

(t3 u′)′ + t3
(

1

8 u2
− a0

u
− b0 t2γ−4

)
= 0 (9.17)

subject to the mixed boundary conditions

lim
t→0+

t3 u′(t) = 0, u(1) = 0, (9.18)

where a0 ≥ 0, b0 > 0, γ > 1, arising in the theory of shallow membrane
caps , see Baxley and Robinson [34], Dickey [72], Johnson [112], Kannan
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and O’Regan [113]. For close problems see Agarwal and O’Regan [13], [14],
Baxley [32], Goldberg [97].

Our aim is to prove existence of a positive w-solution to problem (9.17),
(9.18) which is defined as follows.

Definition 9.6. A function u is a positive w-solution of problem (9.17),
(9.18) if u satisfies the following conditions:

(i) u∈C[0, 1] ∩ C2(0, 1),

(ii) u(t) > 0 for all t∈ (0, 1),

(iii) u satisfies equation (9.17) for t∈ (0, 1) and the boundary conditions
(9.18).

Note that problem (9.17), (9.18) is singular and exhibits both the time
and space singularities. We can see this by transforming equation (9.17) into
the first order system by means of the substitution x1(t)=u(t), x2(t)=t3 u′(t),
viz.

x′1 = f1(t, x1, x2) =
1

t3
x2,

x′2 = f2(t, x1, x2) = −t3
(

1

8 x2
1

− a0

x1

− b0 t2γ−4

)
.

Because of the term 1
t3

in the first equation we see that the function f1

is not integrable in t on any right neighborhood of t = 0 and so f1 has
a time singularity at t = 0. Moreover, the function f2 is not continuous
in x1, having a space singularity at x1 = 0. In particular, since the powers
of x1 in f2 are −2 and −1, f2 has strong singularities at x1 = 0.

The present investigation of problem (9.17), (9.18) is strongly motivated
by the results given in Kannan and O’Regan [113], where the second bound-
ary condition in (9.18) has the form u(1) = u1 > 0. It turns out that
in this case the solutions of problem (9.17), (9.18) are positive on [0, 1] and
consequently, the problem has no space singularities. As a technical tool
in the existence proof, the lower and upper functions method has been used
in [113]. In our case, since u1 = 0, we need to cope with a space singularity
at u = 0 and therefore it is necessary to generalize the approach. To this
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aim we consider the following auxiliary boundary value problem

(p(t)u′)′ + p(t) q(t) f(t, u) = 0, (9.19)

lim
t→0+

p(t) u′(t) = 0, u(T ) = 0, (9.20)

where p : [0, T ]→R, q : (0, T ]→R are continuous and f satisfies the Cara-
théodory conditions on the set (0, T )×D, where D ⊂ R.

Definition 9.7. A function u∈C[0, T ] ∩ C1(0, T ] with pu′ ∈AC[0, T ] is
called a solution of problem (9.19), (9.20) if it satisfies equation (9.19) for
a.e. t∈ [0, T ] and if the boundary conditions (9.20) hold.

We now define a lower function and an upper function of problem (9.19),
(9.20).

Definition 9.8. A function σ ∈C[0, T ] is called a lower function of problem
(9.19), (9.20) if there is a finite set Σ ⊂ (0, T ) such that σ′(τ+), σ′(τ−)∈R
for each τ ∈Σ and p σ′ ∈ACloc((0, T ) \ Σ). Moreover, σ has to satisfy





(p(t) σ′(t))′ + p(t) q(t) f(t, σ(t)) ≥ 0 for a.e. t∈ [0, T ],

limt→0+ p(t) σ′(t) ≥ 0, σ(T ) ≤ 0,

σ′(τ−) < σ′(τ+) for each τ ∈Σ.

(9.21)

If the inequalities in (9.21) are reversed, then σ is called an upper function
of problem (9.19), (9.20).

Note that, in contrast to Definition 9.3, Definition 9.8 admits lower and
upper functions having first derivatives unbounded at the endpoints t = 0
and t = T.

For the subsequent analysis we make the following assumptions:

p∈C[0, T ], q ∈C(0, T ], p(t) > 0, q(t) > 0 for t∈ (0, T ], (9.22)

∫ T

0

p(s) q(s) ds < ∞,

∫ T

0

1

p(t)

(∫ t

0

p(s) q(s) ds

)
dt < ∞, (9.23)

f satisfies the L∞ − Carathéodory conditions on [0, T ]× R, (9.24)
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i.e., f ∈ Car([0, T ]×R) and for each compact set K ⊂ R there is a constant
mK > 0 such that

|f(t, x)| ≤ mK for a.e. t ∈ [0, T ] and all x ∈ K.

To prove the existence of a solution u to problem (9.19), (9.20) we use
the lower and upper functions method. The related fundamental statement
is given in Theorem 9.9.

Theorem 9.9. Let σ1 and σ2 be a lower function and an upper function of
problem (9.19), (9.20). Assume that σ1(t) ≤ σ2(t) for t∈ [0, T ]. Let us also
assume that conditions (9.22), (9.23) and (9.24) hold. Then problem (9.19),
(9.20) has a solution u satisfying estimate (9.4). If, moreover,

lim
t→0+

1

p(t)

∫ t

0

p(s) q(s) ds = 0, (9.25)

then

u∈C1[0, T ], u′(0) = 0. (9.26)

Proof. Step 1. Existence of a solution u of an auxiliary problem.

For a.e. t∈ [0, T ] and all x∈R define

f ∗(t, x) =





f(t, σ2(t))− x− σ2(t)

x− σ2(t) + 1
if x > σ2(t),

f(t, x) if σ1(t) ≤ x ≤ σ2(t),

f(t, σ1(t)) +
σ1(t)− x

σ1(t)− x + 1
if x < σ1(t),

and consider the equation

(p(t) u′)′ + p(t) q(t) f ∗(t, u) = 0. (9.27)

Define an operator F : C[0, T ] → C[0, T ] by

(Fu)(t) :=

∫ T

t

(
1

p(τ)

∫ τ

0

p(s)q(s)f ∗(s, u(s)) ds

)
dτ. (9.28)

Since condition (9.24) holds, we can find m∗ ∈ (0,∞) such that

|f ∗(t, x)| ≤ m∗ for a.e. t∈ [0, T ] and all x∈R. (9.29)
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Therefore, due to assumption (9.23), F is continuous and compact, and
the Schauder fixed point theorem guarantees that a fixed point u∈C[0, T ]
of F exists. According to (9.28) we now have

u(t) =

∫ T

t

(
1

p(τ)

∫ τ

0

p(s)q(s)f ∗(s, u(s))ds

)
dτ for t∈ [0, T ].

Hence, u satisfies equation (9.27) a.e. in [0, T ], the boundary conditions
(9.20) hold, and pu′ ∈AC[0, T ]. The assumptions p∈C[0, T ] and p > 0
on (0, T ] result in u∈C1(0, T ]. This means that u is a solution of problem
(9.27), (9.20).

If additionally, assumption (9.25) holds, we can use inequality (9.29) to
conclude

lim
t→0+

|u′(t)| = lim
t→0+

∣∣∣∣−
1

p(t)

∫ t

0

p(s) q(s) f ∗(s, u(s)) ds

∣∣∣∣

≤ m∗ lim
t→0+

1

p(t)

∫ t

0

p(s) q(s) ds = 0.

Finally, we set u′(0) = limt→0+ u′(t) = 0, and assertion (9.26) follows.

Step 2. The function u solves equation (9.19).

To this end we verify that estimate (9.4) holds. Let us set v = u− σ2(t)
and assume that

max{v(t) : t ∈ [0, T ]} = v(t0) > 0.

Since σ2(T ) ≥ 0 and u(T ) = 0, it follows that t0 ∈ [0, T ). Moreover, Defi-
nitions 9.7 and 9.8 imply that t0 6∈ Σ, because v′(τ−) < v′(τ+) for τ ∈ Σ.
Let t0 = 0. We have from (9.20) and the inequality limt→0+ p(t) σ′2(t) ≤ 0
(see (9.21)) that limt→0+ p(t) v′(t) ≥ 0. Let limt→0+ p(t) v′(t) > 0. Then
limt→0+ v′(t) > 0, which contradicts the assumption that v has its max-
imum value at t0 = 0. Therefore, limt→0+ p(t) v′(t) = 0 holds. Now, let
t0 ∈ (0, T ) \Σ. Then v′(t0) = 0. So, we have t0 ∈ [0, T ) \Σ and we can find
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a δ > 0 such that v(t) > 0 on (t0, t0 + δ) ⊂ (0, T ) and

(p(t) v′(t))′ = (p(t) u′(t))′ − (p(t) σ′2(t))
′

≥ −p(t) q(t)

(
f(t, σ2(t))− u(t)− σ2(t)

u(t)− σ2(t) + 1

)
+ p(t) q(t) f(t, σ2(t))

= p(t) q(t)
v(t)

v(t) + 1
> 0

a.e. in (t0, t0 + δ). This yields

0 <

∫ t

t0

p(s) q(s)
v(s)

v(s) + 1
ds ≤

∫ t

t0

(p(s) v′(s))′ ds = p(t) v′(t)

for t∈ (t0, t0 + δ), contradicting the fact that v has its maximum at t0.
We have shown that u(t) ≤ σ2(t) for t∈ [0, T ]. The inequality σ1(t) ≤ u(t)
for t∈ [0, T ] follows analogously. The definition of f ∗ finally implies that
u is also a solution of equation (9.19). ¤

Example. Let a > 0, ε > 0, p(t) = ta, q(t) = tε−1. Then p and q satisfy
conditions (9.22), (9.23) and (9.25).

The main difficulty in applying Theorem 9.9 is to find a lower function σ1

and an upper function σ2 for problem (9.19), (9.20) which are well ordered,
i.e., σ1(t) ≤ σ2(t) for t∈ [0, T ]. If f(·, x) in equation (9.19) changes its sign
on [0, T ], for instance, then lower and upper functions of problem (9.19),
(9.20) have to be nonconstant and therefore their computation can be diffi-
cult. In Lemmas 9.10 and 9.11 we present two pairs of well ordered lower and
upper functions for problem (9.17), (9.18), where f(t, x) = 1

8 x2− a0

x
−b0 t 2 γ−4

changes its sign on (0, 1)× (0,∞).

Lemma 9.10. Let γ ≥ 2. Then there exist constants ν∗, c∗ ∈ (0,∞) such
that for each ν ∈ (0, ν∗] and c ≥ c∗ the functions

σ1(t) = ν (t + ν) (1− t) and σ2(t) = c
√

1− t2 for t∈ [0, 1], (9.30)

are a lower and an upper function of problem (9.17), (9.18).

Proof. It follows from (9.30) that σ′1(t) = ν(1− 2t− ν) and σ′2(t) = −ct√
1−t2

for t ∈ [0, 1). Thus,

lim
t→0+

t3σ′1(t) = 0, lim
t→0+

t3σ′2(t) = 0, σ1(1) = σ2(1) = 0. (9.31)
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By inserting σ1 into equation (9.17) we obtain

(t3σ′1(t))
′ + t3

(
1

8 σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)

= t2
(

νϕ1(t, ν) +
t

ν2(1− t)2(t + ν)2
ϕ2(t, ν)

)
for t ∈ (0, 1),

where

ϕ1(t, ν) = 3− 3 ν − 8 t,

ϕ2(t, ν) =
1

8
− a0 ν (1− t) (t + ν)− b0 t2γ−4 ν2 (1− t)2 (t + ν)2.

Let us choose ν0 ∈ (0, 3
11

) such that

a0 ν0 (1 + ν0) + b0 ν2
0 (1 + ν0)

2 <
1

16
.

Then for all ν ∈ (0, ν0) we have ϕ1(t, ν) > 0, ϕ2(t, ν) > 0 for t∈ [0, ν].
Moreover, we can find ν∗ ∈ (0, ν0) such that

ν∗ ϕ1(t, ν∗) +
1

16 ν∗(1 + ν∗)2
> 0 for t∈ [ν∗, 1],

and consequently, for all ν ∈ (0, ν∗], we have

(t3 σ′1(t))
′ + t3

(
1

8 σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)
≥ 0 for t∈ [0, 1). (9.32)

By properties (9.31) and (9.32), σ1 is a lower function of problem (9.17),
(9.18).

We now insert σ2 into equation (9.17) and obtain

(t3 σ′2(t))
′ + t3

(
1

8 σ2
2(t)

− a0

σ2(t)
− b0 t2γ−4

)
≤ t3 ϕ3(t, c) for t∈ [0, 1),

where

ϕ3(t, c) = −c(1− t2)−
3
2

(
1−

√
1− t2

8 c3

)
≤ −c(1− t2)−

3
2

(
1− 1

8 c3

)
≤ 0
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for t ∈ [0, 1) and c ≥ 1
2
. Hence, for all c∈ [1

2
,∞) in the definition of σ2,

cf. (9.30), we have

(t3σ′2(t))
′ + t3

(
1

8 σ2
2(t)

− a0

σ2(t)
− b0 t2γ−4

)
≤ 0 for t∈ [0, 1). (9.33)

Finally, we conclude from properties (9.31) and (9.33) that σ2 is an upper
function of problem (9.17), (9.18), which completes the proof. ¤

Lemma 9.11. Assume γ ∈ (1, 2). Then there exist constants ν∗, c∗ ∈ (0,∞)
such that for each ν ∈ (0, ν∗] and c ≥ c∗ the functions

σ1(t) = ν t2−γ (1− t) and σ2(t) = c
√

1− t2 for t∈ [0, 1] (9.34)

are a lower and an upper function of problem (9.17), (9.18).

Proof. We first calculate the derivatives of σ1 and σ2 :

σ′1(t) = ν t1−γ (2− γ − (3− γ) t), σ′2(t) =
−c t√
1− t2

for t ∈ [0, 1).

Clearly, σ1 and σ2 satisfy condition (9.31). By inserting σ1 into equation
(9.17) we obtain

(t3 σ′1(t))
′ + t3

(
1

8 σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)

= ν t3− γ [(4− γ) (2− γ)− (5− γ) (3− γ)t] +
t2γ− 1

ν2 (1− t)2
ψ(t, ν)

for t ∈ (0, 1), where ψ(t, ν) = 1
8
− a0 ν(1− t) t2−γ − b0ν

2 (1− t)2. We now
find a constant ν0 > 0 such that ψ(t, ν) > 0 for t∈ [0, 1] and ν ∈ (0, ν0].

Furthermore, if t0 = (4−γ)(2−γ)
(5−γ)(3−γ)

, we have (4− γ)(2− γ)−(5− γ)(3− γ) t ≥ 0

for t∈ [0, t0]. Further, we get

lim
ν→0+

t2γ− 1

ν2 (1− t)2
ψ(t, ν) = ∞

uniformly on [t0, 1). Therefore, we are able to provide a constant ν∗ ∈ (0, ν0]
such that for any ν ∈ (0, ν∗] in the definition of σ1, see (9.34),

(t3 σ′1(t))
′ + t3

(
1

8σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)
> 0 for t ∈ (0, 1)
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holds. This means that, by condition (9.31), σ1 is a lower function of problem
(9.17), (9.18). Since σ2 is as in Lemma 9.10, we can similarly show that it
is an upper function, and the result follows. ¤

The main results characterizing solvability of problem (9.17), (9.18) are
contained in the next two theorems. We begin with considering the case
γ ≥ 2. This study will utilize results provided by Lemma 9.10.

Theorem 9.12. Let γ≥ 2. Then there exists a positive w-solution u of
problem (9.17), (9.18). Moreover, this solution satisfies

u(0) > 0, lim
t→0+

u′(t) = 0. (9.35)

Proof. Step 1. Construction of auxiliary functions fk.

Our arguments are based on Theorem 9.9. We set

T = 1, p(t) = t3, q(t) = 1, f(t, x) =
1

8 x2
− a0

x
− b0 t2γ−4.

It is easily seen that p and q satisfy conditions (9.22), (9.23), and (9.25),
but condition (9.24) does not hold for f. To remedy the situation, we
introduce a sequence of functions fk, k ∈N, k > 3. Let σ1 and σ2 be
specified by formulas (9.30), where ν≤ ν∗ ≤ 1

9
and c≥ c∗ > 1, and for

t∈ [0, 1], x∈R define

fk(t, x) =





0 if t∈ [0, 1
k
),

f(t, α(t, x)) if t∈ [ 1
k
, 1− 1

k
],

1 if t∈ (1− 1
k
, 1],

(9.36)

where

α(t, x) =





σ2(t) if x > σ2(t),

x if σ1(t) ≤ x ≤ σ2(t),

σ1(t) if x < σ1(t).

Note that all functions fk satisfy condition (9.24).
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Step 2. Lower and upper functions.

By Lemma 9.10, σ1 is a lower function and σ2 is an upper function
of problem (9.17), (9.18). For k ∈N, k > 3, consider the equation

(t3 u′)′ + t3 fk(t, u) = 0. (9.37)

Since k > 3, we have

(t3 σ′1(t))
′ = t2 ν (3− 3 ν − 8 t) ≥ 0 for t∈ [0, 1

k
),

and

(t3 σ′1(t))
′ + t3 = t2 (ν (3− 3 ν − 8 t) + t) > 0 for t∈ (1− 1

k
, 1].

Similarly,

(t3 σ′2(t))
′ = −c t3 (1− t2)−

3
2 (4− 3 t2) ≤ 0 for t∈ [0, 1

k
),

and

(t3 σ′2(t))
′ + t3 = t3 (−c (1− t2)−

3
2 (4− 3 t2) + 1) < 0 for t∈ (1− 1

k
, 1).

