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Abstract: We discuss the properties of the differential equation
u'(t) = %u’(t) +f(tult),d (1), ae. on (0,T],

where a € R\{0}, and f satisfies the L,-Carathéodory conditions on [0, 7] x R? for
some p > 1. A full description of the asymptotic behavior for t — 0+ of functions
u satisfying the equation a.e. on (0,7 is given. We also describe the structure
of boundary conditions which are necessary and sufficient for v to be at least
in C'[0, 7). As an application of the theory, new existence and/or uniqueness
results for solutions of periodic boundary value problems are shown.
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1 Motivation

In this paper, we study the analytical properties of the differential equation

u'(t) = %u'(t) + f(t,u(t), v (t)), a.e. on(0,7T], (1.1)



where a € R\ {0}, u: [0,7] — R, and the function f is defined for a.e. t € [0, 7]
and for all (z,y) € D C R x R. The above equation is singular at ¢ = 0 be-
cause of the first term in the right-hand side, which is in general unbounded
for ¢ — 0. In this paper, we will also alow the function f to be unbounded
or bounded but discontinuous for certain values of the time variable ¢ € [0, T.
This form of f is motivated by a variety of initial and boundary value problems
known from applications and having nonlinear, discontinuous forcing terms, such
as electronic devices which are often driven by square waves or more complicated
discontinuous inputs. Typically, such problems are modelled by differential equa-
tions where f has jump discontinuities at a discrete set of points in (0, 7’), cf. [16].

This study serves as a first step towards analysis of more involved nonlinearities,
where typically, f has singular points also in v and «’. Many applications, cf. [1]-
(7], [13], [17]-[19], showing these structural difficulties are our main motivation to
develop a framework on existence and uniqueness of solutions, their smoothness
properties and the structure of boundary conditions necessary for u to have at
least continuous first derivative on [0,T]. Moreover, using new techniques pre-
sented in this paper, we would like to extend results from [21] and [14] (based on
ideas presented in [8]) where problems of the above form but with appropriately
smooth data function f have been discussed.

Here, we aim at the generalization of the existence and uniqueness assertions
derived in those papers for the case of smooth f. We are especially interested
in studying the limit properties of u for ¢ — 0 and the structure of boundary
conditions which are necessary and sufficient for u to be at least in C'*[0, 7).

To clarify the aims of this paper and to show that it is necessary to develop a
new technique to treat the nonstandard equation given above, let us consider
a model problem which we designed using the structure of the boundary value
problem describing a membrane arising in the theory of shallow membrane caps
and studied in [17]; see also [5], and [13],

(3 (1)) + 3 (8u21(t) - % + b0t27‘4) =0, 0<t<l, (1.2)

subject to boundary conditions

: 3,/ _ —
tl—lg}&-t u'(t) =0, wu(l)=0, (1.3)

where ag > 0,by < 0,7 > 1. Note that (1.2) can be written in the form

() = —%u’(t) _ <8u%(t) _ % + b0t2’74> —0, 0<t<1,  (14)



which is of form (1.1) with

1 ao
T=1 a=-3 tiuu) = — | — — — 4+ bt ).
) a ) f(7u7u> <8U2 U+ 0
Function f is not defined for u = 0 and for ¢t = 0 if v € (1,2). We now briefly
discuss a simplified linear model of the equation (1.4),

3
u(t) = —;u’(t) —bt?, 0<t<l, (1.5)

where § = 2v — 4 and v > 1. Clearly, this means that § > —2.

The question which we now pose is the role of the boundary conditions (1.3), more
precisely, are these boundary conditions necessary and sufficient for the solution
u of (1.5) to be unique and at least continuously differentiable, u € C'[0,1]? To
answer this question, we can use techniques developed in the classical framework
dealing with boundary value problems, exhibiting a singularity of the first and
second kind, see [8], and [9], respectively. However, in these papers, the analytical
properties of the solution u are derived for nonhomogeneous terms being at least
continuous. Clearly, we need to rewrite problem (1.5) first and obtain its new
form stated below,

(' (1) + 3 (bt?) =0, 0<t<1. (1.6)

which suggests® to introduce a new variable, v(t) := t3u/(t). We now introduce
2(t) == (u(t),v(t))T, and immediately obtain the following system of ordinary
differential equations,

z'(t):t%(gé>z(t>—<botg+g), 0<t<l, (1.7)

where # + 3 > 1, or equivalently,

20 = ;a0 490, = (00 ) o0 == (4 S ). 09

where g € C[0,1]. According to [9], the latter system of equations has a continu-
ous solution if and only if the regularity condition M z(0) = 0 holds. This results
in

— ; 3,/ —
v(0)=0 < tl_lgﬂrtu(t)—o,

'In a general situation, especially for the nonlinear case, it is not straightforward to provide
such a transformation, however.



cf. conditions (1.3). Note that the Euler transformation, ((t) := (u(t),tu'(t))”
which is usually used to transform (1.5) to the first order form would have resulted
in the following system:

QORI CURRIOND S G BRTOESE (W CE)

Here, w may become unbounded for ¢ — 0, the condition N{(0) = 0, or equiv-
alently lim; o4 tu/(t) = 0 is not the correct condition for the solution u to be
continuous on [0, 1].

From the above remarks, we draw the conclusion that a new approach is necessary
to study the analytical properties of equation (1.1).

