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Abstract

The paper describes the set of all solutions of the singular initial prob-
lems

(p(t)u′)′ = p(t)f(u), u(0) = B, u′(0) = 0,

on the half–line [0,∞). Here B < 0 is a parameter, p(0) = 0 and p′(t) > 0
on (0,∞), f(L) = 0 for some L > 0 and xf(x) < 0 if x < L, x 6= 0. By
means of this result, the existence of a strictly increasing solution of this
problem satisfying u(∞) = L is proved under some additional assump-
tions. In particular cases this homoclinic solution determines an increas-
ing mass density in centrally symmetric gas bubbles which are surrounded
by an external liquid with the density L.
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1 Introduction

We investigate a singular boundary value problem which originates from the
Cahn-Hillard theory in hydrodynamics. If ρ is the density, µ(ρ) the chemical
potential of a non-homogeneous fluid and the motion of the fluid is zero, the
state of the fluid in RN is described by the equation

γ∆ρ = µ(ρ)− µ0, (1)
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A100190703 of the Grant Agency of the Academy of Sciences of the Czech Republic.
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where γ and µ0 are suitable constants. See [4]–[7] and [9]. When searching for
a solution with the spherical symmetry which depends only on one variable r,
equation (1) is reduced to the following ordinary differential equation

γ(ρ′′ +
N − 1
r

ρ′) = µ(ρ)− µ0, r ∈ (0,∞). (2)

In fact, together with the boundary conditions

ρ′(0) = 0, lim
r→∞

ρ(r) = ρ` > 0, (3)

equation (2) describes the formation of microscopical bubbles in a fluid, in
particular, vapor inside one liquid. The first condition in (3) follows from the
central symmetry and it is necessary for the smoothness of solutions of the
singular equation (2) at r = 0. The second condition in (3) means that the
bubble is surrounded by an external liquid with the density ρ`.

Let N = 3. In the simplest models for non-homogeneous fluids, the chemical
potential µ is a third degree polynomial with three distinct real roots. After
some substitution (see [9]), problem (2), (3) is reduced to the form

(t2u′)′ = 4λ2t2(u+ 1)u(u− ξ), (4)

u′(0) = 0, u(∞) = ξ, (5)

where λ ∈ (0,∞) and ξ ∈ (0, 1) are parameters. If there exists an increasing
solution of problem (4), (5) (having just one zero), many important physical
properties of the bubbles depend on them. In particular, the gas density inside
the bubble, the bubble radius and the surface tension. Numerical investigation
of the problem can be found in [4], [7]–[9]. Note that the same boundary value
problems arise in the nonlinear field theory [5].

2 Formulation of problem

We investigate possible generalizations of problem (4), (5). In particular, we
consider a singular boundary value problem on the half–line of the form

(p(t)u′)′ = p(t)f(u), (6)

u′(0) = 0, u(∞) = L, (7)

where L ∈ (0,∞). We prove the existence of a strictly increasing solution of
problem (6), (7) having just one zero and belonging to C1([0,∞))∩C2((0,∞)).
Problem (6), (7) can be transformed onto a problem about the existence of a
positive solution on the half–line. For p(t) = tk, k ∈ N and for p(t) = tk,
k ∈ (1,∞), such problem was solved by variational methods in [1] and [2],
respectively. Related problems were solved e.g. in [3] and [10]. Here we deal
with a more general function p and we omit some assumptions for f .
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In what follows we assume

f is locally Lipschitz on (−∞, L], f(L) = 0, (8)

xf(x) < 0 for x < L, x 6= 0, (9)

there exists B̄ < 0 such that F (B̄) = F (L), where F (x) = −
∫ x

0

f(z) dz, (10)

p ∈ C1((0,∞)) ∩ C([0,∞)), p(0) = 0, (11)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (12)

For example functions

p(t) = tk, p(t) = tk ln(t+ 1), k > 0,
p(t) = t+ α sin t, α ∈ (−1, 1),

p(t) =
tk

1 + tl
, k ≥ l > 0,

satisfy (11) and (12).