Therefore σ1 and σ2 are also lower and upper functions of problem (9.37),
(9.18). With no loss of generality, we can choose ν ∈ (0, ν∗) and c ≥ c∗
in such a way that ν(1 + ν) < c holds. Then σ1 ≤ σ2 on [0, 1] and, by
Theorem 9.9, problem (9.37), (9.18) has a solution uk ∈C1[0, 1] for k > 3
satisfying

σ1(t) ≤ uk(t) ≤ σ2(t) for t∈ [0, 1], u′k(0) = 0. (9.38)

Step 3. Convergence of the sequence of approximate solutions {uk}.
We regard the sequence {uk} of solutions to problem (9.37), (9.18) as

a sequence of approximations to u, and first discuss the convergence prop-
erties of {uk}. Let us choose an interval [0, b] ⊂ [0, 1). Then there exists
an index k1 ∈N such that [0, b] ⊂ [0, 1 − 1

k
] for k ≥ k1, and due to the

boundary conditions (9.18) and equation (9.37) we have

t3 u′k(t) +

∫ t

0

s3 fk(s, uk(s)) ds = 0 for t∈ [0, b] (9.39)

for k ≥ k1. Let

rb = min{σ1(t) : t ∈ [0, b]}, mb =
1

8 r2
b

+
a0

rb

.
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It follows from the first formula in (9.30) that rb > 0 and hence, (9.36) and
(9.38) yield

|t3 fk(t, uk(t))| ≤ mb t3 + b0 t2γ−1 for t ∈ [0, b] and k ≥ k1. (9.40)

Consequently, by equality (9.39),

|t3 u′k(t)| ≤
mb

4
t4 +

b0

2γ
t2γ for t∈ [0, b] and k ≥ k1. (9.41)

Due to estimates (9.38), (9.41) and the condition γ ≥ 2, the sequences {uk}
and {u′k} are bounded on [0, b], which implies that {uk} is equicontinuous
on [0, b]. Furthermore, for each ε > 0 there exists δ > 0 such that for any
t1, t2 ∈ [0, b] and k ≥ k1, if |t1 − t2| < δ holds, then

|t31 u′k(t1)− t32 u′k(t2)| ≤ mb

∣∣∣∣
∫ t2

t1

s3 ds

∣∣∣∣ + b0

∣∣∣∣
∫ t2

t1

s2γ−1ds

∣∣∣∣ < ε.

Hence the sequence {t3u′k} is equicontinuous on [0, b] and, by inequality
(9.41), it is bounded on [0, b]. The Arzelà-Ascoli theorem now implies that
there exists a subsequence {uk`

} ⊂ {uk} such that

lim
`→∞

uk`
= u uniformly on [0, b],

lim
`→∞

t3 u′k`
= t3 u′ locally uniformly on (0, b].

Finally, by the diagonalization theorem, we find a subsequence (for simplicity
we denote it by {uk} ) satisfying





limk→∞ uk = u locally uniformly on [0, 1),

limk→∞ t3 u′k = t3 u′ locally uniformly on (0, 1).
(9.42)

Step 4. Properties of the function u.

We conclude the proof by establishing the properties of the limit function
u. By (9.41) and (9.42) we obtain

|t3u′(t)| ≤ mb

4
t4 +

b0

2γ
t2γ for t∈ (0, δ).
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Therefore

lim
t→0+

t3u′(t) = 0 (9.43)

and due to (9.38) and (9.42) we have

σ1(t) ≤ u(t) ≤ σ2(t) for t∈ [0, 1), u∈C[0, 1). (9.44)

Since σ1(1) = σ2(1) = 0, we get

lim
t→1−

u(t) = 0. (9.45)

Moreover, (9.36) and (9.42) imply

lim
k→∞

t3fk(t, uk(t)) = t3f(t, u(t)) for t∈ (0, 1).

Consequently, due to (9.40) we can use the Lebesgue dominated convergence
theorem on [0, b]. Having in mind that b∈ (0, 1) is arbitrary and letting
k →∞ in equality (9.39), we conclude that

t3 u′(t) +

∫ t

0

s3 f(s, u(s))ds = 0 for t∈ (0, 1). (9.46)

Thus u∈C2(0, 1) and u satisfies equation (9.17) for t∈ (0, 1). Setting
u(1) = limt→1− u(t), we obtain u(1) = 0 and u∈C[0, 1]. These smoothness
properties of u together with properties (9.43)– (9.46) guarantee that u is
a positive w-solution of problem (9.17), (9.18). It remains to show that
assertion (9.35) holds. The first condition in (9.35) follows from σ1(0) > 0.
The second condition results by noting that

lim
t→0+

|u′(t)| ≤ lim
t→0+

mb

4
t + lim

t→0+

b0

2γ
t2γ−3 = 0

due to (9.41) and (9.42). ¤

Now, we apply the results from Lemma 9.11 in order to cover the case
γ ∈ (1, 2).

Theorem 9.13. Let γ ∈ (1, 2). Then there exists a w-positive solution u
of problem (9.17), (9.18). If γ > 3

2
, then assertion (9.35) holds and for

γ = 3
2

the w-solution u satisfies

u(0) > 0, lim
t→0+

u′(t) =
b0

3
. (9.47)
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Proof. Step 1. The arguments for the construction of the auxiliary sequence
{fk} and of the upper function σ2 are analogous to those given in Steps 1
and 2 of the proof of Theorem 9.12. The only difference is the definition
of the lower function σ1 which is now specified by the first formula in (9.34),
with ν ≤ ν∗ ≤ 1

8
. By Lemma 9.11, σ1 is a lower function of problem (9.17),

(9.18). Choose k0 ∈ N, k0 > 4
2−γ

. For k ≥ k0 we have

(t3 σ′1(t))
′ = ν t3− γ ((4− γ)(2− γ)− (5− γ)(3− γ) t) ≥ 0

if t∈ [0, 1
k
) and

(t3 σ′1(t))
′ + t3 = ν t3− γ ((4− γ)(2− γ)− (5− γ)(3− γ) t) + t3 > 0

if t∈ (1 − 1
k
, 1], which implies that σ1 is also a lower function of problem

(9.37), (9.18). Since σ2 is the same as in the previous proof, it is an upper
function of problem (9.37), (9.18). Now, arguing as in the proof of Theo-
rem 9.12, we get the sequence {uk} of solutions to problems (9.37), (9.18),
k ∈N, k ≥ k0. Also, uk ∈C1[0, 1] and it satisfies conditions (9.38).

Step 2. Consider an interval [0, b] ⊂ [0, 1) and the sequence {uk}, k ∈N,
k ≥ k0. Then equality (9.39) holds. If we put

a1 =
a0

ν(1− b)
, b1 =

1

8ν2(1− b)2
+ b0,

we get

t3

8 σ2
1(t)

+
a0 t3

σ1(t)
+ b0 t2γ−1 ≤ a1 tγ+1 + b1 t2γ−1 for t∈ [0, b]. (9.48)

Assume that k1 ≥ k0. Thus, (9.38), (9.39) and (9.48) yield

|t3 fk(t, uk(t))| ≤ a1 tγ+1 + b1 t2γ−1, |t3 u′k(t)| ≤
a1

γ+2
tγ+2 +

b1

2γ
t2γ

for t∈ [0, b] provided that k ≥ k1. Hence, for each ε > 0 there exists
δ > 0 such that for any t1, t2 ∈ [0, b] and k ≥ k1,

|t1 − t2| < δ ⇒ |t31 u′k(t1)− t32 u′k(t2)| ≤
∣∣∣∣
∫ t2

t1

(a1 tγ+1 + b1 t2γ−1) dt

∣∣∣∣ < ε

and
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|t1 − t2| < δ ⇒ |uk(t1)− uk(t2)| ≤
∣∣∣∣
∫ t2

t1

(
a1

γ+2
tγ−1 +

b1

2γ
t2γ−3

)
dt

∣∣∣∣ < ε.

Therefore the sequences {uk} and {t3u′k} are bounded and equicontinuous
on [0, b] and condition (9.42) results due to the arguments given in the proof
of Theorem 9.12.

Step 3. Properties (9.44), (9.45), (9.46) and u∈C[0, 1] ∩ C2(0, 1) can be
shown as in the proof of Theorem 9.12. Equality (9.46) leads to

t3 u′(t) =

∫ t

0

s3

u2(s)

(
a0 u(s)− 1

8

)
ds +

b0

2γ
t2γ for t ∈ (0, 1). (9.49)

Assume that u(0) > 0. Having in mind that γ > 1 and limt→0+ t3u′(t) = 0,
equation (9.49) yields

lim
t→0+

∫ t

0

s3

(
a0

u(s)
− 1

8 u2(s)

)
ds = 0.

Hence, by the l’Hospital rule, we have

lim
t→0+

u′(t) = lim
t→0+

1

t3

∫ t

0

s3

(
a0

u(s)
− 1

8 u2(s)

)
ds + lim

t→0+

b0

2γ
t2γ−3

= 1
3

lim
t→0+

t

u2(t)

(
a0 u(t)− 1

8

)
+

b0

2γ
lim

t→0+
t2γ−3 =

b0

2γ
lim

t→0+
t2γ−3,

i.e.

lim
t→0+

u′(t) =
b0

2γ
lim

t→0+
t2γ−3. (9.50)

On the other hand, since σ1(0) = 0 and limt→0+ σ′1(t) = ∞, we conclude
that

u(0) = 0 ⇒ lim
t→0+

u′(t) = ∞ (9.51)

by virtue of the first inequality in (9.44).

Now, assume that γ ≥ 3
2
. If u(0) = 0, then there is δ0 ∈ (0, 1) such

that
∫ t

0

s3

u2(s)

(
a0 u(s)− 1

8

)
ds < 0 for t ∈ (0, δ0)
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and consequently, by (9.49),

u′(t) <
b0

2γ
t2γ−3 < c0 for t ∈ (0, δ0),

where c0 = b0
2γ

δ2γ−3
0 ∈ (0,∞). This contradicts (9.51). So we have proved

that if γ ≥ 3
2
, then u(0) > 0. Thus if γ > 3

2
, relation (9.50) gives

limt→0+ u′(t) = 0 and if γ = 3
2
, we get from (9.50) that limt→0+ u′(t) = b0

3
.

This completes the proof. ¤

Remark 9.14. Consider a positive w-solution u of problem (9.17), (9.18)
for γ > 1. We first recapitulate the behaviour of u′ at the singular point
t = 0.

If γ ∈ (3
2
,∞), then, by (9.35), we know that u′(0+) = 0 holds.

If γ = 3
2
, then, by (9.47), the derivative satisfies u′(0+) = b0

3
.

If γ ∈ (1, 3
2
), then u′(0+) = ∞. This follows from (9.51) for u(0) = 0

and from (9.50) for u(0) > 0.

Now, let us consider the singular point t = 1. Since u(1) = 0, there
exists ξ ∈ (0, 1) such that a0u(t) ≤ 1

16
for t∈ [ξ, 1]. Let σ2 be an upper

function given by the second formula in (9.30) and let u(t) ≤ σ2(t) for
t ∈ [0, 1]. Then it follows that

−
∫ t

ξ

ds

u2(s)
≤−

∫ t

ξ

ds

σ2
2(s)

≤− 1

2 c 2

∫ t

ξ

ds

1−s
=

1

2 c 2
ln

(
1− t

1−ξ

)
, t∈ (ξ, 1).

Integration of equation (9.17) yields

t3 u′(t) = ξ3 u′(ξ) +

∫ t

ξ

s3

u2(s)

(
a0 u(s)− 1

8

)
ds + b0

∫ t

ξ

s 2γ−1 ds

≤ ξ3 u′(ξ) +
ξ3

32 c2
ln

(
1− t

1−ξ

)
+

b0

2γ
for t∈ (ξ, 1),

and therefore limt→1− t3 u′(t) = u′(1−) = −∞.
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Chapter 10

Nonlocal problems

In this chapter we discuss problems for second order differential equations
with φ – Laplacian and with nonlinearities which may have singularities
in both their space variables. Boundary conditions under discussion are
generally nonlinear and nonlocal. Using regularization and sequential tech-
niques we present general existence principles for the solvability of regular
and singular nonlocal problems and show their applications.

We consider singular differential equations of the form

(φ(u′))′ = f(t, u, u′) (10.1)

where

φ is an increasing and odd homeomorphism and φ(R) = R. (10.2)

Here f ∈Car([0, T ] × D), D ⊂ R2 is not necessarily closed, and f may
have singularities in its space variables.

Let A denote the set of functionals α : C1[0, T ] → R which are

(a) continuous and

(b) bounded, that is, α(Ω) is bounded for any bounded Ω ⊂ C1[0, T ].

For α, β ∈A, consider the (generally nonlinear and nonlocal) boundary
conditions

α(u) = 0, β(u) = 0, (10.3)

where α and β satisfy the compatibility condition requiring that for each
µ∈ [0, 1] there exists a solution of the problem

(φ(u′))′ = 0, α(u)− µα(−u) = 0, β(u)− µ β(−u) = 0.

251
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This is true if and only if the system

{
α(A + Bt)− µα(−A−Bt) = 0,

β(A + Bt)− µβ(−A−Bt) = 0
(10.4)

has a solution (A,B)∈R2 for each µ∈ [0, 1].

Definition 10.1. A function u : [0, T ] → R is said to be a solution of prob-
lem (10.1), (10.3) if φ(u′)∈AC[0, T ], u satisfies the boundary conditions
(10.3) and (φ(u′(t)))′ = f(t, u(t), u′(t)) holds for almost all t∈ [0, T ].

Special cases of the boundary conditions (10.3) are the Dirichlet (Neu-
mann; mixed; periodic and Sturm-Liouville type) boundary conditions which
we get setting α(x) = x(0), β(x) = x(T ) (α(x) = x′(0), β(x) = x′(T );
α(x) = x(0), β(x) = x′(T ); α(x) = x(0)− x(T ), β(x) = x′(0)− x′(T ) and
α(x) = a0x(0) + a1x

′(0), β(x) = b0 x(T ) + b1 x′(T )).

Existence principles

In order to give an existence result for problem (10.1), (10.3), we use reg-
ularization and sequential techniques. For this purpose consider the sequence
of regular differential equations

(φ(u′))′ = fn(t, u, u′) (10.5)

where fn ∈Car([0, T ]×R2), n∈N. Each function fn is constructed in such
a way that

fn(t, x, y) = f(t, x, y) for a.e. t∈ [0, T ] and all (x, y)∈Qn

where Qn ⊂ D and, roughly speaking, Qn converges to D as n →∞.

Let h∈Car([0, T ]× R2) and consider the regular differential equation

(φ(u′))′ = h(t, u, u′). (10.6)

The next result is an existence principle which can be used for solving
the nonlocal regular problem (10.6), (10.3).
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Theorem 10.2 (Existence principle for nonlocal regular problems).

Assume (10.2), h∈Car([0, T ] × R2) and α, β ∈A. Suppose there exist
positive constants S0 and S1 such that

‖u‖∞ < S0, ‖u′‖∞ < S1

for each λ∈ [0, 1] and each solution u to the problem
{

(φ(u′))′ = λ h(t, u, u′),

α(u) = 0, β(u) = 0.
(10.7)

Also assume that there exist positive constants Λ0 and Λ1 such that

|A| < Λ0, |B| < Λ1 (10.8)

for each µ∈ [0, 1] and each solution (A,B)∈R2 of system (10.4).

Then problem (10.6), (10.3) has a solution.

Proof. Set

Ω =
{

x∈C1[0, T ] : ‖x‖∞ < max{S0, Λ0 + Λ1T}, ‖x′‖∞ < max{S1, Λ1}
}

.

Then Ω is an open, bounded and symmetric with respect to 0∈C1[0, T ]
subset of the space C1[0, T ]. Define an operator P : [0, 1] × Ω → C1[0, T ]
by the formula





P(λ, x)(t) = x(0) + α(x)

+

∫ t

0

φ−1
(
φ(x′(0) + β(x)) + λ

∫ s

0

h(v, x(v), x′(v)) dv
)

ds.

(10.9)

It follows from h∈Car([0, T ] × R2), the continuity of α, β, φ and from
the Lebesgue dominated convergence theorem that P is a continuous oper-
ator. We claim that the set P([0, 1]× Ω) is relatively compact in C1[0, T ].
Indeed, since Ω is bounded in C1[0, T ], we have

|α(x)| ≤ r, |β(x)| ≤ r, |h(t, x(t), x′(t))| ≤ %(t)

for a.e. t∈ [0, T ] and all x∈Ω, where r > 0 is a constant and %∈L1[0, T ].
Then

|P(λ, x)(t)| ≤ max{S0, Λ0+Λ1 T}+r+T φ−1 (φ (max{S1, Λ1}+r) +‖%‖1) ,
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|P(λ, x)′(t)| ≤ φ−1 (φ (max{S1, Λ1}+ r) + ‖%‖1)

and

|φ[P(λ, x)′(t2)]− φ[P(λ, x)′(t1)]| ≤
∣∣∣
∫ t2

t1

%(t) dt
∣∣∣

for t, t1, t2 ∈ [0, T ] and (λ, x)∈ [0, 1]×Ω. Here P(λ, x)′(t) = d
dt
P(λ, x)(t).

Hence the set P([0, 1]× Ω) is bounded in C1[0, T ] and the set

{φ(P(λ, x)′) : (λ, x)∈ [0, 1]× Ω}

is equicontinuous on [0, T ]. Using the fact that φ−1 is an increasing home-
omorphism from R onto R and

|P(λ, x)′(t2)−P(λ, x)′(t1)|=|φ−1 (φ(P(λ, x)′(t2)))−φ−1 (φ(P(λ, x)′(t1))) |,

we deduce that {P(λ, x)′ : (λ, x)∈ [0, 1]×Ω} is also equicontinuous on [0, T ].
Now the Arzelà-Ascoli theorem shows that P([0, 1]×Ω) is relatively compact
in C1[0, T ]. Thus P is a compact operator.

Suppose that x0 is a fixed point of the operator P(1, ·). Then

x0(t) = x0(0) + α (x0)

+

∫ t

0

φ−1

(
φ(x′0(0)+β(x0))+

∫ s

0

h(v, x0(v), x′0(v))dv

)
ds.

Hence α(x0) = 0, β(x0) = 0 and x0 is a solution of the differential equa-
tion (10.6). Therefore x0 is a solution of problem (10.6), (10.3) and to prove
our theorem, it suffices to show that

deg(I − P(1, ·), Ω) 6= 0 (10.10)

where I is the identity operator on C1[0, T ]. To see this let us define
a compact operator K : [0, 1]× Ω → C1[0, T ] by

K(µ, x)(t) = x(0) + α(x)− µα(−x) + [x′(0) + β(x)− µ β(−x)] t.