2 Introduction

The following notation will be used throughout the paper. Let J C R be an
interval. Then, we denote by L;(J) the set of functions which are (Lebesgue)
integrable on J. The corresponding norm is [lully := [ Ju(t)|dt. Let p > 1. By
L,(J), we denote the set of functions whose p-th powers of modulus are integrable
on J with the corresponding norm given by |ju|, := ([, |u(t)|pdt)1/p.

Moreover, let us by C'(J) and C'*(J) denote the sets of functions being continuous
on J, and having continuous first derivatives on .J, respectively. The norm on
C[0,T] is defined as ||ul|oo 1= max;epor{|u(t)|}-

Finally, we denote by AC(J) and AC'(J) the sets of functions which are ab-
solutely continuous on J, and which have absolutely continuous first derivatives
on J, respectively. Analogously, AC),.(J) and AC} (J) are the sets of functions
being absolutely continuous on each compact subinterval I C J, and having
absolutely continuous first derivatives on each compact subinterval I C J, re-
spectively.

As already said in the previous section, we investigate differential equations of
the form a
u'(t) = EU/(t) + f(t,u(t),u'(t)), a.e. on(0,T], (2.1)

where a € R\ {0}. For the subsequent analysis we assume that

f satisfies the L, - Carathéodory conditions on [0,7] x R x R, for some p > 1
(2.2)
specified in the following definition.



Definition 2.1. Let p > 1. A function f satisfies the L,-Carathéodory conditions
on the set [0,7] x R x R if

(i) f(-,z,y) : [0,7] — R is measurable for all (z,y) € R x R,

(ii) f(t,-, ) : R x R — R is continuous for a.e. t € [0, 77,

(iii) for each compact set K C R x R there exists a function mx(t) € L,[0, T
such that |f(¢,z,y)| < mg(t) for a.e. t € [0,7] and all (z,y) € K.

We will provide a full description of the asymptotical behavior for ¢ — 0+ of
functions w satisfying (2.1) a.e. on (0, 7). Such functions u will be called solutions
of (2.1) if they additionally satisfy the smoothness requirement v € AC'[0,T],
see next definition.

Definition 2.2. A function u : [0,7] — R is called a solution of equation (2.1)
if u e AC'0,T] and satisfies

u"(t) = %u’(t) +f(t,u(t), W (1)) ae. on (0,T].

In Section 3, we consider linear problems and characterize the structure of bound-
ary conditions necessary for the solution to be at least continuous on [0, 1]. These
results are modified for nonlinear problems in Section 4. In Section 5, by apply-
ing the theory developed in Section 4, we provide new existence and/or unique-
ness results for solutions of singular boundary value problems (2.1) with periodic
boundary conditions.

3 Linear singular equation

First, we consider the linear equation, a € R\ {0},
u'(t) = %u’(t) + h(t), ace. on (0,7, (3.1)
where h € L,[0,7] and p > 1.

As a first step in the analysis of (3.1), we derive the necessary auxiliary estimates
used in the discussion of the solution behavior. For ¢ € [0, 77, let us denote by

oule,t) = 17 /t M) gs reo.1) (3.2)

Assume that a < 0. Then

tds @ ti—aq ‘
0 — = t 0.71. 3.3
<(/ ) (1_aq) . te (0,1 (3.3)




Now, let @ > 0, ¢ > 0. Without loss of generality, we may assume that % #1—a.
For }D =1 — a, we choose p* € (1,p), and have h € L,-[0,T] and # >1—a.
First, let a € (0,1—1%). Then%zl—%>a, 1 —aqg >0, and

1
q

1
1 (Cl’“q)q ife>t>0,
<

¢ ds ctmae — tl-aq —a
o<| [ oot ()
s4 —a —aq\q .
¢ g (i—a;I) fe<t<T.
Now,leta>1—]lg. Thenézl—%<a,1—aq<0,amd
) 1
¢ ds % cl—aq_tl—aq% (fm__af>q ifC<t§T,
()</— = |l 1
= aq — —aq) g
X g () ez o0
aqg—1
Hence, for a > 0, ¢ > 0,
cd L
S| —=/ =—a =—a
og‘/ — | <l—agli(cr +107), te(0,7T). (3.4)
;S

Consequently, (3.3), (3.4) and the Hoélder inequality yield, ¢ € (0,77,
lpale,t)] < t%(ci ™ +ta~") 1 —ag| " ||hll, ifa>0, c>0,

[2a(0,8)] < t*ta (1 — aq) "s|[h]l, ifa<o0.

Therefore
wa(c,t) € C(0,T], th%}r valc,t) =0 ifa>0, ¢>0, (3.5)
©0a.(0,t) € C(0,T], tlir& 0a(0,t) =0 ifa <0, (3.6)

which means that ¢, € C[0,1]. We now use the properties of ¢, to represent
all functions v € AC] (0, T] satisfying (3.1) a.e. on [0,7]. Remember that such

loc
function u does not need to be a solution of (3.1) in the sense of Definition 2.2.

Lemma3.1. Let a € R\ {0}, c € (0,T], and let p,(c,t) be given by (3.2).
(i) If a # —1, then

{cl + ottt —|—/ va(c,s)ds, c1,c0 R, t € (O,T]} (3.7)
t

is the set of all functions u € AC} (0, T] satisfying (3.1) a.e. on (0,T].
(ii) If a = —1, then
{cl + ¢y lnt+/ w_1(c,s)ds, c1,c0 €R, t € (O,T]} (3.8)
t

is the set of all functions u € AC}

loc

(0,T] satisfying (3.1) a.e. on (0,T].
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Proof. Let a # —1. Note that equation (3.1) is linear and regular on (0, 7.
Since the functions uj (t) = 1 and u?(¢) = t**! are linearly independent solutions
of the homogeneous equation u”(t) — $u/(t) = 0 on (0, T, the general solution of
the homogeneous problem is,

up(t) = ¢ +cot*™, cy,c0 €R.

