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Abstract

The paper deals with the impulsive nonlinear boundary value problem

gi(u(a),u(b)) = 0, }
g2(u'(a),u'(b)) = 0,
u(ti+) = Ij(u(ty), j=1,...,p, }
u'(tj+) = M;('(t;), j=1,...,p

where J = [a,b], f € Car(J x R?), g1, g» € C(R?), I;, M; € C(R). We
prove the existence of a solution to this problem under the assumption that
there exist lower and upper functions associated with the problem. Our
proofs are based on the Schauder fixed point theorem and on the method

of a priori estimates. No growth restrictions are imposed on f, g1, g2, I;,
M;.

Mathematics Subject Classification 2000: 34B37, 34B15.
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1 Introduction

Let J = [a,b] C R. For a real valued function u defined a. e. on J, we put

b
[ulloo =sup ess|u(t)] and |ul = / u(s)| ds.
teJ a
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For k € N and a given set B C RF, let C(B) denote the set of real valued func-
tions which are continuous on B. Furthermore, let C'(J) be the set of functions
having continuous first derivatives on J and L(J) be the set of functions which
are Lebesgue integrable on J.
Let p € N and

a:t0<t1<...<tp<tp+1:b

be a division of the interval J. We denote D = {t;,...,t,} and define C}, (or
Cp) as the set of functions u : J — R,

U(0) (t) for t€a,t1],
u(t) _ U(1) (t) fOI‘ te (tlatQ]a
U(p) (t) for te (tp, b],

where u(jy € Ct;, tj11] (or ugy € Clty,tj41]) for j =0,...,p. Moreover AC],
(or ACp) stands for the set of functions u € CL (or u € Cp) having first
derivatives absolutely continuous (or which are absolutely continuous) on each
subinterval (¢;,¢j11), j =0,...,p. Foru € C} and j =1,...,p+ 1 we write

TOEY — ol (4. — 1 / / _ _ /
Wit) = (=) = lim WD), ul@) = ulet) = lim ) ()
and
lullp = llulloo + 1[0

Note that the set C}, becomes a Banach space when equipped with the norm
| - [|p and with the usual algebraic operations.

Let k € N. We say that f: J x S — R, S C R” satisfies the Carathéodory
conditions on J x S if f has the following properties: (i) for each 2 € S the
function f(-,z) is measurable on J; (ii) for almost each ¢ € J the function f(¢,-)
is continuous on S; (iii) for each compact set K C S there exists a function
mg(t) € L(J) such that |f(t,z)| < mg(t) for a. e. t € J and for all x € K. For
the set of functions satisfying the Carathéodory conditions on J x S we write
Car(J x.S). For a subset Q of a Banach space, cl(£2) stands for the closure of €.

We study the following boundary value problem with nonlinear boundary
conditions

u" (t) = ft,u(t),u'(t)), (2)

g1(u(a),u(b)) = 0,

(' (a),u' () = o,} 3)
u(tj+) = ILj(u(ty), j=1,....p, } (4)
u'(ti+) = M;('(t), j=1,...,p,

where f € Car(J x R?), g1,92 € C(R?), I;, M; € C(R) and «/(t;) are under-
stood in the sense of (1) for j =1,...,p.



Definition 1 A function u € AC}, which satisfies equation (2) for a. e. t € J
and fulfils conditions (3) and (4) is called a solution of the problem (2)—(4).

In the present paper we provide conditions which are sufficient for the solv-
ability of problem (2)-(4). Our main assumption is the existence of lower and
upper functions o1 and oy of the problem (2)—(4).

Definition 2 A function oy € AC} is called a lower (upper) function of the
problem (2)—(4) provided the conditions

(o1 (t) — f(t,0o1(t), 0 ()] (-=1)F <0 fora.e. teJ, (5)
g91(ok(a),0%(b)) = 0, } (6)
g2(0(a), o (D)) (-1)F < 0,

or(tj+) = Ij(ok(ty), 7=1,...,p, } 7)
[0}, (tj+) — Mj(o},(t)](-1)F <0, j=1,...,p,

where k =1 (k = 2), are satisfied.