Then K(1, ·) is odd (i.e. K(1,−x) = −K(1, x) for x∈Ω) and

K(0, ·) = P(0, ·). (10.11)
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If K(µ1, x1) = x1 for some µ1 ∈ [0, 1] and x1 ∈Ω, then

x1(t) = x1(0) + α(x1)− µ1 α(−x1) + [x′1(0) + β(x1)− µ1 β(−x1)] t

for t∈ [0, T ]. Thus x1(t) = A1 + B1 t where A1 = x1(0) + α(x1)−µ1 α(−x1)
and B1 = x′1(0) + β(x1)−µ1 β(−x1), so

α(x1)− µ1 α(−x1) = 0 and β(x1)− µ1 β(−x1) = 0.

Hence

α(A1 + B1 t)− µ1 α(−A1 −B1 t) = 0,

β(A1 + B1 t)− µ1 β(−A1 −B1 t) = 0.

Therefore |A1|< Λ0, |B1|< Λ1 and ‖x1‖∞ < Λ0 + Λ1T, ‖x′1‖∞ < Λ1, which
gives x1 6∈ ∂Ω. Now, by the Borsuk antipodal theorem and the homotopy
property (see the Leray-Schauder degree theorem with U = Ω ),

deg(I − K(0, ·), Ω) = deg(I − K(1, ·), Ω) 6= 0. (10.12)

Finally, assume that P(λ∗, x∗) = x∗ for some λ∗ ∈ [0, 1] and x∗ ∈Ω. Then
x∗ is a solution of problem (10.7) with λ = λ∗ and, by our assumptions,
‖x∗‖∞ < S0 and ‖x′∗‖∞ < S1. Hence x∗ 6∈ ∂ Ω and the homotopy property
yields

deg(I − P(0, ·), Ω) = deg(I − P(1, ·), Ω).

This together with (10.11) and (10.12) implies (10.10). We have proved that
problem (10.6), (10.3) has a solution. ¤

Remark 10.3. If functionals α, β ∈A are linear, then they satisfy the com-
patibility condition. Indeed, system (10.4) has the form

A α(1) + B α(t) = 0,

A β(1) + B β(t) = 0

for each µ∈ [0, 1] and we see that it is always solvable in R2. The set of
all its solutions (A,B) is bounded if and only if α(1) β(t)− α(t) β(1) 6= 0.
In such a case system (10.4) has only the trivial solution (A,B) = (0, 0).
This is satisfied for example for the Dirichlet conditions but not for the
periodic conditions.
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Let us consider the singular problem (10.1), (10.3). By regularization
and sequential techniques we construct an approximate sequence of the reg-
ular problems (10.5), (10.3) for whose solvability Theorem 10.2 can be used.
Existence results for problem (10.1), (10.3) can be proved by the following ex-
istence principle which is based on a combination of the Lebesgue dominated
convergence theorem with the Fatou lemma.

Let I and J be intervals containing 0. Assume that





f ∈Car([0, T ]×D) where D = (I \ {0})× (J \ {0})
and f may have space singularities at x = 0 and y = 0.

(10.13)

Theorem 10.4 (Existence principle for nonlocal singular problems).

Assume (10.2) and (10.13). Let fn ∈Car([0, T ]× R2) satisfy





0 ≤ fn(t, x, y) ≤ p(t, |x|, |y|)
for a.e. t∈ [0, T ] and each x, y ∈R \ {0}, n∈N,

where p∈Car([0, T ]× (0,∞)2).

(10.14)

Suppose that for each n∈N the regular problem (10.5), (10.3) has a solution
un and there exists a subsequence {ukn} of {un} converging in C1[0, T ] to
some u. Then u is a solution of problem (10.1), (10.3) if u and u′ have
a finite number of zeros and

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t)) for a.e. t∈ [0, T ]. (10.15)

Proof. Assume that (10.15) is true and 0 ≤ ξ1 < ξ2 < · · · < ξm ≤ T are
all zeros of u and u′. We have ‖ukn‖∞ ≤ L and ‖u′kn

‖∞ ≤ L for each
n∈N, where L is a positive constant, and

φ(u′kn
(T ))− φ(u′kn

(0)) =

∫ T

0

fkn(t, ukn(t), u′kn
(t)) dt, n∈N.

It follows from assumptions (10.14), (10.15) and from the Fatou lemma that

∫ T

0

f(t, u(t), u′(t)) dt ≤ 2φ(L).
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Hence f(t, u(t), u′(t))∈L1[0, T ]. Set ξ0 = 0 and ξm+1 = T. We claim that
for all j ∈{0, 1, . . . , m} such that ξj < ξj+1, the equality

φ(u′(t)) = φ
(
u′(

ξj + ξj+1

2
)
)

+

∫ t

(ξj+ξj+1)/2

f(s, u(s), u′(s)) ds (10.16)

is satisfied for t∈ [ξj, ξj+1]. Indeed, let j ∈{0, 1, . . . ,m} and ξj < ξj+1. Let

us look at the interval [ξj +δ, ξj+1−δ] where δ ∈ (0,
ξj+ξj+1

2
). We know that

|u| > 0 and |u′| > 0 on (ξj, ξj+1) and consequently, there exists a positive
ε such that |u(t)| ≥ ε, |u′(t)| ≥ ε for t∈ [ξj + δ, ξj+1 − δ]. Hence there
exists n0 ∈N such that |ukn(t)| ≥ ε

2
, |u′kn

(t)| ≥ ε
2

for t∈ [ξj + δ, ξj+1 − δ]
and n ≥ n0. This yields (see (10.14))

0 ≤ fkn(t, ukn(t), u′kn
(t)) ≤ ψ(t)

for a.e. t∈ [ξj + δ, ξj+1 − δ] and all n ≥ n0, where

ψ(t) = sup{p(t, u, v) : t∈ [ξj+δ, ξj+1−δ], u, v ∈ [
ε

2
, L]}∈L1[ξj+δ, ξj+1−δ].

Letting n →∞ in

φ(u′kn
(t)) = φ

(
u′kn

(
ξj + ξj+1

2
)
)

+

∫ t

(ξj+ξj+1)/2

fkn(s, ukn(s), u′kn
(s)) ds

gives (10.16) for t∈ [ξj +δ, ξj+1−δ] by the Lebesgue dominated convergence

theorem. Since δ ∈ (0,
ξj+ξj+1

2
) is arbitrary, equality (10.16) is true on the in-

terval (ξj, ξj+1) and using the fact that f(t, u(t), u′(t))∈L1[0, T ], (10.16)
holds also at t = ξj and ξj+1. From equality (10.16) for t∈ [ξj, ξj+1] and
0 ≤ j ≤ m it follows that φ(u′)∈AC[0, T ] and that

(φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t∈ [0, T ].

Finally, α(ukn) = 0 and β(ukn) = 0 and the continuity of α and β yields
α(u)=0 and β(u)=0. Hence u is a solution of problem (10.1), (10.3). ¤

Application of existence principles

The next part of this chapter is devoted to an application of the above
existence principles. We consider equation (10.1) where f satisfies the
Carathéodory conditions on a subset of [0, T ]×R2 and f(t, x, y) may have
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space singularities at x = 0 and y = 0. Along with equation (10.1) we
discuss the nonlocal boundary conditions

min{u(t) : t ∈ [0, T ]} = 0, γ(u′) = 0, γ ∈B, (10.17)

where B denotes the set of functionals γ : C[0, T ] → R which are

(a) continuous, γ(0) = 0, and

(b) increasing, i.e. x, y ∈C[0, T ] and x< y on (0, T ) =⇒ γ(x) <γ(y).

Example. Let n∈N, 0≤ a< b≤T, ξ ∈ (0, T ) and 0 <t1 < . . . < tn <T.
Then the functionals

γ1(x) =x(ξ) + max{x(t) : t∈ [a, b]}, γ2(x) =

∫ b

a

x2n+1(t) dt,

γ3(x) =

∫ T

0

ex(t) dt− T, γ4(x) =
n∑

j=1

x(tj)

belong to the set B. The functionals

γ5(x) = x(0) and γ6(x) = x(0) + x(T )

satisfy condition (a) of B but do not satisfy condition (b). Hence γ5, γ6 6∈ B.

Notice that the boundary conditions (10.17) satisfy the compatibility con-
dition. Indeed, if we put α(x) = min{x(t) : t∈ [0, T ]} and β(x) = γ(x′)
in (10.4), we obtain the system

max{A+Bt : t∈ [0, T ]} − µ max{−A−Bt : t∈ [0, T ]} = 0,

γ(B)− µ γ(−B) = 0,

having the solution (A,B) = (0, 0)∈R2 for each µ∈ [0, 1].

We are interested in conditions on the functions φ and f in (10.1) which
guarantee solvability of problem (10.1), (10.17) for each γ ∈B. Notice that if
f is positive, then solutions of problem (10.1), (10.17) have singular points
of type II.

We will need the following result.
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Lemma 10.5. Let γ ∈B and let γ(u) = 0 for some u∈C[0, T ]. Then u
vanishes at some point of (0, T ).

Proof. To obtain a contradiction, suppose that u(t) 6= 0 for all t∈ (0, T ).
Then u> 0 or u< 0 on (0, T ). Therefore γ(u) >γ(0) = 0 or γ(u) <γ(0) = 0,
contrary to γ(u) = 0. Consequently, u(ξ) = 0 for some ξ ∈ (0, T ). ¤

We state an existence result for problem (10.1), (10.17).

Theorem 10.6. Let (10.2) hold. Further, assume that f ∈Car([0, T ]×D),
where D=(0,∞)×(R\{0}), and that the following conditions are satisfied:





ϕ(t)≤ f(t, x, y)≤ (h1(x) + h2(x))[ω1(φ(|y|)) + ω2(φ(|y|))]
for a.e. t∈ [0, T ] and each (x, y)∈D, where

ϕ∈L∞[0, T ] is positive,

h1, ω1 ∈C[0,∞) are positive and nondecreasing,

h2, ω2 ∈C(0,∞) are positive and nonincreasing,
∫ 1

0

h2(s) ds < ∞

(10.18)

and

lim inf
x→∞

V (x)

H(T x)
> 1 (10.19)

where

V (x)=

∫ φ(x)

0

φ−1(s)

ω1(s+1) + ω2(s)
ds, H(x)=

∫ x

0

[h1(s+1) +h2(s)] ds (10.20)

for x∈ [0,∞).

Then for each γ ∈B, problem (10.1), (10.17) has a solution u such that
φ(u′)∈AC[0, T ].

In order to prove Theorem 10.6 we use regularization and sequential
techniques. To this end, for each n∈N′ = {n∈N : φ( 1

n
) ≤ 1}, define
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fn ∈Car([0, T ]× R2) by the formula

fn(t, x, y) =





f(t, x, y) for t∈ [0, T ], x ≥ 1
n
, |y| ≥ 1

n
,

f(t, 1
n
, y) for t∈ [0, T ], x < 1

n
, |y| ≥ 1

n
,

n
2

[
fn(t, x, 1

n
) (y + 1

n
)− fn(t, x,− 1

n
) (y − 1

n
)
]

for t∈ [0, T ], x∈R, |y| < 1
n
.

Then assumption (10.18) gives




ϕ(t) ≤ fn(t, x, y)

≤ [h1(|x|+1) + h2(|x|)] [ω1(φ(|y|)+1) + ω2(φ(|y|))]
(10.21)

for a.e. t∈ [0, T ] and each x, y ∈R \ {0}, n∈N′.

Consider the regular differential equation

(φ(u′))′ = fn(t, u, u′) (10.22)

where n∈N′.

For the proof of Theorem 10.6 the following lemma is essential.

Lemma 10.7. Let the assumptions of Theorem 10.6 be satisfied and let
γ ∈B. Then for each n∈N′, problem (10.22), (10.17) has a solution un

such that φ(u′n)∈AC[0, T ] and




−u′n(t)≥φ−1
(∫ ξn

t

ϕ(s)ds
)
, un(t)≥

∫ ξn

t

φ−1
(∫ ξn

s

ϕ(v)dv
)
ds

for t∈ [0, ξn],

u′n(t)≥φ−1
(∫ t

ξn

ϕ(s)ds
)
, un(t)≥

∫ t

ξn

φ−1
(∫ s

ξn

ϕ(v)dv
)
ds

for t∈ [ξn, T ],

(10.23)

where ξn ∈ (0, T ) is the unique zero both of un and of u′n. In addition,
the sequence {un}n∈N′ is bounded in C1[0, T ] and {u′n}n∈N′ is equicontin-
uous on [0, T ].
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Proof. Let n∈N′. First, using Theorem 10.2 with

α(u) = min{u(t) : t∈ [0, T ]} and β(u) = γ(u′) for u∈C1[0, T ]

we prove existence of a solution of problem (10.22), (10.17). To this end, we
consider the family of regular differential equations

(φ(u′))′ = λ fn(t, u, u′) (10.24)

depending on the parameter λ∈ [0, 1]. Let u be a solution of problem
(10.24), (10.17). If λ = 0 then (φ(u′))′ = 0 a.e. on [0, T ] and conse-
quently, u(t) = A + B t where A,B ∈R. Since γ(u′) = 0, Lemma 10.5
shows that u′(ξ) = 0 for some ξ ∈ (0, T ) and therefore B = 0. Now
the condition min{u(t) : t∈ [0, T ]} = 0 gives A = 0. Hence u = 0. Let
λ∈ (0, 1]. Then (φ(u′(t)))′ ≥ λϕ(t) > 0 for a.e. t∈ [0, T ]. Therefore φ(u′)
is increasing on [0, T ] and since φ is increasing on R, u′ is increasing
on [0, T ]. Due to Lemma 10.5, u′(ξ) = 0 for a unique ξ ∈ (0, T ) and from
min{u(t) : 0 ≤ t ≤ T} = 0 we see that u(ξ) = 0. Obviously, u > 0
on [0, T ] \ {ξ}, u′ < 0 on [0, ξ), u′ > 0 on (ξ, T ] and (see inequality
(10.21))

(φ(u′(t)))′ ≤ [h1(u(t) + 1) + h2(u(t))] [ω1(φ(|u′(t)|)+1) + ω2(φ(|u′(t)|))]
for a.e. t∈ [0, T ]. Integrating

(φ(u′(t)))′u′(t)
ω1(1−φ(u′(t))) + ω2(−φ(u′(t)))

≥ [h1(u(t)+1) + h2(u(t))]u′(t) (10.25)

over [t, ξ] ⊂ [0, ξ] and

(φ(u′(t)))′u′(t)
ω1(φ(u′(t))+1) + ω2(φ(u′(t)))

≤ [h1(u(t)+1) + h2(u(t))]u′(t) (10.26)

over [ξ, t] ⊂ [ξ, T ], we get

V (|u′(t)|) ≤ H(u(t)) for t∈ [0, ξ] (10.27)

and

V (u′(t)) ≤ H(u(t)) for t∈ [ξ, T ], (10.28)

respectively, where the functions V and H are given in formula (10.20).
From u(t) =

∫ t

ξ
u′(s) ds for t∈ [0, T ] it follows that ‖u‖∞ ≤ T‖u′‖∞ and
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therefore (10.27) and (10.28) imply V (|u′(t)|) ≤ H(T‖u′‖∞) for t∈ [0, T ].
Hence

V (‖u′‖∞) ≤ H(T‖u′‖∞). (10.29)

By assumption (10.19) we can find a positive constant S such that

V (x) > H(T x) whenever x ≥ S.

This together with relation (10.29) implies that ‖u′‖∞ <S and consequently,
‖u‖∞≤T‖u′‖∞ < S T. We have proved that ‖u‖∞ < S T and ‖u′‖∞ < S
for all solutions of problem (10.24), (10.17) and each λ∈ [0, 1].

We are now looking for all solutions (A,B)∈R2 of the system

min{A+Bt : t∈ [0, T ]}−µ min{−A−Bt : t∈ [0, T ]} = 0, (10.30)

γ(B)− µ γ(−B) = 0, (10.31)

where µ∈ [0, 1]. Fix µ∈ [0, 1] and suppose that (A,B)∈R2 is a solu-
tion of system (10.30), (10.31). If B 6= 0 then Lemma 10.5 shows that
γ(B) 6= 0 and since γ is an increasing functional and γ(0) = 0, we have
γ(−B) γ(B) < 0, contrary to (see (10.31)) γ(−B) γ(B) = µ γ2(−B) ≥ 0.
Hence B = 0 and then A = 0, which follows immediately from (10.30). We
have proved that (A,B) = (0, 0) is the unique solution of system (10.30),
(10.31) for each µ∈ [0, 1].

By Theorem 10.2, for each n∈N′ there exists a solution un of problem
(10.22), (10.17). From the above consideration we have un(ξn) = u′n(ξn) = 0
for a unique ξn ∈ (0, T ). Furthermore, {un}n∈N′ is bounded in C1[0, T ]
since ‖un‖∞ < S T and ‖u′n‖∞ < S for n∈N′. Integrating for each n∈N′
the inequality (φ(u′n(t)))′ ≥ ϕ(t) which holds for a.e. t∈ [0, T ] and having
in mind that un(ξn) = u′n(ξn) = 0, we obtain (10.23).

It remains to verify that {u′n}n∈N′ is equicontinuous on [0, T ]. We know
that {un}n∈N′ is bounded in C1[0, T ]. Thus {un}n∈N′ is equicontinuous
on [0, T ] and so is {H(un)}n∈N′ since H ∈C[0,∞). Hence for each ε > 0
we can find δ > 0 such that

|H(un(t2))−H(un(t1))| < ε, n∈N′,
whenever 0≤ t1 <t2≤T and t2− t1 <δ. Put

V ∗(v) =





V (v) for v ∈ [0,∞)

−V (−v) for v ∈ (−∞, 0).
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Let 0≤ t1 <t2≤T and t2− t1 <δ. If t2≤ ξn, then integrating the inequal-
ity

(φ(u′n(t)))′u′n(t)

ω1(1−φ(u′n(t))) + ω2(−φ(u′n(t)))
≥ [h1(un(t)+1)+h2(un(t))]u′n(t) (10.32)

(see (10.25)) from t1 to t2 yields

0 < V ∗(u′n(t2))− V ∗(u′n(t1)) ≤ H(un(t1))−H(un(t2)) < ε

and if t1≥ ξn then integrating the inequality

(φ(u′n(t)))′ u′n(t)

ω1(φ(u′n(t))+1) + ω2(φ(u′n(t)))
≤ [h1(un(t)+1)+h2(un(t))]u′n(t) (10.33)

(see (10.26)) from t1 to t2 gives

0 < V ∗(u′n(t2))− V ∗(u′n(t1)) ≤ H(un(t2))−H(un(t1)) < ε.