Moreover, the function u,(t) = [ ¢a(c, s)ds is a particular solution of (3.1) on
(0,T). Therefore, the first statement follows. Analogous argument yields the
second assertion. a

We stress that by (3.5), the particular solution u, = [ ¢.(c, s)ds of equation
(3.1) belongs to C[0,T]. For a < 0, we can see from (3.6), that it is useful to
find other solution representations which are equivalent to (3.7) and (3.8), but
use ,(0,1) instead of ¢, (c,t) if ¢ > 0.

Lemma 3.2. Let a <0 and let p,(0,t) be given by (3.2).
(i) If a # —1, then

t
{cl + ot —/ 0a(0,5)ds, el €R, t € (O,T]} (3.9)
0

is the set of all functions u € AC}E (0,T] satisfying (3.1) a.e. on (0,T].
(i) If a = —1, then
t
{cl +clnt —/ ©_1(0,8)ds, c1,c0 €ER, t € (O,T]} (3.10)
0

is the set of all functions u € AC}E (0,T] satisfying (3.1) a.e. on (0,T].

Proof. Let us fix ¢ € (0,7] and define

p(t) :== /tC ©alc, s)ds +/0 va(0,s)ds, te€(0,7T].

In order to prove (i) we have to show that p(t) = d; + dot*™* for ¢t € (0, T], where
dy,dy € R. This follows immediately from (3.6), since

(& c h
p0) = [ eal0.5)s, 10 = —gulest) + 0.0 = = [ Has v 1
0 0
and hence we can define d; as follows
R 1 ‘ h(8> R a+1
dy = T /0 sa ds, dy :=p(c) —doc™.



For a = —1 we have

dy = —/ sh(s)ds, di := / ©_1(0,s)ds — dyInc,
0 0
which completes the proof. O

Again, by (3.6), the particular solution,

wlt) = = [ al0.5)0s

of equation (3.1) for a < 0 satisfies u, € C'[0,1]. Main results for the linear
singular equation (3.1) are now formulated in the following theorems.

Theorem 3.3. Let a > 0 and let uw € AC} (0,T] satisfy equation (3.1) a.e. on
0,T]. Then

lim u(t) € R, lim «'(¢t) = 0.

t—0+ t—0+
Moreover, u can be extended to the whole interval [0,T] in such a way that u €

ACt0,T).
Proof. Let a function u be given. Then, by (3.7), there exist two constants
c1, ¢ € R such that for ¢ € (0,7,
u(t) = c; + et —|—/ walc, s)ds, U (t) = cala+ 1)t — pu(c, t). (3.11)
t

Using (3.5), we conclude

lim u(t) = ¢ +/ va(c, s)ds =: c3 € R, tlir& u'(t) = 0.
0 e

For u(0) := ¢z and «/(0) = 0, we have v € C'[0,T]. Furthermore, for a.e.
t € (0,77,

Sa

u"(t) = co(a+ Dat*t — h(t) + at®? /C @ds.

By the Holder inequality and (3.4) it follows,

1

[ (t)| < ea(a+ 1)at*™ + |h(t)]| + Mt*(ca ™ + ﬁ*“)uhup € L,[0,T],

where )
M =a|l —agq| a. (3.12)

Therefore u” € L;[0,T] and consequently, u € AC[0,T. O



It is clear from the above theorem, that u € AC*[0, T given by (3.11) is a solution
of (3.1) for @ > 0. Let us now consider the associated boundary value problem,

u'(t) = %u'(t) + h(t), ae. on(0,T], (3.13a)
BoU(0) + BiU(T) = 8, U(t) == (u(t),d(t))", (3.13b)

where By, By € R**? are real matrices, and § € R? is an arbitrary vector. Then
the following result follows immediately from Theorem 3.3.

Theorem 3.4. Let a > 0, p > 1. Then for any h(t) € L,[0,T] and any 3 € R?
there exists a unique solution u € AC[0,1] of the boundary value problem (3.13)
if and only if the following matrix,

10 1 Tett 2%2
m(10)em(t T e b
18 nonsingular.

Proof. Let u be a solution of equation (3.1). Then u satisfies (3.11) and the
result follows immediately by substituting the values

u(0) = ¢; +/ va(c,8)ds, u(T) = cy + T + / ©alc, s)ds,
0

T

and
uw'(0) =0, u(T)=cyla+1)T* — @u(c,T),

into the boundary conditions (3.13b). O

Theorem 3.5. Let a < 0 and let a function u € AC} (0, T) satisfy equation (3.1)

a.e. on (0,T]. Fora € (—1,0), only one of the following properties holds,
(1) limyoy u(t) € R, limy o4 u'(t) =0,
(ii) limyop u(t) € R, limy o4 v/(t) = Foo.
For a € (—o0, —1], u satisfies only one of the following properties:
(i) limyoy u(t) € R, limy o4 u'(t) =0,
(i) lmy o4 u(t) = Foo, limy o4 u/(t) = Loo.

In particular, u can be extended to the whole interval [0,T] with u € AC[0,T] if
and only if lim;_o4 v/ (t) = 0.