Throughout the paper we assume:

o1 and o9 are respectively lower and upper functions
of the problem (2)—(4) and o (t) < o9(¢) for t € J,

gi(o1(a),01(b)) # gi(z,01(b)) if x> 0i(a), )
gi(o2(a),02(b)) # g1(7,02(b)) if = <o2(a),

Q
[
—
Q
—
—
S
~—
Q

1(h) < gi(or(a),y) i o1(b) <y, (10)

9A01(@).04(0) < go(ay) I 7> 0l(a), y < ol(0) } "
g2(03(a),05(b)) = g2(z,y) if  z < oy(a), y = o3(b),
Ij(o1(t5)) < Ij(z) < Ij(oa(ty)), if o1(tj) <z < 0a(ty), (12)
forj=1,...,p,
there exist ¢1,p2 € ACp, ¢1(t) < oi(t) < po(t) for t e J,
1) > ft,z,01(1), ©5(t) < f(t,2,92(t)), (13)
fora.e. t € J, z € [o1(t),o2(t)]
g2z, 0i(D)(=1)" <0 for z € [pi(a), p2(a)], (14)
1=1,2,
Mj(p1(t5)) < er(tj+),  Mj(e2(t;)) > pa(ti+), (15)
and
M (z) is nondecreasing for x € [p1(¢;), p2(t;)] (16)
forj=1,...,p.



Remark 3 If we put for z, y € R
g(zy)=y—=z gy =r-y, (17)
then (3) reduces to the periodic conditions
u(a) = u(b), u'(a)=u'(b). (18)

By virtue of (17) we see that ¢; is one-to-one in z which implies that g; satisfies
(9). Moreover g; fulfils (10) because g; is increasing in y. Similarly, since
g2 is increasing in = and decreasing in y, we have that g, satisfies (11). If
v1(a) > ¢1(b) and pa(a) < p2(b), then gy fulfils (14), as well.

Existence results for problem (2), (3) (without impulses) can be found for
example in [5], [6], [8], [13], [14], but the methods of their proofs cannot be
applied on the impulsive problem (2)—(4). Therefore we have developed a dif-
ferent approach here. It is based on the method of lower and upper functions
providing the construction of a proper auxiliary problem (problem (29)-(31))
and on the method of a priori estimates for solutions of the auxiliary problem
(Proposition 8). Similar problems with different kinds of nonlinear boundary
condition and with a continuous right-hand side f have been solved in [4]. The
impulsive problem (2), (4) with the periodic conditions (which are a special case
of conditions (4), by Remark 3) has been already studied by means of the lower
and upper functions method in [1] - [3], [7], [9], [11], [12], [17], [18], [19]. The
most of these works impose the Nagumo growth conditions on the right-hand
side f of equation (2) (see [1], [3], [4], [7], [9], [11], [17], [19]). Other works (see
[2], [12]) assume that f does not depend on the first derivative of solutions.
The existence proofs in [2], [12], [18] are based on the monotone iterative tech-
nique which makes demands on the monotonous behaviour of the right-hand
side f as well as of the impulse function I;, M;. In contrast to all the works
citied above we prove the existence result for the equation (2) with f satisfying
conditions of the sign type with respect to the third variable of f (conditions
(13)), which means that we impose no growth restrictions on f. Moreover, we
do not require the monotonicity of the impulse functions I; and use the weaker
conditions (12). No growth restrictions are imposed on g1, g2, I, M;, as well.
Let us note that the corresponding first order impulsive problem

(1) = f(tult),  glula)u®) =0, ult;+) = Gult), j=1,....p

has been solved in [10] and [15] for the scalar case and in [16] for the vector
case.

2 Auxiliary problem

This section is devoted to the construction and the study of certain auxiliary
problem. In the construction we will use functions

wi(t,€) = sup{|f(t,0:(t), oi(t)) — f(t,05(t),y)| : loj(t) — y| < €}, (19)
fora.e. t € J, and for e € [0,1], 1 = 1, 2.



Lemma 4 The functions w; defined in (19) fulfil the Carathéodory conditions
on J x [0,1], fori=1,2.

On purpose of proving this lemma, we need two following lemmas.

Lemma 5 Let h € Car(J x S), S C R¥, k € N. Then for every compact set
K C S the function

YK (t) = sup [h(t, z)]
zeK

1s Lebesgue integrable on J.