Remark 1 According to (8) and (9), we have f(0) = 0. So, f has just two
zeros in (−∞, L]. The case when f has more that two zeros was solved in [11],
[12]. Assumptions (9), (10) yield that F is continuous on (−∞, L], decreasing
on (−∞, 0), increasing on (0, L) and

F (B) > F (L) for B ∈ (−∞, B̄), F (B) < F (L) for B ∈ (B̄, 0]. (13)

3 Lemmas

Define auxiliary functions

f̃(x) =
{

0 for x > L,
f(x) for x ≤ L, F̃ (x) = −

∫ x

0

f̃(z) dz, x ∈ R. (14)

Choose B < 0 and consider an initial problem

(p(t)u′)′ = p(t)f̃(u), (15)

u(0) = B, u′(0) = 0. (16)

Definition 2 Let c ∈ (0,∞]. A function u ∈ C1([0, c)) ∩ C2((0, c)) satisfy-
ing equation (15) on (0, c) and fulfilling conditions (16) is called a solution of
problem (15), (16) on [0, c).
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Lemma 3 Let B < 0. Problem (15), (16) has a unique solution u on [0,∞),
such that

u(t) ≥ B for t ∈ [0,∞). (17)

Further, for each b > 0, B0 < 0 and each δ ∈ (0, |B0|/2), there exists M =
M(b, B0, δ) > 0 such that

|u(t)|+ |u′(t)| ≤M, t ∈ [0, b],
∫ b

0

p′(s)
p(s)

|u′(s)|ds ≤M (18)

holds for each solution u of problem (15), (16) with B ∈ (B0 − δ,B0 + δ).

Proof. Step 1. (A priori estimate of solutions) Let u be a solution of problem
(15), (16) on [0, c) ⊂ [0,∞). By (15), we have

u′′(t) +
p′(t)
p(t)

u′(t)− f̃(u(t)) = 0 for t ∈ (0, c),

and multiplying by u′ and integrating between 0 and t, we get

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s) ds+ F̃ (u(t)) = F̃ (B), t ∈ (0, c). (19)

Let u(t1) < B for some t1 ∈ (0, c). Then (19) yields F̃ (u(t1)) ≤ F̃ (B), which
is not possible, because F̃ is decreasing on (−∞, 0). Therefore u(t) ≥ B for
t ∈ [0, c).
Step 2. (Local solution u of an auxiliary problem) By (8), we can find the
Lipschitz constant K > 0 for f on [B,L]. Put ϕ(t) = 1

p(t)

∫ t
0
p(s) ds, t > 0.

Having in mind (12), we see that

0 < ϕ(t) ≤ t for t ∈ (0,∞), lim
t→0+

ϕ(t) = 0. (20)

Choose η > 0 such that ∫ η

0

ϕ(t) dt <
1

2K
,

and put

f̃B(x) =
{
f̃(x) for x ≥ B,
f̃(B) for x < B.

Consider the Banach space C([0, η]) (with the maximum norm) and define
an operator F : C([0, η])→ C([0, η]) by

(Fu)(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f̃B(u(τ)) dτ ds.

We have for u1, u2 ∈ C([0, η])

‖Fu1 −Fu2‖C([0,η]) ≤ K‖u1 − u2‖C([0,η])

∫ η

0

ϕ(s) ds <
1
2
‖u1 − u2‖C([0,η]).
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Hence F is a contraction and the Banach fixed point theorem yields a unique
fixed point u ∈ C([0, η]) of F . Therefore

u′(t) =
1
p(t)

∫ t

0

p(s)f̃B(u(s)) ds, t ∈ (0, η], u(0) = B. (21)

Let B0 < 0 and δ ∈ (0, |B0|/2). Choose an arbitrary B ∈ (B0 − δ,B0 + δ). Due
to the definition of f̃B there exists M̃ = M̃(B0, δ) ∈ (0,∞) such that

|f̃B(x)| ≤ M̃ for x ∈ R.

Finally, (20) and (21) yield

lim
t→0+

|u′(t)| ≤ M̃ · lim
t→0+

ϕ(t) = 0.