Finally, if t1 <ξn <t2 then integrating inequality (10.32) over the interval
[t1, ξn] and inequality (10.33) over the interval [ξn, t2], we obtain

0 < −V ∗(u′n(t1)) ≤ H(un(t1)) = H(un(t1))−H(un(ξn)) < ε

and

0 < V ∗(u′n(t2)) ≤ H(un(t2)) = H(un(t2))−H(un(ξn)) < ε.

We have proved that

0 < V ∗(u′n(t2))− V ∗(u′n(t1)) < 2 ε for all n∈N′.

Consequently, the sequence {V ∗(u′n)}n∈N′ is equicontinuous on [0, T ] and
since V ∗ ∈C(R) is increasing and the sequence {u′n}n∈N′ is bounded in
C[0, T ], we conclude that {u′n}n∈N′ is equicontinuous on [0, T ]. ¤

We are now in a position to prove Theorem 10.6.

Proof of Theorem 10.6. Fix γ ∈B. Due to Lemma 10.7, for each n∈N′
there exists a solution un of problem (10.22), (10.17) satisfying inequalities
(10.23) where ξn ∈ (0, T ) is the unique zero both of un and of u′n, the se-
quence {un}n∈N′ is bounded in C1[0, T ] and {u′n}n∈N′ is equicontinuous
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on [0, T ]. By the Arzelà-Ascoli theorem and the Bolzano-Weierstrass Theo-
rem, we may assume without loss of generality that {un}n∈N′ is convergent
in C1[0, T ] and {ξn}n∈N′ is convergent in R. Let limn→∞ un = u and
limn→∞ ξn = ξ. Then u∈C1[0, T ] satisfies the nonlocal boundary condi-
tions (10.17) and letting n →∞ in inequalities (10.23) we get

|u′(t)| ≥φ−1
(∫ ξ

t

ϕ(s) ds
)
, u(t)≥

∫ ξ

t

φ−1
(∫ ξ

s

ϕ(v) dv
)

ds for t∈ [0, ξ]

and

u′(t)≥φ−1
(∫ t

ξ

ϕ(s) ds
)
, u(t)≥

∫ t

ξ

φ−1
(∫ s

ξ

ϕ(v) dv
)

ds for t∈ [ξ, T ].

Hence ξ is the unique zero both of u and of u′ and since γ(u′) = 0,
Lemma 10.5 yields ξ ∈ (0, T ). Moreover,

lim
n→∞

fn(t, un(t), u′n(t)) = f(t, u(t), u′(t)) for a.e. t∈ [0, T ]

and (see inequality (10.21))

0 ≤ fn(t, x, y) ≤ p(t, |x|, |y|) for a.e. t∈ [0, T ] and all x, y ∈R \ {0},

where p(t, z, v) = (h1(z + 1) + h2(z)) [ω1(φ(v) + 1) + ω2(φ(v))] is continuous
on [0, T ] × (0,∞)2. Hence Theorem 10.4 guarantees that φ(u′)∈AC[0, T ]
and u is a solution of problem (10.1), (10.17). ¤

Example. Let p∈ (1,∞), β ∈ (0, 1), α, µ, λ, cj ∈ (0,∞), j = 1, 2, 3, 4,
α + µ < p − 1 and let ϕ∈L∞[0,∞) be positive. By Theorem 10.6, for
each γ ∈B the differential equation

(|u′|p−2 u′)′ = ϕ(t)
(
1 + c1 uα +

c2

uβ

)(
1 + c3 |u′|µ +

c4

|u′|λ
)

has a solution u satisfying conditions (10.17) and |u′|p−2u′ ∈AC[0, T ].

Bibliographical notes

Theorem 10.2 was taken from Agarwal, O’Regan and Staněk [20] and from
Rach̊unková, Staněk and Tvrdý [163]. Theorem 10.4 was adapted from [163]
and Theorem 10.6 from Staněk [186]. Other singular nonlocal problems for
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equation (10.1) may be found in [20] and Staněk [184], [185]. The paper [184]
deals with the nonlocal boundary conditions

u(0) = u(T ), max{u(t) : t ∈ [0, T ]} = c (c∈R),

whereas [185] discusses conditions

u(0) = u(T ) = −γ min{u(t) : t ∈ [0, T ]} (γ ∈ (0,∞)).

In [20] conditions min{u(t) : t ∈ [0, T ]} = 0, α(u) = 0 are considered
where α belongs to the set of functionals α : C1[0, T ] → R which are (i)
continuous, (ii) bounded and satisfy (iii) x∈C1[0, T ], ε x′ > 0 on [0, T ]
for ε∈{−1, 1} ⇒ ε α(x) > 0.





Chapter 11

Problems with a parameter

This chapter is devoted to a class of singular boundary value problems with
the φ –Laplacian

(φ(u′))′ = µf(t, u, u′), (11.1)

u ∈ S (11.2)

depending on the parameter µ. Here φ is an increasing homomorphism
from R onto R, f is a Carathéodory function on a set [0, T ]×D, D ⊂ R2,
f may have singularities in both its space variables and S is a closed subset
in C1[0, T ]. Usually the set S is described by three boundary conditions.
Such conditions have for example the form

u(0) = 0, u(T ) = 0, max{u(t) : 0 ≤ t ≤ T} = A, (11.3)

or

u(0) = 0, u(T ) = 0,

∫ T

0

√
1 + (u′(t))2 dt = B, (11.4)

where A, B ∈ R. We note that problems (11.1), (11.3) and (11.1), (11.4)
are singular boundary value problems depending on the parameter µ and
we are looking for a value µ∗ of the parameter µ for which the Dirich-
let problem (11.1), u(0) = u(T ) = 0 has a solution u∈C1[0, T ] satis-
fying the third (nonlocal) condition in (11.3) or (11.4), φ(u′)∈AC[0, T ]
and (φ(u′(t)))′ = µ∗ f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. If problem (11.1),
u(0) = u(T ) = 0 has a unique solution for each µ from a subset of R, then
the shooting method can be applied for solving problems (11.1), (11.3) and
(11.1), (11.4). However, in our considerations such assumption is not intro-
duced. Our method for establishing the solvability of problem (11.1), (11.2)
is based on a regularization and a sequential technique. We present an exis-
tence principle for solving problem (11.1), (11.2) and give its application to
problem (11.1), (11.3).

267
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Existence principle

Consider the family of auxiliary regular differential equations

(φ(u′))′ = µfn(t, u, u′) (11.5)

depending on the parameters µ∈R and n∈N. Here fn∈Car([0, T ]×R2).
The next existence principle for solving problem (11.1), (11.2) is closely re-
lated to the principle which is presented in Theorem 10.4.

Definition 11.1. A function u : [0, T ] → R with φ(u′)∈AC[0, T ] is
called a solution of problem (11.1), (11.2) if there exists µu ∈ R such that
(φ(u′(t)))′ = µu f(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and u ∈ S.

Let I and J be intervals containing 0. Assume that




f ∈Car([0, T ]×D) where D = (I \ {0})× (J \ {0})
and f may have space singularities at x = 0 and y = 0.

(11.6)

Theorem 11.2 (Existence principle for singular problems with a parameter).
Let f satisfy (11.6) and let fn ∈Car([0, T ]× R2) satisfy the inequality

0 ≤ −fn(t, x, y) ≤ p(t, |x|, |y|), n ∈ N, (11.7)

for a.e. t ∈ [0, T ] and all x, y ∈R \ {0}, where p∈Car([0, T ] × (0,∞)2).
Suppose that there exist positive constants µ∗, µ∗, µ∗ < µ∗, such that for
each n ∈ N, the regular problem (11.5), (11.2) has a solution un ∈C1[0, T ],
φ(u′n)∈AC[0, T ], with µ = µn ∈ [µ∗, µ∗]. Let {un} be bounded in C1[0, T ]
and {u′n} be equicontinuous on [0, T ]. Then

(i) there exist u∈C1[0, T ], µ0 ∈ [µ∗, µ∗] and subsequences {ukn}, {µkn}
such that ‖ukn − u‖C1 → 0 and |µkn − µ0| → 0 as n →∞,

(ii) if u and u′ have a finite number of zeros and

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ], (11.8)

then φ(u′)∈AC[0, T ] and u is a solution of problem (11.1), (11.2)
with µ = µ0 .
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Proof. Assertion (i) follows from the Arzelà-Ascoli theorem and the Bolza-
no-Weierstrass Theorem.

In order to prove assertion (ii) assume that equality (11.8) is true and
that 0 ≤ ξ1 < · · · < ξm ≤ T are all zeros of u and u′ and put ξ0 =
0, ξm+1 = T. Since the next part of the proof uses similar procedures as
the proof of Theorem 10.4, we show only the main differences. We have
‖ukn‖C1 ≤ L for each n ∈ N, where L is a positive constant, and

φ(u′kn
(T )) = φ(u′kn

(0)) + µkn

∫ T

0

fkn(t, ukn(t), u′kn
(t)) dt, n ∈ N.

It follows from µn ∈ [µ∗, µ∗], conditions (11.7), (11.8) and from the Fatou
lemma that

−
∫ T

0

f(t, u(t), u′(t)) dt ≤ φ(L)− φ(−L)

µ∗
.

Hence f(t, u(t), u′(t))∈L1[0, T ]. We can also verify that

φ(u′(t)) = φ
(
u′

(ξj + ξj+1

2

))
+ µ0

∫ t

(ξj+ξj+1)/2

f(s, u(s), u′(s)) ds

for t∈ [ξj, ξj+1] provided j ∈{0, ... , m} and ξj <ξj+1. Hence φ(u′)∈AC[0, T ]
and

(φ(u′(t)))′ = µ0 f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Since {ukn} ⊂ S and S is closed in C1[0, T ] we have u∈S. Therefore u
is a solution of problem (11.1), (11.2) for µ = µ0 . ¤

Application of the existence principle

We now present an application of Theorem 11.2 to the singular problem
(11.1), (11.2).

Definition 11.3. A function u : [0, T ] → R with φ(u′)∈AC[0, T ] is
called a solution of problem (11.1), (11.3) if there exists µu ∈ R such that
(φ(u′(t)))′ = µu f(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and u fulfils the boundary
conditions (11.3).
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We will use the following assumptions:




φ : R→ R is an increasing and odd homeomorphism,

φ(R) = R and there exists β > 0 such that

φ(v) ≤ vβ for v ∈ [0,∞),

(11.9)





f ∈Car([0, T ]×D), D = (0,∞)× (R \ {0}),
and there exists a > 0 such that

a ≤ −f(t, x, y) for a.e. t ∈ [0, T ] and each (x, y) ∈ D,

(11.10)





−f(t, x, y) ≤ [h1(x) + h2(x)] [ω1(φ(|y|)) + ω2(φ(|y|))]
for a.e. t ∈ [0, T ] and each (x, y) ∈ D,

where h1, ω1 ∈C[0,∞) are positive and nondecreasing,

h2, ω2 ∈C(0,∞) are positive and nonincreasing, and
∫ 1

0

h2(s) ds < ∞,

∫ ∞

0

β
√

s

ω1(s)
ds = ∞.

(11.11)

For each n ∈ N define %n ∈C(R) and fn ∈Car([0, T ]× R2) by

%n(v) =





v for v ≥ 1
n
,

1
n

for v < 1
n
,

fn(t, x, y) =





f(t, %n(x), y) for (t, x, y) ∈ [0, T ]× R× (R \ [− 1
n
, 1

n
]),

n
2

[f(t, %n(x), 1
n
)(y + 1

n
)− f(t, %n(x),− 1

n
)(y − 1

n
)]

for (t, x, y) ∈ [0, T ]× R× [− 1
n
, 1

n
].

By assumptions (11.10) and (11.11),

a ≤ −fn(t, x, y) (11.12)

and

−fn(t, x, y) ≤ [h1(x + 1) + h2(x)] [ω1(φ(|y|) + 1) + ω2(φ(|y|))] (11.13)



Chapter 11. Problems with parameter 271

hold for a.e. t ∈ [0, T ] and each (x, y) ∈ D, n ∈ N.

Consider the family of regular differential equations

(φ(u′))′ = µfn(t, u, u′) (11.14)

depending on the parameters µ ∈ R and n ∈ N along with the boundary
conditions

u(0) = 0, u(T ) = 0, (11.15)

max{u(t) : 0 ≤ t ≤ T} = A. (11.16)

A priori bounds for solutions of problem (11.14)– (11.16) and the corre-
sponding values of the parameter µ are given in the next three lemmas.

Lemma 11.4. Let assumptions (11.9) and (11.10) hold. Let A > 0 and
let u be a solution of problem (11.14)– (11.16) with some µ = µu. Then
µu > 0, u′ is decreasing on [0, T ],

u′(t)




≥ φ−1(a µu(ξ − t)) for t∈ [0, ξ],

≤ −φ−1(a µu(t− ξ)) for t∈ [ξ, T ],
(11.17)

where ξ ∈ (0, T ) is the unique zero of u′,

u(t) ≥





A

ξ
t for t∈ [0, ξ],

A

T − ξ
(T − t) for t∈ (ξ, T ]

(11.18)

and

µu ≤ 1

a

(
A

(
1 +

1

β

))β( 2

T

)1+β

. (11.19)

Proof. If µu ≤ 0 then (φ(u′))′ ≥ −a µu ≥ 0 a.e. on [0, T ]. Hence φ(u′) is
nondecreasing on [0, T ] which implies that of u′. Due to (11.15), u′(t0) = 0
for t0 ∈ (0, T ) and therefore u′ ≤ 0 on [0, t0] and u′ ≥ 0 on [t0, T ]. This
and (11.15) yield u ≤ 0 on [0, T ], contrary to equality (11.16). Hence
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µu > 0 and then from (φ(u′))′ ≤ −aµu < 0 a.e. on [0, T ] we see that u′ is
decreasing on [0, T ] and u′ has a unique zero ξ ∈ (0, T ). Using φ(0) = 0,
u′(ξ) = 0 and integrating (φ(u′))′ ≤ −a µu we obtain inequality (11.17).

Since u(0) = u(T ) = 0, u(ξ) = A and u is concave on [0, T ], which
follows from the fact that u′ is decreasing on [0, T ], we see that (11.18)
holds.

It remains to prove inequality (11.19). By (11.9), we have φ(v) ≤ vβ for
v ∈ [0,∞) and consequently

φ−1(v) ≥ β
√

v for v ∈ [0,∞). (11.20)

This and inequality (11.17) give

A = u(ξ) =

∫ ξ

0

u′(t) dt ≥
∫ ξ

0

φ−1(a µu (ξ − t)) dt

=
1

a µu

∫ a µu ξ

0

φ−1(s) ds ≥ 1

aµu

∫ a µu ξ

0

β
√

s ds

=
β β
√

a µu

1 + β
ξ1+ 1

β ,

A = u(ξ) =

∫ ξ

T

u′(t) dt ≥
∫ T

ξ

φ−1(a µu (t− ξ)) dt

=
1

a µu

∫ a µu (T−ξ)

0

φ−1(s) ds ≥ 1

a µu

∫ a µu (T−ξ)

0

β
√

s ds

=
β β
√

a µu

1 + β
(T − ξ)1+ 1

β .

Hence

A ≥ β β
√

a µu

1 + β
max

{
ξ1+ 1

β , (T − ξ)1+ 1
β

}
≥ β β

√
a µu

1 + β

(T

2

)1+ 1
β

and then we see from the inequality

β
√

a µu ≤ A
(
1 +

1

β

)( 2

T

)1+ 1
β

that inequality (11.19) is true. ¤
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Lemma 11.5. Let assumptions (11.9)– (11.11) hold and let A > 0. Then
there exists a positive constant P independent of n ∈ N and λ∈ (0, 1]
such that for any solution u of problem (11.14), (11.15) with some µ = µu

satisfying

max{u(t) : 0 ≤ t ≤ T} = λA, λ∈ (0, 1], (11.21)

the inequalities

‖u′‖∞ < P (11.22)

and 0 < µu ≤ µ∗ are valid where

µ∗ =
1

a

(
A

(
1 +

1

β

))β( 2

T

)1+β

. (11.23)

Proof. Let u be a solution of problem (11.14), (11.15) with some µ = µu.
Let u satisfy condition (11.21) for some λ∈ (0, 1]. Then it follows from
Lemma 11.4 (with λA instead of A ) that u is positive on (0, T ), u′ is
decreasing on [0, T ], u′ has a unique zero ξ ∈ (0, T ) and

0 < µu ≤ 1

a

(
λA

(
1 +

1

β

))β( 2

T

)1+β

≤ µ∗.

Hence

‖u′‖∞ = max{u′(0), −u′(T )} (11.24)

and u(ξ) = λA. In addition, by inequality (11.13),

(φ(u′(t)))′≥−µu [h1(u(t)+1) + h2(u(t))] [ω1(φ(|u′(t)|)+1) + ω2(φ(|u′(t)|))]

for a.e. t ∈ [0, T ]. Thus

(φ(u′(t)))′u′(t)
ω1(φ(u′(t))+1) + ω2(φ(u′(t)))

≥−µu[h1(u(t)+1) + h2(u(t))]u′(t) (11.25)

for a.e. t∈ [0, ξ] and

(φ(u′(t)))′u′(t)
ω1(1−φ(u′(t)))+ω2(−φ(u′(t)))

≤−µu[h1(u(t)+1)+h2(u(t))]u′(t) (11.26)
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for a.e. t∈ [ξ, T ]. Integrating (11.25) over [0, ξ] and (11.26) over [ξ, T ], we
get





∫ φ(u′(0))

0

φ−1(s)

ω1(s+1) + ω2(s)
ds

≤µu

∫ u(ξ)

0

(h1(s+1)+h2(s)) ds≤µu

∫ A

0

(h1(s+1)+h2(s)) ds

≤µ∗
∫ A

0

(h1(s+1)+h2(s)) ds

(11.27)

and





∫ φ(−u′(T ))

0

φ−1(s)

ω1(s+1) + ω2(s)
ds≤µu

∫ u(ξ)

0

(h1(s+1) + h2(s)) ds

≤µ∗
∫ A

0

(h1(s+1) + h2(s)) ds.