Proof. Let K C S be a compact set. First, we will prove that 1 is measurable
on J. There exists a countable set L C K such that

(L) = K. (20)

We write L = {g,}, where {g,} is a sequence in R¥ and get the sequence of
measurable functions

{Ih(-;qn)] = n € N}

Let us define a function

P (t) = sup |h(t,z)| = sup{|h(t,q,)|} for a.e. t e J.
zeL neN

From the third Carathéodory condition of the function A we get that there is
mg € L(J) such that ¢, < mg a. e. on J, and so 1, is measurable on J. It
remains to prove that

'L/JK = wL a.e. on J. (21)

Let us take such ¢ € J, for which h(t,-) is continuous on S. Then there exists
zg9 € K such that

|h(t, 20)| = max |h(t, )| = sup [h(t, z)|.
reK reK

From (20) it follows that there exists
{z,} CL and T, — zp in RF.
Since h(t,-) is continuous on K it follows
Tim (Bt 20)] = [A(t, 20)] = ¥ (1)

Obviously, ¥ (t) > lim, o |h(t, zy,)| for a. e. t € J, 1. e. 9 > Y a. e. on J.
From the definitions 91, and ¥ we also get the inverse inequality a. e. on J.
Thus, (21) is valid. O

Lemma 6 Let f € C[0,n], where n > 0. Then the function
g9ly) = max f(z),  y€[0,n]

0<z<y

is continuous on [0, ).



Proof. Let € > 0 be an arbitrary real number. Let ¢ € [0,7). Since f € C[0, 7],
it follows that there exists d; > 0 such that (¢,q+ d1) C (0,7) and

[f(z) = Flag)] <e (22)

for every x € (¢,q+ 61). Let y € (¢,q+ 61). Then we can write

g(y) = max(g(q), ax f (2))-

Obviously, if g(y) > g(g), then g(y) = maxy<y<y f(z). There exists £ € [g,y]
such that ¢g(y) = f(£) and consequently from (22) we get

9(y) —g(q) = f(§) —glq) < f(&) — flg) <e

Let ¢ € (0,n]. Then there exists dy such that (22) is valid for x € (¢ — d2,¢).
Let y € (¢ — d2,q). We can write

9(a) = maX(g(y),yrgggqf (2))-

If g(q) > g(y), then g(q) = f(0), where 0 € [y,q]. Thus,

9(q) —g(y) < f(0) = fy) = f(0) — fla) + fq) — fly) <2

Proof of Lemma 4. Let i € {1,2}. We denote

ki(t,y) = f(t,0i(t), oi(t) — y) — f(t,0i(t), oi(t)) (23)

for a. e. t € Jand y € [—-1,1]. Let € € [0,1]. Obviously, k;(t,y) € Car(J x
[—€,€]) and w;(t,e) = sup{|ki(t,y)| : |y| < €}. From Lemma 5, it follows that
wi(+, €) is measurable on J. Since

wi(t,e) <wj(t,1) fora.e. teJ, all e€][0,1],

and w; (-, 1) is Lebesgue integrable it follows that w; fulfils the third Carathéodory
condition.

It remains to prove the continuity of the function w;(t,-) for a. e. t € J. Let us
take t € J such that t # ¢; for j =0,...,p+1 and such that f(¢,-) is continuous
on R?. According to (23), we have

wi(t,e) = max(org;ix |ki(t, )], Jmax |k (¢, —y)|) for each € € [0, 1].
In view of Lemma 6, the proof is complete. O

We define functions

) fto1(0),y) —wn (b 578055 ) -0 for @ < o (1),
flt,z,y) =< f(tz,y) for 1(t) <z < o(h),

f(t,o2(t),y) +w2( ’xxagzt()?1)+xf;;f(2t()?_1 for o9(t) <z,




fora.e. t € J and all z,y € R,

p1(t) for y < pi(t),
o(t,y) =X vy for 1(t) <y < o(t), forallte J, x€R, (25)
pa(t) for o(t) <y,

F(tz,y) = f(t,z, 0(t,y)) fora.e. t€ Jandall z,y € R, (26)

and
g; (I, y) = 92(90(0‘7 l‘), (p(ba y)) for all T,y € R. (27)