Proof. Let a € (—1,0) and let u be given. Then, by (3.9), there exist two
constants ¢, co € R such that

t
u(t) = ¢ + oot — / 2a(0, 5)ds for t € (0,7]. (3.15)
0

Hence

U (t) = ca(a+ 1)t — ¢,(0,t) for t € (0,T]. (3.16)
Let co = 0, then it follows from (3.6) lim; .o, u/(t) = 0. Also, by (3.15),
limy o4 u(t) = ¢; € R. Let ¢o # 0. Then (3.6), (3.15), and (3.16) imply that

. o . / o .
tl—lg}f— u(t) = ¢ € R, tl_lgiu (t) = +o0 if c2 > 0,

lim u(t) =c¢; € R, lim u/(t) = —o0 if ¢y <0.
t—0+ t—0+

Let a = —1. Then, by (3.10), for any ¢, € R,
t
u(t) =c1 +colnt — / v_1(0,s)ds for t € (0,7, (3.17)
0
and 1
u'(t) = coy — ©-1(0,t) fort e (0,7T]. (3.18)

If ¢ = 0, then lim; o, v/(tf) = 0 by (3.6), and it follows from (3.17) that
limy o u(t) = ¢4 € R. Let ¢a # 0. Then we deduce from (3.6), (3.17) and
(3.18) that

. _ . / _ .
tl_l)Ig}i_ u(t) = —oo0, tl_lgiu (t) = +oo if cg > 0,
lim u(t) = 400, lim u/(t) = —o0 if ¢y <0.
t—0+ t—0+

Let a < —1. Then on (0,7, u satisfies (3.15) and (3.16), with ¢;,co € R. If
co = 0, then, by (3.6), lim; o4 v/(t) = 0 and lim; o4 u(t) = ¢; € R. Let o # 0.
Then

lim u(t) = 400, lim u/(t) = —o0 if ¢y > 0,

t—0+ t—0+
lim u(t) = —oo, lim u/(t) = 400 if ¢3 < 0.
t—0+ t—0+

In particular, for a < 0, u can be extended to [0, T in such a way that v € C''[0, T
if and only if ¢ = 0. Then, the associated boundary conditions read u(0) = ¢;
and «/(0) = 0. Finally, for a.e. t € (0,77,

and, by the Hélder inequality, (3.3) and (3.12),
[ ()] < |(0)] + Mt 5~ |hll, € L2f0, 7).

10



Therefore u” € L1[0,T] and consequently u € AC*[0,T. O

Again, it is clear that w given by (3.15) for a € (—1,0) and a < —1, and u
given by (3.17) for a = —1 is a solution of (3.1), and u € AC*[0, 1] if and only if
u’'(0) = 0. Let us now consider the boundary value problem

u"(t) = %u'(t) +h(t), ae. on(0,T], (3.19a)
W(0) =0,  byu(0) + byu(T) + by (T) = B, (3.19b)

where by, by, by, 3 € R are real constants. Then the following result follows im-
mediately from Theorem 3.5.

Theorem 3.6. Let a <0, p > 1. Then for any h(t) € L,[0,T] and any by, f € R
there exists a unique solution u € AC[0,1] of the boundary value problem (3.19)
if and only if by + by # 0.

Proof. Let u be a solution of equation (3.1). Then u satisfies (3.15) for a €
(—1,0) and @ < —1, and (3.17) for a = —1. We first note that, by (3.6), for all
a <0,

/ . / . .
u(O)—tl_l}giu(t)—O &y =0.

Therefore, ¢co = 0 in both, (3.15) and (3.17), and the result now follows by
substituting the values

uw(0) =c1, uw(T)=¢c —/0 ©0a(0,8)ds, v (T) = —¢.(0,T),

into the boundary conditions (3.19b). O

To illustrate the solution behaviour, described by Theorems 3.3 and 3.5 we have
carried out a series of numerical calculations on a MATLAB"" software pack-
age bvpsuite designed to solve boundary value problems in ordinary differential
equations. The solver is based on a collocation method with Gaussian collocation
points. A short description of the code can be found in [24]. This software has
already been used for a variety of singular boundary value problems relevant for
applications, e.g. [23].

The equations being dealt with are of the form

u'(t) = %u'(t)+ te(0,1), (3.20)

1
V1=t
subject to initial or boundary conditions specified in the following graphs. All
solutions were computed on the unit interval [0, 1].

11



3t
2/
1 4

u(0)=1,u(1)=3
or — — u(0)=—1,u(1)=-3 1

0 0.2 0.4 0.6 0.8 1

Figure 1: Illustrating Theorem 3.3: Solutions of differential equation (3.20) with
a = 1 subject to boundary conditions u(0) = «a, u(l) = 3. See graph legend
for the values of a and 3. According to Theorem 3.3 it holds «/(0) = 0 for each
choice of a and S3.

N ‘ ‘ [ —— u(O)‘:Z,u(l):0.75
N — - — - u(0)=-2,u(1)=0
- u(0)=0,u'(0)=0 ||

0 0.2 0.4 0.6 0.8 1

Figure 2: Illustrating Theorem 3.5 for a € (—1,0): Solutions of differential equa-
tion (3.20) with a = —1 subject to boundary conditions u(0) = «a, u(l) = §.
See graph legend for the values of o and . According to Theorem 3.5 a solution
u satisfies u/(0) = 400 or v/(0) = —oo or ¥/(0) = 0 in dependence of values «
and (. In order to precisely recover a solution satisfying «’(0) = 0, the respec-
tive simulation was carried out as an initial value problems with «(0) = 0 and

W(0) = 0.