Step 3. (Global solution u of the auxiliary problem) In Step 2 we have proved
that there exists a unique solution u of problem (22), (16) on [0, η], where

(p(t)u′)′ = p(t)f̃B(u). (22)

By (20) and (21),

|u′(t)| ≤ M̃b, |u(t)| ≤ |B0|+ δ + M̃b2, t ∈ [0, b], (23)

for arbitrary b > 0. Having in mind that f̃B ∈ Liploc(R), u can be (uniquely)
extended as a solution of equation (22) to each interval, where u is bounded.
Since b is arbitrary, u can be extended as a solution of (22) on [0,∞). Put

ψ(t) =
∫ b

t

p′(s)
p2(s)

∫ s

0

p(τ) dτ ds, t ∈ (0, b].

Then, using the “per partes” integration and (20), we get

ψ(t) = ϕ(t)− ϕ(b) + b− t, t ∈ (0, b],

lim
t→0+

ψ(t) = b− ϕ(b) =: ψb ∈ [0,∞).

Integrating (22) over (0, t) and multiplying by 1/p(t) we derive

|u′(t)| ≤ 1
p(t)

∫ t

0

p(s)|f̃B(u(s))|ds, t ∈ (0, b].

Multiplying by p′(t)/p(t) and integrating it over (0, b), we get∫ b

0

p′(t)
p(t)
|u′(t)|dt ≤

∫ b

0

p′(t)
p2(t)

∫ t

0

p(s)|f̃B(u(s))|dsdt ≤ M̃ψb. (24)

Estimates (18) follow from (23) and (24) for

M = max{M̃b+ |B0|+ δ + M̃b2, M̃ψb}.
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Step 4. (Global solution u of problem (15), (16)) If u is a solution of problem
(22), (16) on [0,∞), then we can prove as in Step 1, that u(t) ≥ B on [0,∞),
and hence u fulfils equation (15) on [0,∞). If u is a solution of problem (15),
(16) on [0, c) ⊂ [0,∞), then, by Step 1, u(t) ≥ B on [0, c), and therefore u can
be uniquely extended as a solution of equation (22) on [0,∞). So, solutions of
problem (15), (16) and (22), (16) are the same for all B < 0. Therefore, due
to Step 3, for each B < 0 problem (15), (16) has a unique solution on [0,∞)
satisfying (17) and (18).

�

In what follows by a solution of problem (15), (16) we mean a solution on
[0,∞).

Remark 4 Choose a ≥ 0 and C ≤ L, and consider the initial conditions

u(a) = C, u′(a) = 0. (25)

We can prove as in the proof of Lemma 3 that problem (15), (25) has a unique
solution on [a,∞). In particular, for C = 0 and C = L, the unique solution of
problem (15), (25) is u ≡ 0 and u ≡ L, respectively.

Lemma 5 For each B0 < 0, b > 0 and each ε > 0, there exists δ > 0 such that
for any B1, B2 ∈ [B0, 0)

|B1 −B2| < δ =⇒ |u1(t)− u2(t)|+ |u′1(t)− u′2(t)| < ε, t ∈ [0, b]. (26)

Here ui is the unique solution of problem (15), (16) with B = Bi, i = 1, 2.

Proof. Choose B0 < 0, b > 0, ε > 0. Let K > 0 be the Lipschitz constant for
f on [B0, L]. By (15) for u = ui, i = 1, 2, B1, B2 ∈ [B0, 0) and by the Fubini
theorem

|u1(t)− u2(t)| ≤ |B1 −B2|+
∫ t

0

1
p(s)

∫ s

0

p(τ)|f̃(u1(τ))− f̃(u2(τ))|dτ ds

≤ |B1 −B2|+
∫ t

0

p(s)
p(s)

∫ s

0

|f̃(u1(τ))− f̃(u2(τ))|dτ ds

≤ |B1 −B2|+
∫ t

0

∫ t

0

|f̃(u1(τ))− f̃(u2(τ))|dτ ds

≤ |B1 −B2|+Kt

∫ t

0

|u1(τ)− u2(τ)|dτ

≤ |B1 −B2|+Kb

∫ t

0

|u1(τ)− u2(τ)|dτ, t ∈ [0, b].