By virtue of Lemma 4 we have f* € Car(J x R?). Finally, put
o1(t) for x < oq(t),

o(t,r) =< x for o1(t) <z < oo(t), (28)
oo(t) for os(t) < =z,

forallte J, z € R.
Now, we define the auxiliary problem

() = £ (b, u(t), ' (1), (29)
ule) = ola,ula) + g1(u(a), u(b))),
ul®) = olbulb +g;(u'(a>,u'(b>>>,} (30)

)
u(tj+) —u(ty) = ILij(o(t;,u(ty)) —o(tj,ulty), 7=1,....p, } (31)
u'(ti+) —u'(t;) = Mj(p(ty,u'(t;)) — ety ' (t;), j=1,...,p

Definition 7 A function v € ACp, which satisfies differential equation (29) for
a. e. t € J and fulfils conditions (30), (31) is called a solution of the problem
(29)—(31).

Proposition 8 Let the conditions (8)-(16) and (24)-(28) hold. Let u be a
solution of the problem (29)-(31). Then

o1(t) <wu(t) <oq(t) forallte J, (32)

p1(t) <u'(t) < pa(t)  forallteJ (33)
and u is a solution of the problem (2)—(4).

Proof. Let u be a solution of the problem (29)-(31).
Step 1. We will prove the inequality (32). Let us consider a function

v(t) = u(t) —oo(t) forte J.
Suppose, that there exist j € {0,...,p} and 7 € (¢;,%;41) such that

a t) = > 0. 34
i o(t) =v(r) (34)

Then



which together with (34) implies that there exists v > 0 such that

v(t)

v(t) >0 and |V'(#)] < o) +1

<1, (35)

for t € (1,7 + ) C (tj,tj4+1). Then

0" () = u"(t) — 05 (t) = f(t, ult), p(t,u' (1) = f(t,02(t), 05(1))

= F(t02(0) 0,0 () = (1.02(0) ) + (170 )+ O
for a. e. t € (1,7 + ). Note, that
(olt, () — G40 < ()] for b€ (t,t500) (36)

By virtue of (19), (35) and (36), we get

o"(8) > —wslt, o' (1)) + ws (1, -

fora.e. te (r,7+ 7).
Thus

t
0< / v"(s)ds =0 (t) — ' (1) = (t), forte (1,7 +7),
T
which contradicts (34). So, we have proved that

the function v cannot have any positive maximum inside of the (38)
interval (¢;,t;41), for j =0,...,p.

Now, from (30) it follows that v(a) < 0. Let us suppose that there exists
q € (a,t1) such that v(q) > 0. According to (38) we have

max _v(t) = v(ty) >0, (39)
t€la,t1]

i. e. u(ty) > o2(t1). We get o(t1,u(t1)) = o2(t1) and from the first equality in
(31) it follows that

u(ti+) = Ii(o2(t1)) — o2(t1) +u(t1) > Ii(o2(t1)).

Using (7) we get u(t1+) > o2(t1+), which means v(t;+) > 0. From (38) and
(39) we get
v'(t1) > 0. (40)

Let us suppose that
v'(t14) < 0. (41)

In view of (40), (7), (13), (16) and (25), we have
Mi(p(t, 4/ (t1))) > Mi(p(tr,05(t1))) = Mi(o3(t1)) > oh(ti+).
Applying it to (31), we get

u'(t1+) — oh(t1+) > u'(t) — o(t, ' (8)).



Due to (41), we have the inequality u'(t1) < p(t1,4/(t1)), 1. e. u/'(t1) < 1(t1).
Using this and (40) we have o} (t1) < ¢1(t1), which contradicts (13).
Therefore v'(t1+) > 0. If v'(t1+) = 0 and v is nonincreasing on some interval
(t1,t1 +v) C (t1,t2), where v > 0, then (35) is valid for all ¢t € (t1,t1 + 71),
0 < v1 < 7. Hence, the relation (37) is satisfied for a. e. t € (¢1,t1 +v1). We
get

t
0< / v"(s)ds = v'(t) = ' (ti+) = 0'(t), fort € (t1,t1 +m),
t1

which contradits the assumption of monotony of the function v.
In view of (38) we get

0 <w(ti+) <v(tz) and '(t3) >0

in all other cases. Then we use the preceding procedure and deduce by induction
that
v(t;) >0, forj=1,...,p+1,

i. e. v(b) > 0, contrary to (30). This means that (39) is not valid, which
together with (38) gives v <0 on [a,t1], 1. e. u(t) < oa(t) for ¢ € [a, t1].