(11.28)

We now show that

∫ ∞

0

φ−1(s)

ω1(s+1) + ω2(s)
ds = ∞. (11.29)

Due to assumption (11.11) we have

∫ ∞

0

β
√

s

ω1(s)
ds = ∞ and, consequently,

∫ ∞

2

β
√

s

ω1(s)
ds = ∞.

From assumption (11.9) and from the properties of the functions ω1 and ω2

if follows that φ−1(s) ≥ β
√

s for s∈ [0,∞) and

ω1(s + 1) + ω2(s) ≤ ω1(s + 1) + ω2(1) ≤ L ω1(s + 1) for s∈ [1,∞),

where

L = 1 +
ω2(1)

ω1(2)
.
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Hence

∫ ∞

2

β
√

s

ω1(s)
ds =

∫ ∞

2

β

√
s

s− 1

β
√

s− 1

ω1(s)
ds ≤ β

√
2

∫ ∞

2

β
√

s− 1

ω1(s)
ds

=
β
√

2

∫ ∞

1

β
√

s

ω1(s + 1)
ds ≤ β

√
2 L

∫ ∞

1

β
√

s

ω1(s + 1) + ω2(s)
ds

≤ β
√

2 L

∫ ∞

1

φ−1(s)

ω1(s + 1) + ω2(s)
ds.

Therefore

∫ ∞

1

φ−1(s)

ω1(s + 1) + ω2(s)
ds = ∞

and consequently, (11.29) holds. Equality (11.29) guarantees the existence
of a positive constant Q such that

∫ Q

0

φ−1(s)

ω1(s + 1) + ω2(s)
ds > µ∗

∫ A

0

(h1(s + 1) + h2(s)) ds.

Now inequalities (11.27) and (11.28) give max{φ(u′(0)), φ(−u′(T ))}< Q
and from (11.24) we see that (11.22) holds with P = φ−1(Q). ¤

Lemma 11.6. Let conditions (11.9)– (11.11) hold and let A > 0. Then
there exists a positive constant µ∗ independent of n ∈ N such that for any
solution u of problem (11.14)– (11.16) with some µ = µu the inequality

µu ≥ µ∗ (11.30)

is satisfied.

Proof. Let u be a solution of problem (11.14)– (11.16) with some µ = µu .
Then u(ξ) = A, where ξ ∈ (0, T ) is the unique zero of u′, and therefore

A = u(ξ)− u(0) = u′(η1) ξ, A = u(ξ)− u(T ) = −u′(η2) (T − ξ),

where 0 < η1 < ξ < η2 < T. Hence u′(η1) = A
ξ
, −u′(η2) = A

T−ξ
and since

min{ξ, T − ξ} ≤ T
2
, we have max{u′(η1),−u′(η2)} ≥ 2A

T
. Thus ‖u′‖∞ ≥ 2A

T
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and it follows from (11.24), (11.27) and (11.28)) that

∫ φ(2A/T )

0

φ−1(s)

ω1(s + 1) + ω2(s)
ds ≤

∫ φ(‖x′‖∞)

0

φ−1(s)

ω1(s + 1) + ω2(s)
ds

≤ µu

∫ A

0

(h1(s + 1) + h2(s)) ds.

We see that (11.30) holds with

µ∗ =

∫ φ(2A/T )

0

φ−1(s)

ω1(s + 1) + ω2(s)
ds

∫ A

0

(h1(s + 1) + h2(s)) ds

.

¤

We are now in a position to show that the regular problem (11.14)– (11.16)
has a solution for each n ∈ N.

Lemma 11.7. Let conditions (11.9)– (11.11) hold and let A > 0. Then prob-
lem (11.14)– (11.16) has a solution for each n ∈ N.

Proof. Fix n ∈ N and let P > 0 be given by Lemma 11.5. Set

Ω =
{

(u, µ)∈C1[0, T ]× R : ‖u‖∞ < A + 1, ‖u′‖∞ < P,

|µ| < 1

a

(
A

(
1 +

1

β

))β( 2

T

)1+β

+ 1
}

.

Then Ω is an open, bounded and symmetric with respect to (0,0) subset
of the Banach space C1[0, T ]× R.

Define an operator H= (H1,H2) : [0, 1]× Ω → C1[0, T ]× R by

H(λ, u, µ) = (H1(λ, u, µ), H2(λ, u, µ)),

H1(λ, u, µ) =

∫ t

0

φ−1
(
B + µ

(
(λ− 1)s + λ

∫ s

0

fn(τ, u(τ), u′(τ)) dτ
))

ds,

H2(λ, u, µ) = λ [max{u(t) : 0 ≤ t ≤ T}+ min{u(t) : 0 ≤ t ≤ T}]
+ (1− λ) u(T

2
) + µ ,
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where the constant B = B(λ, u, µ) is the unique solution of the equation

p(B; λ, u, µ) = 0 (11.31)

with

p(B; λ, u, µ)=

∫ T

0

φ−1
(
B+µ

(
(λ−1) t+λ

∫ t

0

fn(s, u(s), u′(s))ds
))

dt. (11.32)

The existence and uniqueness of a solution for equation (11.31) follows from
the fact that p(· ; λ, u, µ) is continuous and increasing on R and

lim
B→±∞

p(B; λ, u, µ) = ±∞

for each (λ, u, µ)∈ [0, 1]× Ω.

Since

H(0, u, µ) =
( ∫ t

0

φ−1(B − µ s) ds, u(T
2
) + µ

)
,

where B is the unique solution of the equation
∫ T

0
φ−1(B−µ t) dt = 0,

the Mean Value Theorem for integrals gives B = µ t0 for some t0 ∈ (0, T ).
Hence

H(0, u, µ) =
( ∫ t

0

φ−1(µ(t0 − s)) ds, u(T
2
) + µ

)

and therefore H(0,−u,−µ) = −H(0, u, µ) for (u, µ) ∈ Ω, which shows that
H(0, ·, ·) is an odd operator.

We claim that H is a compact operator. To this aim let

{(λm, um, µm)} ⊂ [0, 1]× Ω

and

lim
m→∞

(λm, um, µm) = (λ0, u0, µ0) in [0, 1]× C1[0, T ]× R.

Let Bm be the solution of the equation p(B; λm, um, µm) = 0. Since the se-
quence {um} is bounded in C1[0, T ] and fn ∈Car([0, T ]×R2), there exists
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q ∈L1[0, T ] such that |fn(t, um(t), u′m(t))| ≤ q(t) for a.e. t∈ [0, T ] and each
m∈N . Consequently, {Bm} is bounded, otherwise

lim sup
m→∞

|p(Bm; λm, um, µm)| = ∞,

a contradiction.

We will show that {Bm} is convergent. Let {Bkm} be a convergent
subsequence of {Bm} and κ = limm→∞ Bkm . Then

0 = lim
m→∞

p(Bkm ; λkm , ukm , µkm) = p(κ; λ0, u0, µ0)

by the Lebesgue dominated convergence theorem, and consequently κ= B0

where B0 is the unique solution of the equation p(B; λ0, u0, µ0) = 0. We have
proved that any convergent subsequence of {Bm} has the same limit B0 .
Therefore limm→∞ Bm = B0. Then

lim
m→∞

∫ t

0

φ−1
(
Bm+µm

(
(λm−1)s+λm

∫ s

0

fn(τ, um(τ), u′m(τ)) dτ
))

ds

=

∫ t

0

φ−1
(
B0+µ0

(
(λ0−1)s+λ0

∫ s

0

fn(τ, u0(τ), u′0(τ)) dτ
))

ds

in C1[0, T ]. This, together with

lim
m→∞

(
λm[max{um(t) : 0 ≤ t ≤ T}+ min{um(t) : 0 ≤ t ≤ T}]

+(1−λm)um(T
2
) + µm

)

= λ0[max{u0(t) : 0 ≤ t ≤ T}+ min{u0(t) : 0 ≤ t ≤ T}]

+(1−λ0)u0(
T
2
) + µ0,

implies that H is a continuous operator.

In order to verify that the set H([0, T ] × Ω) is relatively compact in
C1[0, T ]×R, let us consider a sequence {(λj, uj, µj)} ⊂ [0, 1]×Ω. Then the
sequence

{λj[max{uj(t) : 0 ≤ t ≤ T}+min{uj(t) : 0 ≤ t ≤ T}]+(1−λj) uj(
T
2
)+µj}
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is bounded in R and there exists r∈L1[0, T ] such that the inequality

|fn(t, uj(t), u
′
j(t))| ≤ r(t) for a.e. t ∈ [0, T ] and all j ∈ N.

holds. Let p(Bj; λj, uj, µj) = 0 for j ∈N. Then the sequence {Bj} is boun-
ded in R and the sequence

{ ∫ t

0

φ−1
(
Bj + µj

(
(λj − 1) s + λj

∫ s

0

fn(τ, uj(τ), u′j(τ)) dτ
))

ds
}

is bounded in C1[0, T ] . Moreover, the sequence

{
µj

(
(λj − 1) t + λj

∫ t

0

fn(s, uj(s), u
′
j(s) ds

)}

is equicontinuous on [0, T ]. Therefore {H(λj, uj, µj)} is relatively compact
in C1[0, T ] × R by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass
Theorem.

Let H(λ0, u0, µ0) = (u0, µ0) for some λ0 ∈ [0, 1] and (u0, µ0)∈ ∂Ω. Then

(φ(u′0(t)))
′ = µ0[λ0− 1 + λ0 fn(t, u0(t), u

′
0(t))] for a.e. t ∈ [0, T ], (11.33)

u0(0) = 0, u0(T ) = 0, (11.34)




λ0 [max{u0(t) : 0 ≤ t ≤ T}+ min{u0(t) : 0 ≤ t ≤ T}]
+(1−λ0) u0(

T
2
) = 0.

(11.35)

If µ0 > 0 then (11.12) and (11.33) give (φ(u′0))
′ < 0 a.e. on [0, T ] and

(11.34) implies that u0 > 0 on (0, T ). Therefore min{u0(t) : 0≤ t≤T}= 0
and by virtue of (11.35)

0 = λ0 max{u0(t) : 0 ≤ t ≤ T}+ (1− λ0) u0(
T
2
) > 0,

which is impossible. Let µ0 < 0. Then (11.12) and (11.33) yield (φ(u′0))
′ > 0

a.e. on [0, T ], which together with (11.34) implies that u0 < 0 on (0, T )
and

0 = λ0 min{u0(t) : 0 ≤ t ≤ T}+ (1− λ0) u0(
T
2
) < 0,
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a contradiction. Hence µ0 = 0 and then we see from (φ(u′0))
′ = 0 a.e.

on [0, T ] and (11.34) that u0 = 0. We have proved that (u0, µ0) 6∈ ∂Ω
and therefore H(λ, u, µ) 6= (u, µ) for λ∈ [0, 1] and (u, µ) ∈ ∂Ω. Now, by
the Borsuk antipodal theorem, deg(I − H(0, ·, ·), Ω) 6= 0, where I is the
identity operator on C1[0, T ]× R. In addition,

deg(I −H(1, ·, ·), Ω) = deg(I −H(0, ·, ·), Ω)

by the homotopy property (see the Leray-Schauder degree theorem with
U = Ω ). Consequently,

deg(I −H(1, ·, ·), Ω) 6= 0. (11.36)

Finally, define an operator K = (K1,K2) : [0, 1]× Ω → C1[0, T ]× R by the
formulas

K1(λ, u, µ) =

∫ t

0

φ−1
(
D + µ

∫ s

0

fn(τ, u(τ), u′(τ)) dτ
)

ds,

K2(λ, u, µ) = max{u(t) : 0 ≤ t ≤ T}+ min{u(t) : 0 ≤ t ≤ T}−λA + µ,

where the constant D = D(u, µ) is the unique solution of the equation

r(D; u, µ) = 0 (11.37)

with

r(D; u, µ) =

∫ T

0

φ−1
(
D + µ

∫ t

0

fn(s, u(s), u′(s)) ds
)

dt. (11.38)

Essentially the same reasoning as for equation (11.31) and for the operator
H shows that there exists a unique solution of equation (11.37) and that
K is a compact operator. Assume that K(λ∗, u∗, µ∗) = (u∗, µ∗) for some
λ∗ ∈ [0, 1] and (u∗, µ∗)∈ ∂Ω. Then

(φ(u′∗(t)))
′ = µ∗fn(t, u∗(t), u′∗(t))) for a.e. t ∈ [0, T ], (11.39)

u∗(0) = 0, u∗(T ) = 0, (11.40)

max{u∗(t) : 0 ≤ t ≤ T}+ min{u∗(t) : 0 ≤ t ≤ T} = λ∗ A. (11.41)
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If µ∗ ≤ 0 then (φ(u′∗))
′ ≥ 0 a.e. on [0, T ] and from (11.40) we deduce

that u∗ ≤ 0 on [0, T ]. Then (11.41) gives

0 ≤ λ∗ A = max{u∗(t) : 0 ≤ t ≤ T}+ min{u∗(t) : 0 ≤ t ≤ T}
= min{u∗(t) : 0 ≤ t ≤ T},

which leads to u∗ = 0. Consequently, by (11.39), µ∗ = 0 and therefore
(u∗, µ∗) = (0, 0), contrary to (u∗, µ∗)∈ ∂Ω. It follows that µ∗ > 0 and then
(φ(u′∗))

′ < 0 a.e. on [0, T ]. From this inequality and from (11.40) we get
u∗ > 0 on (0, T ) and (11.41) gives max{u∗(t) : 0 ≤ t ≤ T} = λ∗ A. Thus
u∗ is a solution of problem (11.14),(11.15),(11.21) (with µ = µ∗ in (11.14)
and λ = λ∗ in (11.21)). Therefore ‖u∗‖∞ = λ∗ A and, by Lemma 11.5,

‖u′∗‖∞ < P, 0 < µ∗ ≤ 1

a

(
A

(
1 +

1

β

))β( 2

T

)1+β

.

Hence (u∗, µ∗) 6∈ ∂Ω and we have proved that K(λ, u, µ) 6= (u, µ) for all
λ∈ [0, 1] and (u, µ)∈ ∂Ω. By the homotopy property,

deg(I − K(0, ·, ·), Ω) = deg(I − K(1, ·, ·), Ω).

Since H(1, ·, ·) = K(0, ·, ·), relation (11.36) gives deg(I − K(1, ·, ·), Ω) 6= 0.
Therefore there exists a fixed point (û, µ̂) of the operator K(1, ·, ·) and it
is easy to check that û is a solution of problem (11.14)-(11.16) with µ = µ̂ .

¤

Our next result is needed for applying Theorem 11.2 to the solvability
of problem (11.1), (11.3).

Lemma 11.8. Let conditions (11.9)– (11.11) hold and let A > 0. Let un

be a solution of problem (11.14)– (11.16) with some µ = µn, n ∈ N .

Then the sequence {u′n} is equicontinuous on [0, T ].

Proof. By Lemmas 11.4–11.6, for each n ∈ N we have 0 ≤ un(t) ≤ A
for t ∈ [0, T ], u′n is decreasing on [0, T ] and u′n vanishes at a unique
ξn ∈ (0, T ). Furthermore, there exist positive constants P, µ∗ and µ∗ such
that

‖u′n‖∞ < P, n ∈ N, (11.42)

µ∗ ≤ µn ≤ µ∗, n ∈ N. (11.43)
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Put

G(v) =

∫ φ(v)

0

φ−1(s)

ω1(s + 1) + ω2(s)
ds, H(v) =

∫ v

0

(h1(s + 1) + h2(s)) ds

for v ∈ [0,∞) and

G∗(v) =





G(v) for v ∈ [0,∞),

−G(−v) for v ∈ (−∞, 0).

Since {un} is bounded in C1[0, T ], the sequence {H(un)} is equicontin-
uous on [0, T ] and therefore for each ε > 0 there exists δ > 0 such that

|H(un(t2))−H(un(t1))| < ε (11.44)

whenever 0 ≤ t1 < t2 ≤ T and t2 − t1 < δ. Choose 0 ≤ t1 < t2 ≤ T. If
t2 ≤ ξn then integrating (see (11.25))





φ(u′n(t)) u′n(t)

ω1(φ(u′n(t)) + 1) + ω2(φ(u′n(t)))

≥ −µn [h1(un(t) + 1) + h2(un(t))] u′n(t)

(11.45)

from t1 to t2 yields




0 < G(u′n(t1))−G(u′n(t2)) ≤ µn [H(un(t2))−H(un(t1))]

≤ µ∗ [H(un(t2))−H(un(t1))],
(11.46)

while if ξn ≤ t1 then integrating (see (11.26))




φ(u′n(t)) u′n(t)

ω1(−φ(u′n(t)) + 1) + ω2(−φ(u′n(t)))

≤ −µn [h1(un(t) + 1) + h2(un(t))] u′n(t),

(11.47)

over [t1, t2] gives




0 < G(−u′n(t2))−G(−u′n(t1)) ≤ µn [H(un(t1))−H(un(t2))]

≤ µ∗ [H(un(t1))−H(un(t2))].
(11.48)
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Finally, if t1 < ξn < t2 then integrating (11.45) over [t1, ξn] and (11.47)
over [ξn, t2] gives





0 < G(u′n(t1)) ≤ µn [H(un(ξn))−H(un(t1))]

≤ µ∗ [H(un(ξn))−H(un(t1))],
(11.49)





0 < G(−u′n(t2)) ≤ µn [H(un(ξn))−H(un(t2))]

≤ µ∗ [H(un(ξn))−H(un(t2))].
(11.50)

Now inequalities (11.46) and (11.48)– (11.50) imply that

0 < G∗(u′n(t1))−G∗(u′n(t2)) ≤ µ∗ |H(un(t1))−H(un(t2))|
if 0 ≤ t1 < t2 ≤ ξn or ξn ≤ t1 < t2 ≤ T and

0 < G∗(u′n(t1))−G∗(u′n(t2)) ≤ µ∗ [2 H(un(ξn))−H(un(t1))−H(un(t2))]

if 0 ≤ t1 < ξn < t2 ≤ T. This and inequality (11.44) give

0 < G∗(u′n(t1))−G∗(u′n(t2)) ≤ 2 µ∗ ε

whenever 0 ≤ t1 < t2 ≤ T and t2 − t1 < δ. Hence {G∗(u′n)} is equicon-
tinuous on [0, T ] and since G∗ ∈C(R) is increasing and {u′n} is bounded
in C[0, T ], we see that {u′n} is equicontinuous on [0, T ]. ¤

The following theorem gives an existence result for problem (11.1), (11.3).