From the Gronwall inequality, we get

|u1(t)− u2(t)| ≤ |B1 −B2|eKb
2
, t ∈ [0, b]. (27)
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Similarly, by (15), (20) and (27),

|u′1(t)− u′2(t)| ≤ 1
p(t)

∫ t

0

p(s)|f̃(u1(s))− f̃(u2(s))|ds

≤ K 1
p(t)

∫ t

0

p(s)|u1(s)− u2(s)|ds

≤ Kb|B1 −B2|eKb
2
, t ∈ [0, b].

If we choose δ > 0 such that

δ <
ε

(1 +Kb)eKb2
,

we get (26). �

Lemma 6 Let u be a solution of problem (15), (16). Assume that there exists
a ≥ 0 such that

u(t) < 0 for all t ≥ a, u′(a) = 0. (28)

Then u′(t) > 0 for all t > a and

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (29)

Proof. Since u fulfils (28), we have f(u(t)) = f̃(u(t)) for t ∈ [a,∞). By
(9) and (28), f(u(t)) > 0 on [a,∞) and thus p(t)u′(t) and u′(t) are positive on
(a,∞). Consequently there exists limt→∞ u(t) = B1 ∈ (u(a), 0]. By (15),

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), t > 0, (30)

and, by multiplication and integration over [a, t],

u′2(t)
2

+
∫ t

a

p′(s)
p(s)

u′2(s) ds = F (u(a))− F (u(t)), t > a. (31)

Therefore

0 ≤ lim
t→∞

∫ t

a

p′(s)
p(s)

u′2(s) ds ≤ F (u(a))− F (B1) <∞,

and hence limt→∞ u′2(t) exists. Since u is bounded on [0,∞), we get

lim
t→∞

u′2(t) = lim
t→∞

u′(t) = 0.

By (8), (12) and (30), limt→∞ u′′(t) exists and, since u′ is bounded on [0,∞),
we get limt→∞ u′′(t) = 0. Hence, letting t → ∞ in (30), we obtain f(B1) = 0.
Therefore B1 = 0 and (29) is proved. �
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Lemma 7 Let u be a solution of problem (15), (16). Assume that there exist
a1 > 0 and A1 ∈ (0, L) such that

u(t) > 0 for all t > a, u(a1) = A1, u
′(a1) = 0. (32)

Then u′(t) < 0 for all t > a1 and (29) holds.

Proof. Since u fulfils (32), we can find a maximal b > a1 such that 0 < u(t) < L
for t ∈ [a1, b) and consequently f(u(t)) = f̃(u(t)) for t ∈ [a1, b). By (9) and (32),
f(u(t)) < 0 on [a1, b) and thus p(t)u′(t) and u′(t) are negative on (a1, b). So, u is
positive and decreasing on [a1, b) which yields b =∞ (otherwise we get u(b) = 0,
contrary to (32)). Consequently there exists limt→∞ u(t) = L1 ∈ [0, A1). By
multiplication and integration (30) over [a1, t], we obtain

u′2(t)
2

+
∫ t

a1

p′(s)
p(s)

u′2(s) ds = F (A1)− F (u(t)), t > a1.

By similar argument as in the proof of Lemma 6 we get that limt→∞ u′(t) = 0
and L1 = 0. Therefore (29) is proved. �

4 Damped solutions

Definition 8 A solution u of problem (15), (16) is called damped, if

sup{u(t) : t ∈ [0,∞)} < L. (33)

Theorem 9 If u is a damped solution of problem (15), (16), then u has a
finite number of isolated zeros and satisfies (29); or u is oscillatory (it has an
unbounded set of isolated zeros).