To prove that u(t) > o(t) for ¢t € [a,t1], we argue similarly. Therefore we get
o1(t) < wu(t) < oa(t) for ¢ € [a,t;]. Particularly

o1(t1) <u(t) < oa(th)
and in view of (12) we have
Li(o1(t1)) < Ii(u(tr)) < Li(o2(th)). (42)
Further, due to the first equality in (31) we get
u(ti+) = I (u(t1)).
Therefore, according to (7) and (42) we have

01(t1+) < u(tﬁ—) < 02(t1+).

In such a way we argue on each interval [t;,¢;11], j =1,...,p, and get (32).
Step 2. We will prove that
g1(u(a),u(d)) =0, g5(u'(a),u' (b)) = 0. (43)

To this aim we will show that
o1(a) < ufa) + gi(u(a), u(b)) < oz(a) (44)

and
o1 (b) < ub) + g3 (u' (@), ' (B)) < 0z (b). (45)

Let us suppose that the first inequality in (44) is not true. Then

o1(a) > u(a) + g1 (u(a), u(b)).



In view to (30) we have u(a) = 01(a), thus it follows from (10) and (32) that

0> gi(o1(a),u(b)) 2 g1(o1(a), o1 (b)),

which contradicts (6). We prove the second inequality in (44) similarly. Let us
suppose that the first inequality in (45) is not valid, i. e. let

o1(b) > u(b) + g5(u'(a), u'(b)). (46)

It follows from (30) that
u(b) = o1(b) (47)

and 0 > g4 (u'(a), v (b)). Further, by virtue of (6), (30) and (44), we have

g1(01(a), 01(0)) = 0 = g1(u(a), u(b)) = g1(u(a),a1(b))-

In view of (9), we get
(48)

It follows from (32), (47) and (48) that o/ (b) > u/(b) and v'(a) > o/ (a). Finally,
by (11), we get the inequalities

u(a) = o1(a

0> g5(u'(a),u' (b)) > g2(01(a), 07 (D)),

contrary to (6). The second inequality in (45) can be proved by a similar
argument. Due to (30), the conditions (44) and (45) imply (43).
Step 3. We will prove (33). According to (32), we have

Frtu®),u' () = f(tut), o(t, ' (1)) = f(tut), o(t, ' () (49)

for a. e. t € J. We define z = v/ — 2 on J and suppose that there exists
q € [a,t1) such that

max_z(t) = z(q) > 0. (50)
t€la,t1]

Then there exists § > 0, such that z(¢) > 0, i. e. u/(t) > p2(t) for t € (¢,q+9).
From (13) we get

2(t) =" (t) — py(t) = f(t,u(t), ot () — @5(t) >0
for a. e. t € (¢,q + d). This implies that
0< /qt 2/ (s)ds = z(t) — 2(q)

for all ¢ € (q,q + §), which contradicts (50). Let us suppose that (50) is valid
for ¢ = t;. From (25), we get p(t1,u'(t1)) = ¢2(t1) and from (31) we have

u'(t1+) — Mi(p2(t1)) = u'(t1) — p2(t1)-
In view of (50) for ¢ = ¢, and by (15) we have

w'(ti+) > Mi(p2(t1)) > p2(ti+),

10



i. e. z(ti+) > 0. We can apply the preceding procedure on (t;,t;41], for
j=1,...,pand get z(t2) >0, ..., z(b) > 0. From the last inequality we have
(b, u' (b)) = p2(b) and therefore (14) and (27) lead to

g5 (' (a),u' (b)) = g2(p(a, u'(a)), p2(b)) < 0.

According to (43) we get a contradiction. The second inequality in (33) can be
derived similarly.