Theorem 11.9. Let assumptions (11.9)– (11.11) hold. Then for each A > 0
there exists µ> 0 such that problem (11.1), (11.3) has a solution u∈C1[0, T ]
such that φ(u′)∈AC[0, T ] and u > 0 on (0, T ).

Proof. Fix A > 0. By Lemma 11.7, for each n ∈ N there exists a solution
un of problem (11.14)– (11.16) with some µ = µn. Lemmas 11.4–11.6 yield
that

0 ≤ un(t) ≤ A for t ∈ [0, T ], (11.51)

u′n is decreasing on [0, T ] and vanishes at a unique ξn ∈ (0, T ),

un(t) ≥





A

ξn

t for t∈ [0, ξn],

A

T − ξn

(T − t) for t∈ [ξn, T ],

(11.52)
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u′n(t)




≥ φ−1(a µn (ξn − t)) for t∈ [0, ξn],

≤ −φ−1(a µn (t− ξn)) for t∈ [ξn, T ],
(11.53)

and there exist positive constants P, µ∗ and µ∗ such that inequalities
(11.42) and (11.43) are satisfied for all n∈N. In addition, by Lemma 11.8,
{u′n} is equicontinuous on [0, T ]. Using the Arzelà-Ascoli theorem and
the Bolzano-Weierstrass Theorem we can assume without loss of generality
that {un} is convergent in C1[0, T ] and {µn} and {ξn} are convergent
in R. Let limn→∞ un = u, limn→∞ µn = µ and limn→∞ ξn = ξ. Then
u∈C1[0, T ] fulfils (11.3), u′(ξ) = 0 and letting n → ∞ in inequalities
(11.43) and (11.51)– (11.53), we get 0 ≤ u(t) ≤ A for t ∈ [0, T ],

u(t) ≥





A

ξ
t for t∈ [0, ξ],

A

T − ξ
(T − t) for t∈ [ξ, T ],

u′(t)




≥ φ−1(a µ∗ (ξ − t)) for t∈ [0, ξ],

≤ −φ−1(a µ∗ (t− ξ)) for t∈ [ξ, T ],

and µ∗≤µ≤µ∗. Hence ξ ∈ (0, T ) is the unique zero of u′, u > 0 on (0, T )
and

lim
n→∞

fn(t, un(t), u′n(t)) = f(t, u(t), u′(t)) for a.e. t∈ [0, T ].

By inequality (11.13),

0 < a ≤ −fn(t, x, y) ≤ [h1(|x|+ 1) + h2(|x|)] [ω1(φ(|y|) + 1) + ω2(φ(|y|))]

for a.e. t∈ [0, T ] and all x, y ∈R \ {0}. Put

p(t, x, y) = [h1(x + 1) + h2(x)] [ω1(φ(y) + 1) + ω2(φ(y))]

for (t, x, y)∈ [0, T ]×(0,∞)2. Then fn satisfies inequality (11.7) and, conse-
quently, Theorem 11.2 guarantees that φ(u′)∈AC[0, T ] and u is a solution
of problem (11.1), (11.3). ¤
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Example. Let p∈ (1,∞), γ1, η1, η2 ∈ (0,∞), γ2, γ3 ∈ (0, 1) and η3 ∈ (0, p).
By Theorem 11.9, for all A> 0 there exist µ > 0 and a solution u of the dif-
ferential equation

(|u′|p−2 u′)′ + µ
(
1 + uγ1 +

1

uγ2
+

1

uγ3|u′|η1
+

1

|u′|η2
+ |u′|η3

)
= 0

satisfying the boundary conditions (11.3) and u > 0 on (0, T ).

Bibliographical notes

Theorem 11.2 is taken from Staněk [187], Theorem 11.9 was adapted from
Agarwal, O’Regan and Staněk [19]. Another singular problems for equa-
tion (11.1) depending on a parameter were considered in Staněk [187] and
Staněk and Přibyl [188]. The paper [187] deals with the boundary conditions
u(0)=0, u(T )=0, ϕ(u′)=A (A>0) where ϕ∈A. Here A is the set of func-
tionals ϕ : C[0, T ]→R which are (i) continuous, ϕ(0) = 0, ϕ(x) = ϕ(|x|)
for x∈C[0, T ], (ii) increasing and (iii) unbounded in the following sense:
limµ→∞ ϕ(µx) =∞ for each x∈C[0, T ], x 6≡ 0. We note that the boun-
dary conditions (11.4) are a special case of the conditions discussed in [187].
In [188] the authors considered the boundary conditions u(0) + u(T ) = 0,
u′(0) = u′(T ) = 0 and max{u(t) : 0≤ t≤T} = A (A > 0). The method of im-
plementation of parameters to a singular Lidstone problem for higher order
differential equations with the extra condition max{u(t) : 0 ≤ t ≤ T} = A
was studied in Agarwal, O’Regan and Staněk [17].





Appendix A

Uniform integrability,
equicontinuity

Here we present three criteria guaranteeing uniform integrability of sequences
in L1[0, T ] which are applied in our proofs.

A sequence {ϕm} ⊂ L1[0, T ] is called uniformly integrable on [0, T ] if
for any ε> 0 there exists δ > 0 such that if M⊂ [0, T ] and meas (M) <δ,
then

∫

M
|ϕm(t)| dt < ε for m∈N.

An immediate consequence of the definition is the following simple criterion.

Criterion A.1. Let ϕm, α∈L1[0, T ] be such that

|ϕm(t)| ≤ α(t) for a.e. t ∈ [0, T ] and all m ∈ N.

Then {ϕm} is uniformly integrable on [0, T ].

In order to prove more sophisticated criteria the following auxiliary result
is useful.

Lemma A.2. Let {ϕm} ⊂ L1[0, T ]. Suppose that for every ε > 0 there
exists δ > 0 such that for any at most countable set {(ai, bi)}i∈J of mutually
disjoint intervals (ai, bi) ⊂ [0, T ],

∑
i∈J(bi − ai) < δ, we have

∑

i∈J

∫ bi

ai

|ϕm(t)| dt < ε for m ∈ N.

Then {ϕm} is uniformly integrable on [0, T ].

Proof. Fix ε> 0 and let δ > 0 be from the assumption. Let M⊂[0, T ] be
a measurable set, meas (M)<δ/2. Then there exists an open set M1⊂[0, T ],

287
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M∩(0, T ) ⊂M1 such that meas (M1) < δ. From the structure of open and
bounded subsets in R it follows that M1 is the union of at most countable
set {(αj, βj)}j∈J∗ of mutually disjoint intervals (αj, βj) ⊂ [0, T ]. Then

∫

M1

|ϕm(t)| dt =
∑

j∈J∗

∫ βj

αj

|ϕm(t)| dt < ε, m ∈ N,

by our assumptions. Hence
∫

M
|ϕm(t)| dt ≤

∫

M1

|ϕm(t)| dt < ε, m ∈ N.

Consequently, {ϕm} is uniformly integrable on [0, T ]. ¤

Criterion A.3. Let {um} ⊂ C[0, T ] and `∈N. Let there exist `m+1 dis-
joint intervals (dm,k, dm,k+1), 0 ≤ k ≤ `m, `m ≤ `, such that

`m⋃

k=0

[dm,k, dm,k+1] = [0, T ],

and for k ∈{0, . . . , `m} and m∈N one of the inequalities

|um(t)| ≥ b(t− dm,k)
rm,k for t∈ [dm,k, dm,k+1]

or

|um(t)| ≥ b(dm,k+1 − t)rm,k for t∈ [dm,k, dm,k+1]

is satisfied where b > 0, 1 ≤ rm,k ≤ r. In addition, assume that g is
a nonincreasing and positive function on (0,∞) and

∫ 1

0

g(sr) ds < ∞.

Then the sequence {g(|um(t)|)} is uniformly integrable on [0, T ].

Proof. Put c = min{ 1
T
, min{b1/rm,k : 0 ≤ k ≤ `m, m∈N}}. Then

b (t− dm,k)
rm,k ≥ [c (t− dm,k)]

r, b (dm,k+1 − t)rm,k ≥ [c (dm,k+1 − t)]r

for t∈ [dm,k, dm,k+1]. Therefore for k ∈{0, . . . , `m} and m∈N one of the in-
equalities

|um(t)| ≥ [c (t− dm,k)]
r for t∈ [dm,k, dm,k+1] (A.1)
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or

|um(t)| ≥ [c (dm,k+1 − t)]r for t∈ [dm,k, dm,k+1] (A.2)

is satisfied.

Let {(ai, bi)}i∈ J be an at most countable set of mutually disjoint inter-
vals (ai, bi) ⊂ [0, T ]. Put

Jm,k = {i∈ J : (ai, bi) ⊂ (dm,k, dm,k+1)}
for m∈N and k ∈{0, . . . , `m}. If i∈ Jm,k then

∫ bi

ai

g(|um(t)|) dt ≤
∫ bi

ai

g([c(t− dm,k)]
r) dt =

1

c

∫ c(bi−dm,k)

c(ai−dm,k)

g(tr) dt

if (A.1) holds or
∫ bi

ai

g(|um(t)|) dt ≤
∫ bi

ai

g([c(dm,k+1 − t)]r) dt =
1

c

∫ c(dm,k+1−ai)

c(dm,k+1−bi)

g(tr) dt

if (A.2) holds. Hence

∑

i∈ Jm,k

∫ bi

ai

g(|um(t)|) dt ≤ 1

c

∫

Mm,k

g(tr) dt, 0 ≤ k ≤ `m, m∈N, (A.3)

where Mk,m⊂ [0, c T ] and meas (Mm,k)≤ c
∑

i∈ J(bi− ai).

Let i0 ∈ J \
⋃`m

k=0 Jm,k for some m∈N. Then

dm,l0 ≤ ai0 ≤ dm,l0+1 < · · · < dm,l∗ ≤ bi0 ≤ dm,l∗+1,

where l0, l∗ ∈{0, . . . , `m}, l0+1≤ l∗ and

dm,l∗ − dm,l0+1 < b i0 − a i0 < dm,l∗+1 − dm,l0 .

Notice that there exist at most `m positive integers i0 having the above
property. Thus

∫ bi0

ai0

g(|um(t)|) dt =

∫ dm,l0+1

ai0

g(|um(t)|) dt +
l∗−1∑

k=l0+1

∫ dm,k+1

dm,k

g(|um(t)|) dt

+

∫ bi0

dm,l∗

g(|um(t)|) dt
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(here
∑l∗−1

k=l0+1 = 0 if l0 + 1 = l∗). Since

∫ dm,l0+1

ai0

g(|um(t)|) dt ≤





1

c

∫ c (dm,l0+1−dm,l0
)

c(ai0
−dm,l0

)

g(tr) dt

if |um(t)| ≥ [c (t− dm,l0)]
r

1

c

∫ c(dm,l0+1−ai0
)

0

g(tr) dt

if |um(t)| ≥ [c (dm,l0+1 − t)]r,

∫ dm,k+1

dm,k

g(|um(t)|) dt ≤
∫ c(dm,k+1−dm,k)

0

g(tr) dt, l0 + 1 ≤ k ≤ l∗ − 1

if l∗ ≥ l0 + 2,

and

∫ bi0

dm,l∗

g(|um(t)|) dt ≤





1

c

∫ c(bi0
−dm,l∗ )

0

g(tr) dt

if |um(t)| ≥ [c (t− dm,l∗)]
r

1

c

∫ c (dm,l∗+1−dm,l∗ )

c (dm,l∗+1−bi0
)

g(tr) dt

if |um(t)| ≥ [c (dm,l∗+1 − t)]r,

it follows that




∫ bi0

ai0

g(|um(t)|) dt <
l∗ − l0 + 1

c

∫ c(bi0
−ai0

)

0

g(tr) dt

<
`

c

∫ c(bi0
−ai0

)

0

g(tr) dt <
`

c

∫

M∗
g(tr) dt

(A.4)

where M∗ ⊂ [0, c T ] and meas (M∗) ≤ c
∑

i∈ J(bi − ai). Due to (A.3) and
(A.4) we have that

∑

i∈ J

∫ bi

ai

g(|um(t)|) dt <
1

c

`m∑

k=0

∫

Mm,k

g(tr) dt +
`2

c

∫

M∗
g(tr) dt. (A.5)
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Since g(tr)∈L1[0, 1], for every ε > 0 there exists δ > 0 such that
∫

M
g(tr) dt <

c ε

` (` + 1)
(A.6)

whenever M ⊂ [0, 1] is measurable and meas (M) < δ. Hence for every
ε > 0 there exists δ > 0 such that for any at most countable set {(ai, bi)}i∈ J
of mutually disjoint intervals (ai, bi) ⊂ [0, T ],

∑
i∈ J(bi − ai) < δ

c
, we have

(see (A.5) and (A.6))

∑

i∈ J

∫ bi

ai

g(|um(t)|) dt <
(`

c
+

`2

c

) c ε

` (` + 1)
= ε, m∈N.

So, {g(|um(t)|)} is uniformly integrable on [0, T ] by Lemma A.2, where we
put rm(t) = g(|um(t)|) ). ¤

In particular, for `m = 1 and rm,k = r we get

Criterion A.4. Let {um} ⊂ C[0, T ] and let there exist {ξm} ⊂ (0, T ) and
b > 0, r ≥ 1 such that

|um(t)| ≥ b |t− ξm|r for t ∈ [0, T ].

Suppose that g : (0,∞) → (0,∞) is nonincreasing and

∫ 1

0

g(sr) ds < ∞.

Then the sequence {g(|um(t)|)} is uniformly integrable on [0, T ].

Equicontinuity

Consider a sequence of functions vk ∈C[a, b], k ∈ N, [a, b] ⊂ R. We say
that {vk} is equicontinuous on [a, b] if for each ε > 0 there exists δ > 0
such that for each t1, t2 ∈ [a, b] and each k ∈ N

|t1 − t2| < δ =⇒ |vk(t1)− vk(t2)| < ε.

Similarly, we say that the sequence {vk} is equicontinous at a point t0 ∈ [a, b]
if for each ε> 0 there exists δ > 0 such that for each t∈ (t0−δ, t0+δ)∩[a, b]
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and each k ∈ N the inequality |vk(t)− vk(t0)| < ε holds. If t0 = 0 (t0 = T )
we talk about equicontinuity at 0 from the right (at T from the left).

It is well known that if {vk} ⊂ C1[a, b] and there exists c > 0 such that
|v′k(t)| ≤ c on [a, b] for k ∈N, then {vk} is equicontinuous on [a, b].

Here we provide conditions which imply the equicontinuity of {vk} at the
singular point t0 ∈ [0, T ] and which are not generally available in literature.

Lemma A.5. Let t0 ∈ (0, T ). Assume that there exist η > 0 such that
[t0 − η, t0 + η] ⊂ [0, T ] and nonnegative functions α∈C[t0 − η, t0 + η],
β ∈C[t0 − η, t0) such that α(t0) = 0, β(t0−) = 0. Further assume that for
each k ∈ N, k > 1

η

|vk(t)| ≤ β(t) for t∈ [t0 − η, t0 − 1
k
], (A.7)

|vk(t)− vk(t0)| ≤ α(t) for t∈ [t0 − 1
k
, t0 + 1

k
], (A.8)

{
|vk(t)| ≤ β(t0 − 1

k
) + α(t0 − 1

k
) + α(t0 + 1

k
) + α(t)

for t∈ [t0 + 1
k
, t0 + η].

(A.9)

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

Proof. Choose an arbitrary ε > 0. Then there exists δ ∈ (0, η) such that

t∈ (t0 − δ, t0 + δ) =⇒ |α(t)| < ε

6
, t∈ (t0 − δ, t0) =⇒ |β(t)| < ε

6
.

Choose an arbitrary k ∈ N, k ≥ ε
6
. Let t∈ [t0 − 1

k
, t0 + 1

k
]. Then by (A.8),

|vk(t)− vk(t0)| ≤ α(t) <
ε

6
< ε.

Let t∈ (t0 − δ, t0 − 1
k
). Then by (A.7) and (A.8),

|vk(t)− vk(t0)| ≤ |vk(t)|+ |vk(t0)− vk(t0 − 1
k
)|+ |vk(t0 − 1

k
)|

≤ β(t) + α(t0 − 1
k
) + β(t0 − 1

k
) <

3 ε

6
< ε.

Let t∈ (t0 + 1
k
, t0 + δ). Then by (A.8) and (A.9),

|vk(t)− vk(t0)| ≤ |vk(t)|+ |vk(t0)− vk(t0 − 1
k
)|+ |vk(t0 − 1

k
)|

≤ β(t0 − 1
k
) + α(t0 − 1

k
) + α(t0 + 1

k
)

+ α(t) + α(t0 − 1
k
) + β(t0 − 1

k
) < ε.
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Hence, we have proved that {vk} is equicontinuous at t0. Further,

|vk(t0)| ≤ |vk(t0)− vk(t0 − 1
k
)|+ |vk(t0 − 1

k
)| ≤ α(t0 − 1

k
) + β(t0 − 1

k
).