Proof. Let u be a damped solution of problem (15), (16). According to (33)
we have f̃(u(t)) = f(u(t)) for t ∈ (0,∞).
Step 1. If u has no zero in (0,∞), then u(t) < 0 for t ≥ 0 and, by Lemma 6, u
fulfils (29).
Step 2. Assume that θ > 0 is the first zero of u on (0,∞). By (9), u′(t) > 0 for
t ∈ (0, θ). Due to Remark 4, u′(θ) > 0. Let u(t) > 0 for t ∈ (θ,∞). By virtue
of (9) and (15), f̃(u(t)) < 0 for t ∈ (θ,∞) and thus p(t)u′(t) is decreasing.
Let u′ be positive on (θ,∞). Then u′ is also decreasing, u is increasing and
limt→∞ u(t) = L̄ ∈ (0, L), due to (33). Consequently, limt→∞ u′(t) = 0. Letting
t→∞ in (30), we get limt→∞ u′′(t) = f(L̄) < 0, which is impossible because u′

is bounded from below. Therefore there are a1 > θ and A1 ∈ (0, L) satisfying
(32) and, by Lemma 7, either u fulfils (29) or u has the second zero θ1 > a1

with u′(θ1) < 0. So, u is positive on (θ, θ1) and has just one local maximum
A1 = u(a1) in (θ, θ1). Moreover, putting a = 0 and t = a1 in (31), we have

0 <
∫ a1

0

p′(s)
p(s)

u′2(s) ds = F (B)− F (A1),
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and hence
F (A1) < F (B). (34)

Step 3. Let u have no other zeros. Then u(t) < 0 for t ∈ (θ1,∞). Assume that
u′ is negative on [θ1,∞). Then, due to (17), limt→∞ u(t) = L̄ ∈ [B, 0). Putting
a = a1 in (31) and letting t→∞, we obtain

0 < lim
t→∞

[
u′2(t)

2
+
∫ t

a1

p′(s)
p(s)

u′2(s) ds
]

= F (A1)− F (L̄).

Therefore limt→∞ u′2(t) exists and, since u is bounded, we deduce that

lim
t→∞

u′(t) = 0.

Letting t→∞ in (30), we get limt→∞ u′′(t) = f(L̄) > 0, which contradicts the
fact that u′ is bounded above. Therefore, according to (17), there exist b1 > θ1

and B1 ∈ [B, 0) such that u(b1) = B1, u′(b1) = 0. Then, Lemma 6 yields that u
fulfils (29). Since u′ is positive on (b1,∞), u has just one minimum B1 = u(b1)
on (θ1,∞). Moreover, putting a = a1 and t = b1 in (31), we have

0 <
∫ b1

a1

p′(s)
p(s)

u′2(s) ds = F (A1)− F (B1),

which together with (34) yields

F (B1) < F (A1) < F (B). (35)

Step 4. Assume that u has its third zero θ2 > θ1. Then we prove as in Step 2
that u has just one negative minimum B1 = u(b1) in (θ1, θ2) and (35) is valid.
Further, as in Step 2, we deduce that either u fulfils (29) or u has the fourth zero
θ3 > θ2, u is positive on (θ2, θ3) with just one local maximum A2 = u(a2) < L
on (θ2, θ3), and F (A2) < F (B1). This together with (35) yields

F (A2) < F (B1) < F (A1) < F (B). (36)

If u has no other zeros, we deduce as in Step 3 that u has just one negative
minimum B2 = u(b2) in (θ3,∞), F (B2) < F (A2) and u fulfils (29).
Step 5. If u has other zeros, we use the previous arguments and get that either
u has a finite number of zeros and then fulfils (29) or u is oscillatory. �

Remark 10 According to the proof of Theorem 9 we see, that if u is oscillatory,
it has just one positive local maximum between the first and the second zero,
then just one negative local minimum between the second and the third zero, and
so on. By (35) and (36) and Remark 1, these maxima are decreasing (minima
are increasing) for t increasing.

Lemma 11 A solution u of problem (15), (16) fulfils the condition

sup{u(t) : t ∈ [0,∞)} = L (37)
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if and only if u fulfils the condition

lim
t→∞

u(t) = L, u′(t) > 0 for t ∈ (0,∞). (38)

Proof. Assume that u fulfils (37). Then there exists θ ∈ (0,∞) such that
u(θ) = 0, u′(t) > 0 for t ∈ (0, θ]. Otherwise sup{u(t) : t ∈ [0,∞)} = 0, due to
Lemma 6.
Let a1 ∈ (θ,∞) be such that u′(t) > 0 on (θ, a1), u′(a1) = 0. By Remark 4 and
(37), u(a1) ∈ (0, L). Integrating the equality (15) over (a1, t), we get

u′(t) =
1
p(t)

∫ t

a1

p(s)f̃(u(s)) ds, for all t > a1.