Step 4. To summarize, we have proved that an arbitrary solution u of the
problem (29) - (31) satisfies (32), (33) and (43). This implies, by (24) - (26)
and (28), that u satisfies the conditions (4) and u fulfils the equation (2) for a.
e. t € J. Moreover, due to (27), u satisfies (3). This completes the proof. O

3 Main result

Theorem 9 Let the conditions (8) - (16) hold. Then there exists a solution u
of the problem (2) - (4) such that

or<u<oy and ¢ <u <@y onJ. (51)

Proof. Let f* be defined by (24) and (26). Since f* € Car(J x R?), it follows
that there exists h € L(J) such that

|f*(t, z,y)| < h(t) fora.e. teJ andall z,y€R. (52)
Let us consider the Green function
% for a<s<t<hb,

DO for a<t<s<b,

and a function Gy : J x J — R defined by

b=t g <s<t<b
Gy (t5) = Z:% or a<s < b,
= for a<t<s <b.
Let us denote
O0G(t 0G (¢
L:sup{|G(t,s)|+|G1(t,s)|+‘ ét’s) —i—‘ 18(75’3) :(t,s)GJxJ}

and

1 b
K =2max{1, -} (o1 oo + 72]loc) + L U h(s) ds

+ p(lletlleo + llp2lloo + llotlleo + llo2llso)
p
+ Z( max M)+  max |Ik(x)|>.

ey \P1(te)<z<ea(tr) o1(te)<z<oz(tk)

11



On purpose of proving the existence of a solution of the problem (29)-(31)
we consider an operator T :  C C}, — C},, where

Q={uecCh:|ulp <K}

We define the operator T' by

T=A+B
where
/Gts (s,u(s),u(s))ds (53)
and
Bu(t) = T~ o(a,u(a) + g1 (u(a), u(b))) +
“= (b, u(b) + g3 a), () +

Z (t, t6) [ M (o (tr, u' (tr))) — (b, w' (tk))] +

p

Z (t, te) [Tk (o (tr, u(t))) — o (e, u(te))], (54)

for each v € C}, and each t € J. Here ¢, g5 and o are given by (25), (27) and
(28), respectively. Obviously, T'(Q) C Q.

We will use the Schauder fixed point theorem to prove the existence of a fixed
point of the operator T'. The set €2 is a nonempty, closed, convex and bounded
subset of CL. The only thing that left to prove is the absolute continuity
of T. From the Lebesgue dominated convergence theorem and the continu-
ity of the functions o, g1, g2, ¢, and I;, M;, for 57 = 1,...,p, it follows that
A and B are continuous. From (52) and the Arzela-Ascoli theorem, it fol-
lows that the operator A : © — C'(J) is absolutely continuous. Since B
maps the set 2 into the subspace of the finite dimension of Cll), with the base
{1,t,G(t,t;),G1(t,tj), 7 =1,...,p} and B is a bounded, continuous operator,
it follows that B is also absolutely continuous.

Thus, there exists the fixed point u of the mapping 7', i. e.

u = Au + Bu.

The definition (53) implies that Au € AC'(J) and by (54) we have Bu € AC},.
Therefore u € ACY,.
It is valid that

(Au)"(t) = f*(t,u(t),u/(t)) and (Bu)'(t) =0 fora.e. teJ,

which means that u satisfies (29). Further,

(Au)(a) = (Au)(b) = 0O,
(Bu)(a) = o(a,u(a) + gi(u(a),u(b)))
(Bu)(d) = o(b,u(b) + g3(u'(a),u'(b)))



hence (30) is valid. Finally
(A) D (t54) = (Aw)D(ty),  i=0,1,

and
(Bu)(tj+) = (Bu)(t;) = Ij(o(tj,ult))) — olty, ulty)),
(Bu)'(tj+) — (Bu)'(t;) = M;(p(t;, ' (t;))) — o(tj,u'(t))
for j =1,...,p. Thus, u is a solution of the problem (29) - (31) and in view of
Proposition 8 it is a solution of the problem (2) - (4), as well. O

In the following theorem we assume weaker conditions than (14). Let us
note that the conditions (6), (13) and (14) imply

p1(b) < op(b) and  01(b) < pa(b). (55)
Theorem 10 Let the conditions (8) — (13), (55), (15), (16) and
g2(2, i(0))(=1)" <0 for z € [p1(a), p2(a)], (56)
hold. Then there exists a solution u of the problem (2)—(4) such that
o <u<oy and @ <u <y onJ.