Finally, we expect lim; o4 u(t) = +oo and therefore we solve (3.20) subject to
the terminal conditions u(1) = a, u/(1) = .

12



u(1$:1,u'(1):—1

—-—-u(1)=0,u'(1)=0 (]
u(l)=-1,u'(1)=1
- — —u(l)=-2,u'(1)=2

100

50,

-100

Figure 3: Illustrating Theorem 3.5 for a € (—oo, —1): Solutions of differential
equation (3.20) with a = —2 subject to boundary conditions u(1) = a, /(1) = (.
See graph legend for the values of a and (. Here, lim; oy u(t) = £oo and
lim; o4 /' (t) = Foo, or u(0) € R, «/(0) = 0.

4 Limit properties of functions satisfying non-
linear singular equations

(0, T satistying differential
equation (2.1) a.e. on [0,77] is given. The first derivative of such a function does
not need to be continuous at ¢ = 0 and hence, due to the lack of smoothness,
u does not need to be a solution of (2.1) in the sense of Definition 2.2. In the
following two theorems, we discuss the limit properties of u for ¢ — 0.

In this section we assume that the function v € AC}

Theorem 4.1. Let us assume that (2.2) holds. Let a > 0 and let u € AC} (0, T
satisfy equation (2.1) a.e. on [0,T]. Finally, let us assume that that

supq|u(t)| + |u'(¢)] : t € (0,T]} < oo. (4.1)

Then
lim u(t) € R, lim u'(t) =0,

t—0+ t—0-+
and u can be extended on [0,T] in such a way that u € AC'[0,T].

Proof. Let h(t) := f(t,u(t),u'(t)) for a.e. t € [0,7]. By (2.2), there exists a
function myx € L,[0,T] such that |f(¢,u(t),u'(t))] < m;c(t) for a.e. t € [0,7].
Therefore, h € L,[0,T]. Since the equality u”(t) = u '(t) + h(t) holds a.e. on

[0, 77, the result follows immediately due to Theorem 3 3. O

13



Theorem 4.2. Let us assume that condition (2.2) holds. Let a < 0 and let

u € ACL (0,T) satisfy equation (2.1) a.e. on (0,T). Let us also assume that (4.1)
holds. Then
. . / _
tEr& u(t) € R, tli%iu (t) =0, (4.2)

and u can be extended on [0,T] in such a way that u € AC[0,T).

Proof. Let h € L,[0,T] be as in the proof of Theorem 4.1. According to Theo-
rem 3.5 and (4.1), u satisfies (4.2) both for a € (—1,0) and a € (—o0,—1]. O

5 Applications

Results derived in Theorems 4.1 and 4.2 constitute a useful tool when investi-
gating the solvability of nonlinear singular equations subject to different types
of boundary conditions. In this section, we utilize Theorem 4.1 to show the ex-
istence of solutions for periodic problems. The rest of this section is devoted to
the numerical simulation of such problems.

Periodic problem
We deal with a problem of the following form:

u'(t) = %u’(t) Ff(tu(t), (1), ae. on(0,T], (5.1a)
uw(0) =uw(T), u'(0)=u(T). (5.1b)

Definition 5.1. A function v € AC'0,T] is called a solution of the boundary
value problem (5.1) if u satisfies equation (5.1a) for a.e. t € [0, 7] and the periodic
boundary conditions (5.1b).

Conditions (5.1b) can be written in the form (3.13b) with By = I, By = —I, and
B = 0. Then, matrix (3.14) has the form

10 1 Ta+1 0 _Ta+1
1 -1 = ,
00 0 (a+1)T" 0 —(a+ 1)1
and we see that it is singular. Consequently, the assumption of Theorem 3.4 is not
satisfied and the linear periodic problem (3.13a) subject to (5.1b) is not uniquely
solvable. However this is not true for nonliner periodic problems. In particular,
Theorem 5.6 gives a characterization of a class of nonlinear periodic problems

(5.1) which have only one solution. We begin the investigation of problem (5.1)
with a uniqueness result.

14



Theorem 5.2. (Uniqueness) Let a > 0 and let us assume that condition (2.2)
holds. Further, assume that for each compact set I C R x R there exists a
nonnegative function hx € L1[0,T] such that

1> T, Y1 2> Yo = f(txny) — f(Ew2,02) > —hie() (Y1 — o) (5.2)

for a.e. t €10, T) and all (x1,11), (x2,y2) € K. Then problem (5.1) has at most
one solution.

Proof. Let u; and uy be different solutions of problem (5.1). Since wuy,uy €
ACY0,T1, there exists a compact set £ C R x R such that (u;(t),u}(t)) € K for
t €0, T]. Let us define the difference function v(t) := u(t) — uo(t) for ¢t € [0, T).
Then

v(0) = u(T), v'(0) =(T). (5:3)

First, we prove that there exists an interval [a, ] C (0,7] such that
v(t) > 0for t € [, f], V'(t) >0 for t € [, 3), v'(5) = 0. (5.4)

We consider two cases.

Case 1. Assume that u; and us have an intersection point, that is there exists
to € [0,T) such that v(typ) = 0. Since u; and uy are different, there exists
t1 € 0,71, t; # to, such that v(t;) # 0.