Due to (9) and (14), we see that u is strictly decreasing for t > a1 as long as
u(t) ∈ (0, L). Thus, there are two possibilities. If u(t) > 0 for all t > a1, then
from Lemma 7 we get (29), which contradicts (37). If there exists θ1 > a1 such
that u(θ1) = 0, then in view Remark 4 we have u′(θ1) < 0. Using the arguments
of steps 3–5 of the proof of Theorem 9, we get that u is damped, contrary to (37).
Therefore such a1 cannot exist and u′ > 0 on (0,∞). Consequently, limt→∞ u(t) =
L. So, u fulfils (38). The inverse implication is evident. �

Note that if we extend the function p in equation (15) from the half–line
onto R (as an even function), then any solution of (15), (7) has the same limit
L as t→ −∞ and t→∞. Therefore we will use the following definition.

Definition 12 A solution u of problem (15), (16) satisfying (38) is called a
homoclinic solution.

Theorem 13 (On damped solutions) Let B̄ be of (10). Assume that u is a
solution of problem (15), (16) with B ∈ [B̄, 0). Then u is damped.

Proof. Let u be a solution of (15), (16) with B ∈ [B̄, 0). Then, by (13),

F (B) ≤ F (L). (39)

Assume on the contrary that u is not damped. Then sup{u(t) : t ∈ [0,∞)} ≥ L.
If sup{u(t) : t ∈ [0,∞)} > L, then there exists b ∈ (0,∞) such that u(b) = L,
u′(b) > 0 and u(t) < L for t ∈ [0, b). Then (30) and (34) give by integration

0 <
u′2(b)

2
+
∫ b

0

p′(s)
p(s)

u′2(s) ds = F (B)− F (L) ≤ 0,

a contradiction. If sup{u(t) : t ∈ [0,∞)} = L, then, by Lemma 11, u fulfils (38).
So u has a unique zero θ > 0. Integrating (30) over [0, θ], we get

u′2(θ)
2

+
∫ θ

0

p′(s)
p(s)

u′2(s) ds = F (B),

and so
u′2(θ) < 2F (B). (40)
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Integrating (30) over [θ, t], we obtain for t > θ

u′2(t)
2
− u′2(θ)

2
+
∫ t

θ

p′(s)
p(s)

u′2(s) ds = F (u(θ))− F (u(t)) = −F (u(t)).

Therefore, u′2(θ) > 2F (u(t)) on (θ,∞), and letting t → ∞, we get u′2(θ) ≥
2F (L). This together with (40) contradicts (39). We have proved that u is
damped. �

Theorem 14 Let Md be the set of all B < 0 such that corresponding solutions
of problem (15), (16) are damped. Then Md is open in (−∞, 0).

Proof. Let B0 ∈ Md and u0 be a solution of (15), (16) with B = B0. So, u0

is damped.
(a) Let u0 be oscillatory. Then its first local maximum belongs to (0, L). Lemma
5 guarantees that if B is sufficiently close to B0, the corresponding solution u
of (15), (16) has also its first local maximum in (0, L). That means that there
exist a1 > 0 and A1 ∈ (0, L) such that u satisfies (32). Now, we can continue
as in the proof of Theorem 9 using the arguments of steps 2–5 and get that u
is damped.
(b) Let u0 have at most a finite number of zeros. Then, by Theorem 9, u0 fulfils
(29). Choose c0 ∈ (0, F (L)/3). Since u0 fulfils (30), we get by integration over
[0, t]

u′20 (t)
2

+
∫ t

0

p′(s)
p(s)

u′20 (s) ds = F (B0)− F (u0(t)), t > 0.