Proof. We define a function ¢ : R — [—1, 1]

1 for y < p1(b),
L_L(p*l(b) for ¢1(b) <y <L,

P(y) =4 0 for L<y<U,
Aol for U<y <pb),

-1 for @Q(b) S Y,

where ¢1(b) < L < U < @a(b). If p1(b) < o} (b) and o5(b) < p2(b), then we put
L = min(c}(b), (b)) and U = max(o}(b),ch(b)). In the case if ¢1(b) = o} (b)
and ob(b) < ¢2(b) we put L = U = o4(b) and similarly, if ¢;(b) < o/ (b) and
ab(b) = pa(b), then L = U = o} (b). Otherwise, we can take U and L arbitrarily.
We define functions .

920 (2, y) = g2(2,y) + —P(y),

for all n € N, z,y € R. Consider the sequence of problems (2),

g1(u(a),u(b)) = 0,
g2n( () ()) = 0?} (57)

(4), for all n € N. It is easy to see, that the conditions (8) — (16) for the
problems (2), (57), (4) are satisfied. Applying Theorem 9 we get the sequence
{un} of solutions of problems (2), (57), (4). In view of proof of Theorem 9 we
can see that the function u,, satisfies relation

Thun = Up,

13



where T,, = A + B,, is the operator representation of the auxiliary problems
to the problems (2), (57), (4). Since A (defined in (53)) is a compact operator
and {Bpuy,} (B, are defined in (54), where ga ,, are in place of g») is a bounded
sequence in a subspace of finite dimension, it follows that there exists a conver-
gent subsequence of {uy,}. Without any loss of generality we can assume, that
{uy} is such a sequence and u € C}, is its limit. We will show, that u is a solu-
tion of the problem (2)-(4). Consider the operator representation T'= A + B
(defined by (53) and (54)) of the auxiliary problem of (2)-(4). We have

1

|Tu —ullp < ||Tu — Tuy||p + - + - + || Thun — u||p-

(b—a)

Since the right side of this inequality approaches zero as n — oo, it follows that
u is a fixed point of T and consequently u € ACY.

From the uniform convergence of {u, },{u;,} and {g2,}, we get (3) and (4).
It remains to prove that u satisfies the differential equation (2). We have

ul (t) = f(t,un(t),u,(t)), fora.e. te.J

n » '

Let 5 € {0, N ,p} and ¢ € (tj,tj_H). Then
t
i (t) — (1) = [ F(syun(s), i (5)) s,
tj

for all n € N. From the fact that f € Car(J x R?), u,, — u in C}, and from
the Lebesgue bounded theorem we have

W0 =) = [ s, u(s),0(9)) s,

for each ¢ € (tj,¢;41). The proof is complete. O

Remark 11 In Remark 3 we have shown that if g; and go are defined by
(17), they fulfil (9) — (11). For the validity of (56) it suffices to assume that
v1(a) > p1(b) and @a(a) < @o(b) instead of the strict inequalities which are
necessary for (14). Then ¢ and @9 can be constant functions. The existence
result for constant lower and upper functions oq(t) = 71, o2(t) = re for t € J
and constant functions ¢1(t) = c2, p2(t) = ¢y for t € J follows from Theorem
10 and is presented in the next corollary.

Corollary 12 Let 71, 79 € R be such that ry < 7y,
f(t,r1,0) <0, f(t,r9,0) >0 fora.e.teJ

and let
Li(rg) = g, Ii(z) € (r1,m2) ifx € (ri,re)

forj=1,...,p, k=1,2. Further, let ¢;, ca € R be such that ¢; < 0 < ¢,

ft,z,e1) <0, f(t,z,co) >0 for a.e. t e Jand for z € [ry,rs],

14



and let

M;0) =0, Mj(cy) =ck, M;(x) is nondecreasing on [ci, c2]

for j = 1,...,p, k = 1,2. Then the periodic impulsive problem (2), (4), (18)
has a solution « and that

r <u<ry and cp <u <cy onJ
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