(i) Let t; > t5. We can assume that v(¢;) > 0. (Otherwise we choose v := us—u;.)
Then we can find ag € (to, 1) satisfying v(t) > 0 for t € [ag, t1] and v'(ag) > 0.
Let by € (ag,T] be the first zero of v'. Then, if we set [a, §] := [ag, by|, we see
that [a, (] satisfies (5.4). Let v/ have no zeros on [ag,T]. Then v > 0,v" > 0
on [ag, T], and, due to (5.3), v(0) > 0,7'(0) > 0. Since v(ty) = 0, we can find
a € (0,t9) and 3 € (a,to) such that [a, 3] satisfies (5.4).

(ii) Let v = 0 on [to,T]. By (5.3), v(0) =0, v'(0) = 0 and ¢; € (0,%y). We may
again assume that v(¢;) > 0. It is possible to find a € (0,¢;) such that v(a) > 0,
V(o) > 0, v(t) > 0 on [o, t]. Since v(ty) = 0, v' has at least one zero in («, tp).
If 5 € (a,tp) is the first zero of ¢/, then [« 3] satisfies (5.4).

Case 2. Assume that u; and uy have no common point, that is v(¢) # 0 on [0, 7.
We may assume that v > 0 on [0,7]. By (5.3), there exists a point ¢, € (0,7)
satisfying v'(to) = 0.

(i) Let v" = 0 on [0,%0]. Then, by (5.1a), (5.2),

4 a /! / ! a /
V(t) = S0 () + Fltun (), ui () = F(E ua(e), ws(8) > (T = he(®)) V() = 0
for a.e. t € [0, o], which is a contradiction to v” = 0 on [0, to].

(ii) Let o'(t1) # 0 for some t; € [0,ty). If v'(t;) > 0, then we can find an
interval [o, 3] C (t1,1o] satisfying (5.4). If v'(¢1) < 0 and v'(t) < 0 on [0, t],
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then v(0) > v(tp) and, by (5.3), v(T) > v(ty), v'(T) < 0. Hence, there exists an
interval [o, 3] C (to, T satisfying (5.4).

To summarize, we have shown that in both, the case of intersecting solutions u;
and us, and the case of separated u; and us, there exists an interval [a, 5] C (0, 7]
satisfying (5.4).

Now, by (5.1a), (5.2) and (5.4), we obtain

V() > (% - h,g(t)> V(1) for ae. t € [a, .

Denote by h*(t) := ¢ — hx(t). Then h* € Lo, 5] and v"(t) — h*(t)v'(t) > 0 for
a.e. t € [, 8]. Consequently,

(v’(t) exp (— /a t h*(s)ds)), >0 for ace. £ € o, ]

Integrating the last inequality in [, (], we obtain

o (8) exp <— / ’ h*(s)ds) > (@) >0

which contradicts v'(8) = 0. Consequently, we have shown that u; = uy and the
result follows. O

In the following theorem we formulate sufficient conditions for the existence of at
least one solution of problem (5.1) with @ > 0. In the proof of this theorem, we
work also with auxiliary two-point boundary conditions

w(0) = u(T), (T)=0. (5.5)

Under the assumptions of Theorem 4.1 any solution of equation (5.1a) satisfies
u'(0) = 0. Therefore, we can investigate equation (5.1a) subject to the auxiliary
conditions (5.5) instead of the equivalent original problem (5.1). This change
of the problem setting is useful for obtaining of a priori estimates necessary for
the application of the Fredholm-type existence theorem (Lemma 5.5) during the
proof.

Theorem 5.3. (Existence) Let a > 0 and let (2.2) hold. Further, assume that
there exist A,B € R, ¢ >0, w € C[0,00), and 1y € L1[0,T] such that A < B,

f(t,A,0)<0, f(¢t,B,0)>0 (5.6)
for a.e. t €0,T],
ftz,y) signy = —w(ly[)(lyl + (1)) (5.7)
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for a.e. t € [0,T] and all x € [A, B], y € R, where

w(z) >¢, x€|0,00), /000 % = 0. (5.8)

Then problem (5.1) has a solution u such that

A<u(t)<B, telo,T]. (5.9)

Proof. Step 1. Existence of auxiliary solutions w,,.
By (5.8), there exists p* > 0 such that

"ds T
— > 1+= ) (B—A) = 5.10
[ S5 (14 D) - a = (5.10)
For y € R, let
1 if [yl <p7,
X)) =< 2= it pr <yl <29,
0 it |y| > 2p*.

Motivated by [12], we choose n € N, n > .,

R x R, and ¢ € [0, 1], we define functions

and, for a.e. t € [0,77, all (z,y) €

XW) &y + f(t,z,y) -4 if >4

1
hn(wt,x,y):{_é . t<z

n

(5.11)

Y

wA(t,€) - Sup{|hn(t7A70) - hn(t’Aa y)| : |y| S E‘:}7
wg(t,e) = sup{|hn(t, B,0) — h,(t, B,y)| : |y| <&},

hn(taBay)—i_wB(t?xx_;Bil) if x> B>
fult,z,y) = < hy(t,z,y) if A<z <B, (5.12)
ho(t, A y) —wa(t, £22%) if o < A

) A—x+1

Due to (5.6),

A B
S ha(t,A,0)<0, = +ha(t,B,0)>0 (5.13)
n n

for a.e. t € [0,7]. It can be shown that w4 and wp satisty the L,-Carathéodory
conditions on [0,7] x [0,1], are nondecreasing in their second argument and
wa(t,0) = wp(t,0) = 0 a.e. on [0,T], see [12]. Therefore, f, also satisfies the

L,-Carathéodory conditions on [0,7] x R x R and there exists a function m,, €
L,[0,T] such that |f,(t,z,y)| < m,(t) for a.e. t € [0,7] and all (x,y) € R x R.
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We now investigate the auxiliary problem

t
u'(t) = ? + fu(t,u(t), ' (t), u(0)=u(T), «(T)=0. (5.14)
Since the homogeneous problem u”(t) = Lu(t), u(0) = w(T), v'(T) = 0, has only
the trivial solution, we conclude by the Fredholm-type Existence Theorem (see
Lemma 5.5) that there exists a solution u,, € AC[0,T] of problem (5.14).