For t→∞ we get, by (29),∫ ∞
0

p′(s)
p(s)

u′20 (s) ds = F (B0). (41)

Therefore we can find b > 0 such that∫ ∞
b

p′(s)
p(s)

u′20 (s) ds < c0. (42)

Choose δ > 0. Let M = M(b, B0, δ) be the constant from Lemma 3. Choose
ε ∈ (0, c02M ). Assume that B < 0 and u is a corresponding solution of problem
(15), (16). Using Lemma 3, Lemma 5 and the continuity of F , we can find
δ̄ ∈ (0, δ) such that if |B −B0| < δ̄, then

|F (B)− F (B0)| < c0, (43)

moreover |u′0(t)− u′(t)| < ε for t ∈ [0, b] and∫ b

0

p′(s)
p(s)

|u′20 (s)− u′2(s)|ds ≤ max
t∈[0,b]

|u′0(t)− u′(t)|
∫ b

0

p′(s)
p(s)

(|u′0(s)|+ |u′(s)|) ds

≤ ε · 2M <
c0

2M
2M = c0.
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Therefore, we have ∫ b

0

p′(s)
p(s)

|u′20 (s)− u′2(s)|ds < c0. (44)

Consequently, integrating (15) over [0, t] and using (41) – (44), we get for t ≥ b

F (B)− F̃ (u(t)) =
∫ t

0

p′(s)
p(s)

u′2(s) ds+
u′2(t)

2
≥
∫ t

0

p′(s)
p(s)

u′2(s) ds

≥
∫ b

0

p′(s)
p(s)

u′2(s) ds =
∫ b

0

p′(s)
p(s)

(u′2(s)− u′20 (s)) ds

+
∫ b

0

p′(s)
p(s)

u′20 (s) ds ≥ −c0 +
∫ b

0

p′(s)
p(s)

u′20 (s) ds

= −c0 +
∫ ∞

0

p′(s)
p(s)

u′20 (s) ds−
∫ ∞
b

p′(s)
p(s)

u′20 (s) ds

> −c0 + F (B0)− c0 = −2c0 + F (B0)− F (B) + F (B)
> −3c0 + F (B).

We get F̃ (u(t)) < 3c0 < F (L) for t ≥ b. Therefore F̃ (u(t)) = F (u(t)) for t ≥ b
and, due to Remark 1,

sup{u(t) : t ∈ [b,∞)} < L. (45)

Assume that there is b0 ∈ (0, b) such that u(b0) = L, u′(b0) > 0. Then, since
(p(t)u′(t))′ = 0 if t > b0 and u(t) > L, we get u′(t) > 0 and u(t) > L for t > b0,
contrary to (45). Hence we get that u fulfils (33). �

5 Escape solutions

Definition 15 A solution u of problem (15), (16) is called escape, if there exists
c > 0 such that

u(c) = L, u′(t) > 0 for t ∈ (0,∞). (46)

Theorem 16 (On three types of solutions) Let u be a solution of problem (15),
(16). Then u is just one of the following three types

(I) u is damped;

(II) u is homoclinic;

(III) u is escape.

Proof. By Definition 8, u is damped if and only if (33) holds. By Lemma 11
and Definition 12, u is homoclinic if and only if (37) holds. Therefore, if u is
neither damped nor homoclinic, u has to fulfil

sup{u(t) : t ∈ [0,∞)} > L. (47)

12



Then, similarly as in the proof of Lemma 11, we get u′(t) > 0 for t ∈ (0,∞).
Hence (47) is equivalent to (46). �

By Theorem 13 we know that if B ∈ [B̄, 0), then a solution of problem
(15), (16) is damped. Therefore if we want to prove the existence of an escape
solution of (15), (16), we need to restrict our consideration on B < B̄. First we
will prove an auxiliary assertion.

Lemma 17 Let C < B̄ and {Bn} ⊂ (−∞, C). Then for each n ∈ N
(i) there exists a solution un of problem (15), (16) with B = Bn,
(ii) there exists bn > 0 such that [0, bn) is the maximal interval on which the
solution un is increasing and its values are less or equal to L,
(iii) there exists γn ∈ (0, bn) satisfying un(γn) = C.
If the sequence {γn} is unbounded, then there exists ` ∈ N such that u` is an
escape solution.