Therefore limk→∞ vk(t0) = 0. ¤

Similarly we can prove

Lemma A.6. Let t0 ∈ (0, T ). Assume that there exist η > 0 such that
[t0 − η, t0 + η] ⊂ [0, T ] and nonnegative functions α∈C[t0 − η, t0 + η],
β ∈C(t0, t0 + η] such that α(t0) = 0, β(t0+) = 0. Further assume that for
each k ∈ N, k > 1

η

|vk(t)| ≤ β(t) for t∈ [t0 + 1
k
, t0 + η],

|vk(t)− vk(t0)| ≤ α(t) for t∈ [t0 − 1
k
, t0 + 1

k
],

{
|vk(t)| ≤ β(t0 + 1

k
) + α(t0 + 1

k
) + α(t0 − 1

k
) + α(t)

for t∈ [t0 − η, t0 − 1
k
].

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

In particular, for t0 = T and t0 = 0 arguing as before we get the following
two lemmas.

Lemma A.7. Assume that there exist η ∈ (0, T ) and nonnegative functions
α∈C[T − η, T ], β ∈C[T − η, T ) such that α(T ) = 0, β(T−) = 0. Further
assume that for k ∈ N, k > 1

η

|vk(t)| ≤ β(t) for t∈ [T − η, t0 − 1
k
],

|vk(t)− vk(T )| ≤ α(t) for t∈ [T − 1
k
, T ].

Then limk→∞ vk(T ) = 0 and the sequence {vk} is equicontinuous at T
from the left.

Lemma A.8. Assume that there exist η ∈ (0, T ) and nonnegative functions
α∈C[0, η], β ∈C(0, η] such that α(0) = 0, β(0+) = 0. Further assume
that for k ∈ N, k > 1

η

|vk(t)| ≤ β(t) for t∈ [ 1
k
, η],

|vk(t)− vk(T )| ≤ α(t) for t∈ [0, 1
k
].
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Then limk→∞ vk(0) = 0 and the sequence {vk} is equicontinuous at 0 from
the right.

Now we provide criteria of equicontinuity of {vk} at the point t0∈ (0, T ).

Criterion A.9. Let t0 ∈ (0, T ), β0, η ∈ (0,∞) be such that [t0−η, t0+η] ⊂
[0, T ]. Assume that there exist nonnegative functions h∗, g∗ ∈L1[0, T ] and
a nonnegative function h∈Lloc([0, T ]\{t0}) such that for each k ∈ N, k > 1

η

there is a function vk ∈AC[0, T ] fulfilling conditions

|vk(t0 − η)| ≤ β0, (A.10)
{

v′k(t) sign vk(t) ≤ −h(t) |vk(t)|+ g∗(t)

for a.e. t∈ [t0 − η, t0 + η] \ (t0 − 1
k
, t0 + 1

k
),

(A.11)

|v′k(t)| ≤ h∗(t) for a.e. t∈ [t0 − 1
k
, t0 + 1

k
], (A.12)

where

∫ t0

t0−ε

h(s) ds = +∞ for each sufficiently small ε > 0. (A.13)

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

Proof. We will construct functions α and β of Lemma A.5. Consider the
auxiliary problem

β′(t) = −h(t)β(t) + g∗(t), β(t0 − η) = β0. (A.14)

Problem (A.14) has a unique solution and this solution has the form

β(t) = exp

(
−

∫ t

t0−η

h(s) ds

)(
β0 +

∫ t

t0−η

g∗(τ) exp

(∫ τ

t0−η

h(s) ds

)
dτ

)

for t∈ [t0 − η, t0). Then β ∈C[t0 − η, t0) and, by (A.13), we get

lim
t→t0−

β(t) = β0 exp

(
−

∫ t0

t0−η

h(s) ds

)

+

∫ t0

t0−η

g∗(τ) exp

(
−

∫ t0

τ

h(s) ds

)
dτ = 0,
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because
∫ t0

τ

h(s) ds = ∞ for each τ ∈ [t0 − η, t0).

Let us prove that (A.7) is satisfied. On the contrary, assume that there exist
t1 ∈ [t0 − η, t0 − 1

k
) and t2 ∈ (t1, t0 − 1

k
] such that

|vk(t1)| = β(t1), |vk(t)| > β(t) for all t∈ (t1, t2].

Then, by (A.11) and (A.14), we get

0 < |vk(t2)| − β(t2) =

∫ t2

t1

(v′k(t) sign vk(t)− β′(t)) dt

≤ −
∫ t2

t1

h(t)(|vk(t)| − β(t)) dt ≤ 0,

a contradiction. So, (A.7) is proved.

Further, due to (A.12), we have

|vk(t)− vk(t0)| ≤
∣∣∣∣
∫ t

t0

h∗(s) ds

∣∣∣∣ for t∈ [t0 − 1
k
, t0 + 1

k
] (A.15)

and integrating (A.11) we obtain

|vk(t)| ≤ |vk(t0 + 1
k
)|+

∫ t

t0+
1
k

g∗(s) ds for t∈ [t0 + 1
k
, t0 + η]. (A.16)

Let us put

α(t) = max

{∣∣∣∣
∫ t

t0

h∗(s) ds

∣∣∣∣ ,

∣∣∣∣
∫ t

t0

g∗(s) ds

∣∣∣∣
}

for t∈ [t0 − η, t0 + η].

Then α∈C[t0 − η, t0 + η] and α(t0) = 0. Moreover, (A.15) and (A.16)
imply

|vk(t)− vk(t0)| ≤ α(t) for t∈ [t0 − 1
k
, t0 + 1

k
]

and

|vk(t)| ≤ |vk(t0 + 1
k
)|+ α(t)

≤ |vk(t0 + 1
k
)− vk(t0)|+ |vk(t0)− vk(t0 − 1

k
)|+ |vk(t0 − 1

k
)|+ α(t)

≤ α(t0 + 1
k
) + α(t0 − 1

k
) + β(t0 − 1

k
) + α(t) for t∈ [t0 + 1

k
, t0 + η].
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Thus (A.8) and (A.9) are satisfied and, by Lemma A.5, the proof is com-
pleted. ¤

Using Lemma A.6 instead of Lemma A.5 we get a modified form of Cri-
terion A.9.

Criterion A.10. Let t0 ∈ (0, T ), β0 ∈ (0,∞) and η > 0 be such that
[t0 − η, t0 + η] ⊂ [0, T ]. Assume that there exist nonnegative functions h∗,
g∗ ∈L1[0, T ] and a nonnegative function h∈Lloc([0, T ] \ {t0}) such that for
each k ∈ N, k > 1

η
there is a function vk ∈AC[0, T ] fulfilling conditions

|vk(t0 + η)| ≤ β0,
{

v′k(t) sign vk(t) ≥ h(t)|vk(t)| − g∗(t)

for a.e. t∈ [t0 − η, t0 + η] \ (t0 − 1
k
, t0 + 1

k
),

|v′k(t)| ≤ h∗(t) for a.e. t∈ [t0 − 1
k
, t0 + 1

k
],

where∫ t0+ε

t0

h(s) ds = +∞ for each sufficiently small ε > 0.

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

In particular, Lemmas A.7 and A.8 yield criteria which are used in our
proofs and which guarantee the equicontinuity of {vk} at T from the left
and at 0 from the right, respectively.

Criterion A.11. Let β0 ∈ (0,∞) and η ∈ (0, T ). Assume that there
exist nonnegative functions h∗, g∗ ∈L1[0, T ] and a nonnegative function
h∈Lloc[0, T ) such that for each k ∈ N, k > 1

η
, there exists a function

vk ∈AC[0, T ] fulfilling conditions

|vk(T − η)| ≤ β0, (A.17)
{

v′k(t) sign vk(t) ≤ −h(t)|vk(t)|+ g∗(t)

for a.e. t∈ [T − η, T − 1
k
],

(A.18)

|v′k(t)| ≤ h∗(t) for a.e. t∈ [T − 1
k
, T ], (A.19)
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where

∫ T

T−ε

h(s) ds = +∞ for each sufficiently small ε > 0. (A.20)

Then limk→∞ vk(T ) = 0 and the sequence {vk} is equicontinuous at T
from the left.

Criterion A.12. Let β0∈(0,∞) and η∈(0, T ). Assume that there exist non-
negative functions h∗, g∗∈L1[0, T ] and a nonnegative function h∈Lloc(0, T ]
such that for each k ∈N, k > 1

η
there exists a function vk ∈AC[0, T ] fulfill-

ing conditions

|vk(η)| ≤ β0, (A.21)

v′k(t) sign vk(t) ≥ h(t)|vk(t)| − g∗(t) for a.e. t∈ [ 1
k
, η], (A.22)

|v′k(t)| ≤ h∗(t) for a.e. t∈ [0, 1
k
], (A.23)

where∫ ε

0

h(s) ds = +∞ for each sufficiently small ε > 0. (A.24)

Then limk→∞ vk(0) = 0 and the sequence {vk} is equicontinuous at 0 from
the right.





Appendix B

Convergence theorems

The main tool for proving solvability of singular problems is a regulariza-
tion and a sequential technique. In this way, solutions of singular problems
are obtained by limit processes. Classical arguments here are convergence
theorems in spaces of integrable functions and differentiable functions.

Integrable functions

The following three theorems for integrable functions can be found e.g. in
Bartle [30], Hewitt and Stromberg [105], Lang [119], Natanson [143], Shilov
and Gurevich [178].

Theorem B.1 (Lebesgue dominated convergence theorem).

Let ϕm, α∈L1[0, T ] be such that

|ϕm(t)| ≤ α(t) for a.e. t ∈ [0, T ] and all m ∈ N,

lim
m→∞

ϕm(t) = ϕ(t) for a.e. t ∈ [0, T ].

Then ϕ∈L1[0, T ] and

lim
m→∞

∫ T

0

ϕm(t) dt =

∫ T

0

ϕ(t) dt.

If the sequence is bounded by a Lebesgue integrable function only from
one side, we often use the theorem which is known in literature as the Fatou
lemma.

Theorem B.2 (Fatou lemma).

Let c∈ (0,∞) and ϕm, α∈L1[0, T ] be such that

α(t) ≤ ϕm(t) for a.e. t ∈ [0, T ] and all m ∈ N,
∫ T

0

ϕm(t) dt ≤ c for all m ∈ N

and
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lim
m→∞

ϕm(t) = ϕ(t) for a.e. t ∈ [0, T ].

Then ϕ∈L1[0, T ].

If we do not know the localization in [0, T ] of singular points corre-
sponding to solutions of singular problems, i.e. problems have singular points
of type II, then it often happens that we cannot find a Lebesgue integrable
majorant function. In such cases, the Vitali convergence theorem is used
in limit processes since the existence of a Lebesgue integrable majorant func-
tion is replaced in this theorem by a more general assumption about the
uniform integrability.

Theorem B.3 (Vitali convergence theorem).

Let ϕm ⊂ L1[0, T ] for m ∈ N and let

lim
m→∞

ϕm(t) = ϕ(t) for a.e. t ∈ [0, T ].

Then the following statements are equivalent:

(i) ϕ∈L1[0, T ] and limm→∞ ‖ϕm − ϕ‖1 = 0,

(ii) the sequence {ϕm} is uniformly integrable on [0, T ].

Differentiable functions

First, we will consider the space C([a, b];Rm), m ∈ N, which is the space
of continuous m -vector valued functions on the interval [a, b]. It is well
known that all norms on Rm are equivalent (see e.g. Lang [119]), that is, if
‖ · ‖∗ and ‖ · ‖∗∗ are two norms on Rm then there exist positive constants
C1, C2 such that for all x ∈ Rm, x = (x1, . . . , xm), we have

C1 |x|∗ ≤ |x|∗∗ ≤ C2 |x|∗.
Hence without loss of generality we will use in Rm the norm

|x| = max{|xj| : 1 ≤ j ≤ m}.
We say that a subset H of C([a, b];Rm) is relatively compact if from
each sequence {fn} ⊂ H we can select a subsequence {fkn} converging
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in C([a, b];Rm}, that is, we can select a subsequence which is uniformly
convergent on [a, b].

In order to give conditions guaranteeing that a subset H of C([a, b];Rm)
is relatively compact, we introduce the notions of a uniformly bounded
on [a, b] and equicontinuous on [a, b] subset of C([a, b];Rm).

A subset H of C([a, b];Rm) is said to be uniformly bounded on [a, b] if
there exists a positive constant L such that

|f(t)| ≤ L for all f ∈H and t∈ [a, b].

It is equicontinuous on [a, b] if for each ε > 0 there exists δ > 0 such that
for any f ∈H we have

|f(t1)− f(t2)| < ε

whenever t1, t2 ∈ [a, b] and |t1 − t2| < δ.

Sufficient and necessary conditions for a subset H of C([a, b];Rm) to
be relatively compact are given in the following vector version of the Arzelà-
Ascoli theorem (see e.g. Hartman [103] or Piccinini, Stampacchia and Vi-
dossich [152]).

Theorem B.4. A subset H of C([a, b];Rm) is relatively compact if and
only if H is uniformly bounded on [a, b] and equicontinuous on [a, b].

We use the following scalar version of the Arzelà-Ascoli theorem which
describes compact subsets in Cm[a, b].

Theorem B.5 (Arzelà-Ascoli theorem).

Let m ∈ N be fixed. Assume that {un} ⊂ Cm[a, b], the sequence {u(m)
n } is

equicontinuous on [a, b] and there exists a positive constant S such that

‖u(j)
n ‖∞ ≤ S for all n ∈ N and 0 ≤ j ≤ m. (B.1)

Then there exist a subsequence {ukn} of {un} and u∈Cm[a, b] such that

lim
n→∞

‖ukn − u‖Cm = 0, (B.2)

that is limn→∞ u
(j)
kn

(t) = u(j)(t) uniformly on [a, b] for 0 ≤ j ≤ m.
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Proof. Put fn(t) = (un(t), u′n(t), . . . , u
(m)
n (t)) for t∈ [a, b] and n ∈ N.

Then {fn} ⊂ C([a, b];Rm+1) and since |fn(t)| ≤ S for t∈ [a, b] by (B.1),

the sequence {fn} is uniformly bounded on [a, b]. As {u(m)
n } is equicon-

tinuous on [a, b] by assumption, for each ε > 0 there exists δε > 0 such

that for n ∈ N we have |u(m)
n (t1) − u

(m)
n (t2)| < ε whenever t1, t2 ∈ [a, b]

and |t1− t2| < δε. Due to (B.2), |u(j)
n (t1)− u

(j)
n (t2)| ≤ S|t1− t2| for n ∈ N,

t1, t2 ∈ [a, b] and 0 ≤ j ≤ m−1. Choose ε > 0 and let 0 < δ < min{δε,
ε
S
}.

Then

|fn(t1)− fn(t2)| < ε for all n ∈ N and t1, t2 ∈ [a, b], |t1 − t2| < δ,

which shows that the sequence {fn} is equicontinuous on [a, b]. Hence
{fn} is relatively compact by Theorem B.4 and therefore there exist a sub-
sequence {fkn} of {fn} and f ∈C([a, b];Rm+1), f = (f0, f1, . . . , fm), such
that {fkn} converges in C([a, b];Rm+1) to f, which is equivalent to

lim
n→∞

u
(j)
kn

(t) = fj(t) uniformly on [a, b] for 0 ≤ j ≤ m.

We now show that

fj(t) = f
(j)
0 (t) for t∈ [a, b] and 1 ≤ j ≤ m. (B.3)

Letting n →∞ in

ukn(t) = ukn(0) + u′kn
(0) t + · · ·+ u

(j−1)
kn

(0)

(j − 1)!
tj−1

+
1

(j − 1)!

∫ t

0

(t− s)j−1u
(j)
kn

(s) ds

yields




f0(t) = f0(0) + f1(0)t + · · ·+ fj−1(0)

(j − 1)!
tj−1

+
1

(j − 1)!

∫ t

0

(t− s)j−1fj(s) ds
(B.4)

for t∈ [a, b] and 1 ≤ j ≤ m. The validity of (B.3) follows from (B.4).
Putting u = f0 we see that (B.2) holds. ¤

The next theorem about locally uniform convergence on an open and
bounded interval is proved by means of Cauchy diagonalization principle
and, hence, we call it the diagonalization theorem.
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Theorem B.6 (Diagonalization theorem).

Let a< νn < τn <b, where {νn} is decreasing and converges to a, {τn} is
increasing and converges to b. Let {un} ⊂ C1[νn, τn] be a sequence such
that for each %∈ (0, a+b

2
) there exist S% > 0 and n% ∈ N such that

|u(j)
n (t)| ≤ S% for t∈ [a + %, b− %], n ≥ n%, j = 0, 1

and {u′n}n≥n% is equicontinuous on [a + %, b− %].

Then there exist a subsequence {ukn} of {un} and u∈C1(a, b) such
that

lim
n→∞

u
(j)
kn

(t) = u(j)(t) locally uniformly on (a, b), j = 0, 1. (B.5)

Proof. Let {%n} ⊂ (0, a+b
2

) be decreasing and limn→∞ %n = 0. Then there

exists n1 ∈N such that |u(j)
n (t)| ≤S%1 for t∈ [a+%1, b−%1], n≥n1, j = 0, 1

and, in addition, {un}n≥n1 is equicontinuous on [a + %1, b − %1]. Hence,
by Theorem B.5, there is a subsequence {uk1,n} of {un}n≥n1 for which

{u(j)
k1,n

(t)} is uniformly convergent on [a + %1, b − %1] for j = 0, 1. Next,

there exists a subsequence {uk2,n} of {uk1,n} such that {u(j)
k2,n
} is uni-

formly convergent on [a + %2, b − %2] for j = 0, 1. We can proceed induc-

tively to obtain a subsequence {uki,n
} of {uki−1,n

} such that {u(j)
ki,n
} is

uniformly convergent on [a + %i, b − %i] for j = 0, 1. Put kn = kn,n for
n ∈ N and consider the diagonal sequence {ukn}. Choose [α, β] ⊂ (a, b).
Then [α, β] ⊂ [a + %m, b − %m] for some m ∈ N. Since {ukn}n≥m is

chosen from {ukm,n} and we know that {u(j)
km,n

} is uniformly convergent

on [a + %m, b− %m] for j = 0, 1 we see that {u(j)
kn
}n≥m is uniformly conver-

gent on [α, β] for j = 0, 1. We have proved that {u(j)
kn
} is locally uniformly

convergent on (a, b). Let limn→∞ ukn(t) = u(t) and limn→∞ u′kn
(t) = v(t)

for t∈ (a, b). Then u, v ∈C(a, b) and letting n →∞ in

ukn(t) = ukn

(
a+b
2

)
+

∫ t

(a+b)/2

u′kn
(s) ds, t∈ [νkn , τkn ], n ∈ N,

yields

u(t) = u
(

a+b
2

)
+

∫ t

(a+b)/2

v(s) ds, t∈ (a, b).