Step 2. Estimates of uy,.
We now show that

1
A<u,(t)<B, tel0,T], neN, n> T (5.15)

Let us define v(t) := A — u,(¢) for t € [0,7] and assume
max{v(t): t € [0,T]} = v(ty) > 0. (5.16)

By (5.14), we can assume that ¢, € (0,7]. Since v'(ty) = 0, we can find § > 0
such that

v(t) >0, ()] =|u,(t)] < U(:)(tj_ T < 1 on (to — 0,t0] C (0,T7.

Then, by (5.12), (5.13) and (5.14), we have

0 = ult 6,0+ 2 = e, A 0) = a0
< Bp(t, A, 0) 4 By (t, Al (£)) — ha(t, A, 0) — walt, uly (£)]) + unét)
< hn(t7A70) + % - ? <0

for a.e. t € (ty — 6,to]. Hence,

to
0> / ur(s)ds = —ul,(t) =v'(t), t € (to — 9, 1o),
t

which contradicts (5.16), and thus A < u,(t) on [0,7]. The inequality u,(t) < B
on [0,T] can be proved in a very similar way.

Step 3. Estimates of ul,.
We now show that

1
lu, ()| < p*, t€[0,T], neN, n> T (5.17)
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By (5.12) and (5.15) we have f,(t,u,(t),u,(t)) = hn(t, u,(t),u, (t)) for a.e. t €

n

[0, 7], and so, due to (5.11) and (5.14), we have for a.e. t € [0, 7],

n

(200~ S0t = )) signa (0

(5.18)

X (up (1) (G, (8) + f(t un(t), w, (1)) signug () if ¢ > 4,
0 if t<

Denote p := ||u,||co = |ul,(to)|. If p > 0, then ¢y € [0,T).
Case 1. Let u] (ty) = p. Then there exists t; € (to,T] such that u/,(t) > 0 on
[to,t1), u,(t1) = 0. By (5.7), (5.15), (5.18) and a > 0, it follows for a.e. t € [to, t1],

(t) 2 X (uy () f (£, un(t), u, () signu, (¢)

=X (U, (8))w (i, (8)) (ur, (£) + (1)) = —w (s, (8)) (i (8) + 0 (2)).

Consequently,
t1
/ THE / (! (t) + (1))dt
to

(t1) — un(to) + [[¢lls <,

3I'—‘3

where r is given by (5.10). Therefore p < pt.

Case 2. Let ul,(ty) = —p. Then there exists t; € (to, 7] such that u/,(t) < 0 on
[to, t1), u,(t1) = 0. By (5.7), (5.8), (5.15), (5.18) and a > 0, we obtain for a.e.
t e [to,tﬂ,

= —x(uy () w(fuy, () ) (|uy, (t)| ( ) = -(B A)
> —w(|u, (@)]) (Jun ()] + () + (B - A4)).

Consequently,

_ /: %dt > /: <_u;<t) + () + %(B - A)) dar,

P ds T
<y (ty) — g (t “(B—-A) <
/Ow(s)_u(o) U(1)+||¢||1+C( ) <r
Hence, according to (5.10), we again have p < p*.

Step 4. Convergence of {uy}.

Consider the sequence {u,} of solutions of problems (5.14), n € N, n > 7.
It has been shown in Steps 2 and 3 that (5.15) and (5.17) hold, which means
that the sequences {u,} and {ul,} are bounded in C[0,T]. Therefore {u,} is
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equicontinuous on [0,7]. According to (5.11), (5.12) and (5.14), we obtain for
te [T,

() = — /tT (fn(s,un(s),u;(s)) + “"(S>) ds (5.19)

n

_ /tT <‘§u;(s) T £(5un(s), 1l (5)) + “"(5)—_’4) ds.

n

Let us now choose an arbitrary compact subinterval [ag, 7] C (0,7]. Then there
exists ng € N such that [+, 7] C [ao, T] for each n > ng. By (5.19), the sequence
{u!} is equicontinuous on [ag, T]. Therefore, we can find a subsequence {u,,}
such that {u,,} converges uniformly on [0,7] and {u/,} converges uniformly on
lag, T']. By the diagonalization theorem, see [18], we can find a subsequence {u,}
such that there exists u € C[0, 7] N C*(0,T] with

{ limy oo ug(t) = u(t) uniformly on [0, 7], (5.20)

limy o u)(t) = /() locally uniformly on (0,7].

Therefore u(0) = w(7T") and v/(T) = 0. For ¢ — oo in (5.19), Lebesgue dominated
convergence theorem yields,

' (t) :—/tT (gu’(s)+f(s,u(s),u'(s))> ds, te(0,T].

Consequently, u € AC} (0, T satisfies equation (5.1a) a.e. on [0,7]. Moreover,

due to (5.15) and (5.17), we have
A<u(t)<Bforte|0,T], |u(t)]<p*forte(0,T]. (5.21)

Hence (4.1) is satisfied. Applying Theorem 4.1, we conclude u € AC'[0,7T] and
uw'(0) = 0. Therefore u satisfies the periodic conditions on [0,7]. Thus u is a
solution of problem (5.1) and A <u < B on [0,7]. O

Example5.4. Let T'=1, k € N, ¢ = £1, h € L,[0,1] for some p > 1, and
co € C(0,1). Moreover, let h be nonnegative and ¢y be bounded on [0, 1]. Then
in Theorem 5.3 the following class of functions f is covered:

Fltz,y) = h(t) (@™ + ee™y" + co(t) cos(v/]]) (5.22)

for a.e. t € [0,1] and all z,y € R, provided n = 2m +1if e =1 and n = 1 if
e = —1. In particular, for t € (0,1], z,y € R

1
filt,x,y) = (3:3 + €e"y” + cos 7 cos |;1:]) ,

1
v1—t

1 1
folt,z,y) = (:L’?’—exy—l—cosgcos \/]x\) :

1—

or

~
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In order to show the existence of solutions to the periodic boundary value problem
(5.1), the Fredholm-type Existence Theorem is used, see e.g. in [15] (Theorem 4),
[18] (Theorem 2.1) or [20] (p.25). For convenience, we provide its simple formu-
lation suitable for our purpose below.

Lemma 5.5. (Fredholm-type Existence Theorem) Let f satisfying (2.2), matri-
ces By, By € R*?, vector 3 € R? be given, and let c1,cy € L1]0,T]. Let us denote
by U(t) == (u(t),u'(t))T and assume that the linear homogeneous boundary value

problem
U” + cl(t)u’ + CQ(t)'U/ = O, B()U(O) + BlU(T) =0

has only the trivial solution. Moreover, let us assume that there exists a function
m € L,[0,T] such that

|f(t,z,y)] < m(t) for a.e. t €[0,T] and all z,y € R.
Then the problem
u" + e (' + ea(t)u = f(t,u,u’), BoU(0)+ BU(T)=p

has a solution u € AC'[0,T].
If we combine Theorem 5.2 and Theorem 5.3, we obtain conditions sufficient for
the solution of (5.1) to be unique.

Theorem 5.6. (Existence and uniqueness) Let all assumptions of Theorem 5.2
and Theorem 5.3 hold. Then problem (5.1) has a unique solution u. Moreover u
satisfies (5.9).

Example 5.7. Functions satisfying assumptions of Theorem 5.6 can have the
form

ft,xy) = (2% + €™y 4 1) (5.23)

1—1¢
a 3

flt,xy) = — t(m — e %y) — 16Vt (5.24)

for t € (0,1], =,y € R,

We now illustrate the above theoretical findings by means of numerical simula-
tions.



a=0.5

Figure 4: Ilustrating Theorem 5.6: Solutions of differential equation (5.23) sub-
ject to periodic boundary conditions (5.1a). See graph legend for the values of
a.

In the following graph we display the error estimate for the global error of the
numerical solution and the so called residual (defect) obtained from the substitu-
tion of the numerical solution into the differential equation. Both quantities are
rather small and indicate that we have found a solution to the analytical problem
(5.23)—(5.1a).

0 02 0.4 06 08 1 o 0.2 0.4 06 08

Figure 5: Error estimate (left) and residual (right) for (5.23)—(5.1a), a = 1.

We now pose that question about the values of the first derivative at the end
points of the interval of integration, ¢t = 0 and t = 1. According to the theory,
it holds «/(0) = «/(1) = 0. Therefore, we approximate the values of the first
derivative of the numerical solution and show these values in Figure 6. One can
see that indeed u'(0) ~ 0, «/(1) =~ 0. Also, to support this observation, we
plotted in Figure 7 the numerical solutions obtained for the step-size h tending
to zero, or equivalently, grids becoming finer.
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Figure 6: First derivative of the numerical solution to (5.23)—(5.1a) with a = 1.
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Figure 7: Numerical solutions of (5.23)-(5.1a) and a = 1 in the vicinity of t = 0

(left) and ¢ = 1 (right). The step-size is decreasing according to h = 5.

We finally observe experimentally, the order of convergence of the numerical
method (collocation). Clearly, we do not expect very hight order to hold, since
the analytical solution has nonsmooth higher derivatives. However, the method
is convergent and, according to Table 1, we observe that its order tends to %
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1 | error estimate | conv. order
1 | 5.042446e-003 —

2 | 2.850171e-003 | 0.823075
3 | 1.681410e-003 | 0.761377
4 | 1.029876e-003 | 0.707200
5 | 6.514046e-004 | 0.660845
6 | 4.231359e-004 | 0.622433
7 | 2.807926e-004 | 0.591616
8 | 1.894611e-004 | 0.567604
9 | 1.294654e-004 | 0.549335
10 | 8.930836e-005 | 0.535699

Table 1: Estimated convergence order for the periodic boundary value problem
(5.23)—(5.1a) and a = 1.

The results of the numerical simulation for the boundary value problem (5.24)—
(5.1a), can be found in Figures 8-11.

1.9

a=0.1

— —a=05

1.55
0

0.2 0.4 0.6 0.8 1

Figure 8: Illustrating Theorem 5.6: Solutions of the boundary value problem
(5.24)—(5.1a). See graph legend for the values of a.
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Figure 10: First derivative of the numerical solution to (5.24)-(5.1a) with a = 1.
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Figure 11: Numerical solutions of (5.24)—(5.1a) and a = 1 in the vicinity of ¢ = 0

(left) and ¢ = 1 (right). The step-size is decreasing according to h = 5.
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