Hence u∈C1(a, b) and v = u′ on (a, b), which shows that (B.5) holds. ¤
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Some general existence
theorems

We present here the Schauder fixed point theorem (see Deimling [64], Granas
and Dugundji [99]), the Leray-Schauder degree theorem and the Borsuk an-
tipodal theorem (see Deimling [64], Mawhin [134]), and the Fredholm type
existence theorem (see Lasota [121], Vasiliev and Klokov [194]). These theo-
rems we use in the proofs of solvability of auxiliary regular problems. Since
the formulation of Theorem C.5 differs from those in the references cited
above we provide its proof.

Let X and Y be Banach spaces. We say that a set M⊂ X is relatively
compact if from each sequence {xm} ⊂ M a convergent subsequence can be
chosen.

Let U be a subset of X. We say that F : U → Y is a compact operator
if F is continuous and the set F(U) is relatively compact.

We say that F : U → Y is completely continuous if for each bounded set
V ⊂ U , the restriction of F on V is a compact operator.

Theorem C.1 (Schauder fixed point theorem).

Let X be a Banach space, Ω ⊂ X a nonempty, closed and convex set and
F : Ω → Ω a compact operator. Then F has a fixed point.

Theorem C.2 (Leray-Schauder degree theorem).

Let X be a Banach space, U ⊂ X. Let Ω ⊂ U be an open and bounded
set. Let F : U → X be a completely continuous operator and F(x) 6= x for
x ∈ ∂Ω. Let I be the identity operator on X.

Then there exists an integer deg(I−F , Ω) which has the following prop-
erties:

(i) (Normalization property)
If 0 ∈ Ω, then deg(I, Ω) = 1.
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(ii) (Existence property)
If deg(I − F , Ω) 6= 0, then F has a fixed point x0 ∈Ω.

(iii) (Homotopy property)
If H : [0, 1] × Ω → X is a compact operator and H(λ, x) 6= x for
λ∈ [0, 1] and x∈ ∂Ω, then

deg(I −H(0, ·), Ω) = deg(I −H(1, ·), Ω).

(iv) (Additivity property)
If Ω1 ⊂ Ω is an open set and Ω2 = Ω \ Ω1 and if F(x) 6= x for
x∈ ∂Ω1 ∪ ∂Ω2, then

deg(I − F , Ω) = deg(I − F , Ω1) + deg(I − F , Ω2).

(v) (Excision property)
If Ω1 ⊂ Ω is an open set and F(x) 6= x for x∈Ω \ Ω1, then

deg(I − F , Ω) = deg(I − F , Ω1).

Theorem C.3 (Borsuk antipodal theorem).

Let X be a Banach space, let Ω ⊂ X be an open, bounded and symmetric
set with respect to 0 ∈ Ω. Let F be odd in ∂Ω (that is F(−x) = −F(x)
for x ∈ ∂Ω). Then deg(I − F , Ω) is an odd (and so nonzero) number.

The integer deg(I − F , Ω) is the Leray-Schauder degree of the operator
F (with respect to the set Ω and the point 0). If dim X < ∞, then
the corresponding degree is usually called the Brouwer degree (with respect
to Ω and 0) and denoted by dB(I − F , Ω).

Remark C.4. Let X be a linear normed space with dim X = k < ∞
and let h be an isometrical isomorphism from X onto Rk. Let Ω be
a bounded open set in X and F : Ω → X a continuous mapping. Suppose
F (x) 6= 0 on ∂ Ω. Then

dB(F, Ω) = dB(h ◦ F ◦ h−1, h(Ω)),

where h ◦F ◦ h−1 stands for the composition of mappings h, F and h−1.
See e.g. Fuč́ık, Nečas, J. Souček and V. Souček [92] or Deimling [64].
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In order to formulate the Fredholm type existence theorem we consider
the differential equation

u(n) +
n−1∑
i=0

ai(t) u(i) = g(t, u, . . . , u(n−1)) (C.1)

and the corresponding linear homogeneous differential equation

u(n) +
n−1∑
i=0

ai(t) u(i) = 0 (C.2)

where ai ∈L1[0, T ], 0 ≤ i ≤ n − 1, g ∈Car([0, T ] × Rn). Further, we deal
with boundary conditions

Lj(u) = rj, 1 ≤ j ≤ n, (C.3)

and with the corresponding homogeneous boundary conditions

Lj(u) = 0, 1 ≤ j ≤ n, (C.4)

where Lj : Cn−1[0, T ]→R are linear and continuous functionals and rj ∈R,
1 ≤ j ≤ n.

Theorem C.5 (Fredholm type existence theorem).

Let the linear homogeneous problem (C.2), (C.4) have only the trivial solu-
tion and let there exist a function ψ ∈L1[0, T ] such that




|g(t, x0, . . . , xn−1)| ≤ ψ(t)

for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈ Rn.
(C.5)

Then problem (C.1), (C.3) has a solution u∈ACn−1[0, T ].

Proof. Let u1, . . . , un be the fundamental system of solutions of (C.2). We

shall denote by ∆i(t) the cofactor of the element u
(n−1)
i in the Wronskian

W (t) of u1, . . . , un. Define Γ : Cn−1[0, T ] → Cn−1[0, T ] by the formula

(Γx)(t) =
n∑

i=1

ui(t)

∫ t

0

∆i(s)

W (s)
g(s, x(s), . . . , x(n−1)(s)) ds.
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Then

(Γx)(j)(t) =
n∑

i=1

u
(j)
i (t)

∫ t

0

∆i(s)

W (s)
g(s, x(s), . . . , x(n−1)(s)) ds

for t ∈ [0, T ], x∈Cn−1[0, T ] and 0 ≤ j ≤ n− 1. Hence (see (C.5))

‖(Γx)(j)‖∞ ≤
n∑

i=1

‖u(j)
i ‖∞

∫ T

0

|∆i(t)|
|W (t)| ψ(t) dt, 0 ≤ j ≤ n− 1,

and therefore

‖Γx‖Cn−1 ≤
n∑

i=1

‖ui‖Cn−1

∫ T

0

|∆i(t)|
|W (t)| ψ(t) dt =: V (C.6)

for x∈Cn−1[0, T ]. Because of (C.5), Γ is a continuous operator. From
the inequalities (for 0 ≤ t1 < t2 ≤ T and x∈Cn−1[0, T ])

|(Γx)(n−1)(t2)− (Γx)(n−1)(t1)|

=
∣∣∣

n∑
i=1

u
(n−1)
i (t2)

∫ t2

0

∆i(s)

W (s)
g(s, x(s), . . . , x(n−1)(s)) ds

−
n∑

i=1

u
(n−1)
i (t1)

∫ t1

0

∆i(s)

W (s)
g(s, x(s), . . . , x(n−1)(s)) ds

∣∣∣

≤
n∑

i=1

∫ t2

t1

|u(n)
i (s)| ds

∫ T

0

|∆i(s)|
|W (s)|ψ(s) ds

+
n∑

i=1

‖u(n−1)
i ‖∞

∫ t2

t1

|∆i(s)|
|W (s)| ψ(s) ds

and from ui ∈ ACn−1[0, T ], ∆i(t)
W (t)

ψ(t) ∈ L1[0, T ], we see that the set

{(Γx)(n−1) : x∈Cn−1[0, T ]} is equicontinous on [0, T ]. This fact and (C.6)
show that the set Γ(Cn−1[0, T ]) is compact in Cn−1[0, T ] by the Arzelà-
Ascoli theorem. Hence Γ is a compact operator.
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Since, by assumption, problem (C.2), (C.4) has only the trivial solution,
the n× n matrix (Lj(uk))

n
j,k=1 is regular, that is, det (Lj(uk)) 6= 0. Con-

sequently, for each x∈Cn−1[0, T ] the linear system

n∑
i=1

ci(x)Lj(ui) = rj − Lj(Γx), 1 ≤ j ≤ n,

with the unknown vector (c1(x), . . . , cn(x)) ∈ Rn has the unique solution




ci(x)=
1

det(Lj(uk))

∣∣∣∣∣∣∣∣∣∣∣∣∣

L1(u1) . . . r1−L1(Γx) . . . L1(un)
...

...
...

Li(u1) . . . ri−Li(Γx) . . . Li(un)
...

...
...

Ln(u1) . . . rn−Ln(Γx) . . . Ln(un)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

i = 1, 2, . . . , n.

(C.7)

The continuity of Li and Γ implies that the functional ci : Cn−1[0, T ] → R
is continuous and the inequality (see (C.6))

|ci(x)| ≤ n!An−1B

| det (Lj(uk))| for x∈Cn−1[0, T ], 1 ≤ i ≤ n,

where

A = max{|Lj(uk)| : 1≤ j, k≤n}
and

B = max{|rj| : 0≤ j≤n}+ sup{|Lj(x)| : ‖x‖Cn−1 ≤V, 1 ≤ j ≤ n},
implies that the set cj(C

n−1[0, T ]) is compact on R for 1≤ j≤n. Hence
cj (0≤ j≤n) is a compact functional.

Finally, define the operator K : Cn−1[0, T ] → Cn−1[0, T ] by the formula

(Kx)(t) =
n∑

i=1

ci(x) ui(t) + (Γ x)(t).

Suppose that u is a fixed point of the operator K. Then

Lj(u) =
n∑

i=1

ci(u)Lj(ui) + Lj(Γu) = rj, 1 ≤ j ≤ n,
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and

u(t) =
n∑

i=1

ci(u) ui(t)

+
n∑

i=1

ui(t)

∫ t

0

∆i(s)

W (s)
g(s, u(s), . . . , u(n−1)(s)) ds, t ∈ [0, T ].

Hence u satisfies the boundary conditions (C.3), u∈ACn−1[0, T ],

(
n−1∑
j=0

aj(t) u(j)(t)

)
=

n∑
i=1

ci(u)

(
n−1∑
j=0

aj(t) u
(j)
i (t)

)

+
n∑

i=1

∫ t

0

∆i(s)

W (s)
g(s, u(s), . . . , u(n−1)(s)) ds

(
n−1∑
j=0

aj(t) u
(j)
i (t)

)
(C.8)

= −
n∑

i=1

ci(u) u
(n)
i (t)−

n∑
i=1

u
(n)
i (t)

∫ t

0

∆i(s)

W (s)
g(s, u(s), . . . , u(n−1)(s)) ds

for t ∈ [0, T ] and





u(n)(t) =
n∑

i=1

ci(u) u
(n)
i (t)

+
n∑

i=1

u
(n)
i (t)

∫ t

0

∆i(s)

W (s)
g(s, u(s), . . . , u(n−1)(s)) ds

+g(t, u(t), . . . , u(n−1)(t))

(C.9)

for a.e. t ∈ [0, T ]. From (C.8) and (C.9) it follows that

u(n)(t) = −
n−1∑
j=0

aj(t) u(j)(t) + g(t, u(t), . . . , u(n−1)(t)) for a.e. t ∈ [0, T ]

and therefore u is a solution of (C.1). We have verified that any fixed point
of K is a solution of problem (C.1), (C.3). In order to prove our theorem it
suffices to show that K has a fixed point. Since Γ is a compact operator
and ci ( 1 ≤ i ≤ n ) is a compact functional, the operator K is compact
as well. Therefore there exists a fixed point of K by the Schauder fixed
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point theorem since there exists a closed ball Ω in Cn−1[0, T ] centered at 0
such that K(Ω) ⊂ Ω. ¤

Sometimes, we can apply Theorem C.5 in the following form.

Corollary C.6. Let problem (C.2), (C.4) have only the trivial solution. Let
there exist a positive constant S such that ‖u‖Cn−1 ≤ S for all solutions u
of the problem





u(n) +
n−1∑
i=0

ai(t) u(i)

= γ

(
n−1∑
i=0

|u(i)|
)

(
g(t, u, . . . , u(n−1))− ϕ(t)

)
+ ϕ(t),

Lj(u) = rj, 1 ≤ j ≤ n,

(C.10)

where ϕ∈L1[0, T ] and

γ(x) =





1 for 0 ≤ x ≤ S,

2− x

S
for S < x ≤ 2S,

0 for x > 2S.

Then problem (C.1), (C.3) has a solution u∈ACn−1[0, T ] and ‖u‖Cn−1≤S.

Proof. Since g ∈Car([0, T ]× Rn) there exists ψ ∈L1[0, T ] such that

γ
( n−1∑

i=0

|xi|
)
|g(t, x0, . . . , xn−1)− ϕ(t)|+ |ϕ(t)| ≤ ψ(t)

for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈ Rn. Hence, by Theorem C.5,
there exists a solution u∈ACn−1[0, T ] of problem (C.10). Because of our
assumption ‖u‖Cn−1 ≤ S we have γ(

∑n−1
i=0 |u(i)(t)|) = γ(‖u‖Cn−1) = 1,

which shows that

γ

(
n−1∑
i=0

|u(i)(t)|
)

(
g(t, u(t), . . . , u(n−1)(t))−ϕ(t)

)
+ ϕ(t)

= g(t, u(t), . . . , u(n−1)(t))

for t ∈ [0, T ]. Therefore u is a solution of problem (C.1), (C.3). ¤
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Spectrum of the quasilinear
Dirichlet problem

Here we recall some basic useful facts from half-linear analysis.

First, let us consider the initial value problem

(φp(u
′))′ + λφp(u) = 0, (D.1)

u(t0) = 0, u′(t0) = d, (D.2)

where p∈ (1,∞), t0 ∈R, λ∈R and d∈R. As in del Pino, Elgueta and
Manásevich [66] (see also e.g. Binding, Drábek and Huang [42], del Pino,
Drábek and Manásevich [65], Došlý [75], Došlý and Řehák [76], Manásevich
and Mawhin [133] and Zhang [203], [205]), let us put

πp = 2 (p− 1)1/p

∫ 1

0

(1− sp)−1/p ds.

Clearly, π2 = π. Furthermore, it is known that

πp = 2 (p− 1)
1
p

π
p

sin(π
p
)

= 2
(p− 1)

1
p

p
B

(
1
p
, 1−1

p

)
.

(See [76, Sec. 1.1.2], but take into account that our definition differs from

that used in [76], where πp = 2
∫ 1

0
(1 − sp)−1/p ds.) It is known (see [76,

Theorem 1.1.1]) that for each t0 ∈R, λ∈R and d∈R problem (D.1), (D.2)
has a unique solution u on R which can be, by [66, sec. 3]), expressed as

u(t) = d λ−1/p sinp(λ
1/p (t− t0)) for t∈R,

where the function sinp : R→ [−(p− 1)1/p, (p− 1)1/p] is defined as follows.

Let w : [0, πp/2] → [0, (p− 1)1/p] be the inverse function to

x∈ [0, (p− 1)1/p] →
∫ x

0

ds

(1− sp

p−1
)1/p

∈ [0, πp/2].
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Further, put w̃(t) = w(πp − t) for t∈ [πp/2, πp] and w̃(t) = −w̃(−t) for
t∈ [−πp, 0]. Finally, define sinp : R→ R as the 2 πp− periodic extension of
w̃ to the whole R. In particular, if d = 0, then u ≡ 0 on R. Obviously,
we have

sinp(t) = 0 if and only if t = nπp, n∈N ∪ {0},
sinp(t) = (p− 1)1/p if and only if t = (2 n + 1)

πp

2
, n∈N ∪ {0},

and

sinp(t) > 0 for t∈ (2 nπp, (2 n + 1) πp), n∈N ∪ {0}.

As a corollary, we immediately obtain that for given a, b∈R, a < b, the
corresponding quasilinear Dirichlet problem

(φp(u
′))′ + λφp(u) = 0, u(a) = u(b) = 0 (D.3)

possesses a nontrivial solution, i.e. λ is an eigenvalue for (D.3) if and only
if

λ∈
{(

nπp

b− a

)p

: n∈N ∪ {0}
}

. (D.4)

In particular,
(πp

T

)p
is the first eigenvalue for (D.3) with b− a = T, where-

from the following assertion follows.

Lemma D.1. Let p∈ (1,∞), a, b∈R, a< b, and let λ =
(πp

T

)p
. Then

problem (D.3) has a nontrivial solution if and only if b− a≥T.

The following lemma gives the variational definition of the first eigen-
value for (D.3). It follows from the embedding inequalities (cf. e.g.[78, The-
orem 5.1], [203, Lemma] or [189]).

Lemma D.2 (Sharp Poincaré inequality). Let p∈ (1,∞). Then

‖u‖p ≤ T

πp

‖u′‖p

holds for all u∈AC[0, T ] such that u′ ∈Lp[0, T ] and u(0) = u(T ) = 0.
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[158] I. Rach̊unková, O. Koch, G. Pulverer and E. Weinmüller, On a singular
boundary value problem arising in the theory of shallow membrane caps,
J. Math. Anal. Appl., to appear.
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[187] S. Staněk, General existence principle for singular BVPs depending on
a parameter and its application, Funct. Differential Equations 13 (2006),
637–656.
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Staněk S., 2, 21, 36, 54, 66, 83, 96, 100,

158, 224, 225, 248, 264, 265, 285
Stein M.L., 227
Stein P.R., 227
Stromberg K., 299
Stryja J., 158

Taliaferro S.D., 3
Torres J.P., 122, 225
Troger H., 227
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