Proof. In view of Lemma 3, Theorem 16 and the proof of Theorem 9 solutions
un of problem (15), (16) with B = Bn and constants bn, γn exist (bn can be
infinite). Let {γn} be unbounded. Then

lim
n→∞

γn =∞, lim
n→∞

bn =∞. (48)

(Otherwise we take subsequences.) Assume on the contrary that for any n ∈ N,
un is not an escape solution. Choose n ∈ N. If bn = ∞, we write un(bn) =
limt→∞ un(t) and u′n(bn) = limt→∞ u′n(t). By Theorem 16, we have

un(bn) ∈ [0, L], u′n(bn) = 0. (49)

Consequently,
f̃(un(t)) = f(un(t)), t ∈ [0, bn). (50)

Due to (49) there is γ̄n ∈ [γn, bn) satisfying

u′n(γ̄n) = max{u′n(t) : t ∈ [γn, bn)}. (51)

By (15) and (50), un satisfies equation

u′′n(t) +
p′(t)
p(t)

u′n(t) = f(un(t)), t ∈ (0, bn).

Integrating it over [0, t], we get

u′2n (t)
2

+ F (un(t)) = F (Bn)−
∫ t

0

p′(s)
p(s)

u′2n (s) ds, t ∈ (0, bn). (52)

Put

En(t) =
u′2n (t)

2
+ F (un(t)), t ∈ (0, bn). (53)

13



Then, by (52),
dEn(t)

dt
= −p

′(t)
p(t)

u′2n (t) < 0, t ∈ (0, bn). (54)

We see that En is decreasing. Since F is increasing on [0, L] (see Remark 1),
we get by (49) and (53),

En(γn) > F (un(γn)) = F (C), En(bn) = F (un(bn)) ≤ F (L). (55)

Integrating (54) over (γn, bn) and using (51), we obtain

En(γn)− En(bn) =
∫ bn

γn

p′(t)
p(t)

u′2n (t) dt ≤ u′n(γ̄n)(L− C)Kn,

where

Kn = sup
{
p′(t)
p(t)

: t ∈ [γn, bn)
}
∈ (0,∞).

Further, by (55),

F (C) < En(γn) ≤ F (L) + u′n(γ̄n)(L− C)Kn, (56)

and
F (C)− F (L)

L− C
· 1
Kn

< u′n(γ̄n).

Conditions (12) and (48) yield limn→∞Kn = 0, which implies

lim
n→∞

u′n(γ̄n) =∞. (57)

By (53) and (56),

u′2n (γ̄n)
2

≤ En(γ̄n) ≤ En(γn) ≤ F (L) + u′n(γ̄n)(L− C)Kn,

and consequently

u′n(γ̄n)
(

1
2
u′n(γ̄n)− (L− C)Kn

)
≤ F (L) <∞, n ∈ N,

which contradicts (57). Therefore at least one escape solution of (15), (16) with
B < B̄ must exist. �

In the next theorem we add one new assumption for the function p to our
basic assumptions (8) – (12).

Theorem 18 (On escape solutions I) Assume that the function p moreover
fulfils ∫ 1

0

ds
p(s)

<∞. (58)

Then there exists B < B̄ such that the corresponding solution of problem (15),
(16) is an escape solution.
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Proof. Let C < B̄ and let {Bn}, {un}, {bn}, and {γn} be sequences from
Lemma 17. Moreover, let {Bn} fulfil

lim
n→∞

Bn = −∞. (59)

Assume on the contrary that for any n ∈ N, un is not an escape solution. Then
(49) is satisfied. According to (ii) from Lemma 17 and (14)

f̃(un(t)) = f(un(t)), t ∈ (0, bn), (60)

holds. By Lemma 17, the sequence {γn} must be bounded, that is there exists
Γ ∈ (0,∞) such that

γn ≤ Γ for n ∈ N. (61)

Choose an arbitrary n ∈ N. SinceBn < C < 0 and un(t) ∈ [Bn, C] for t ∈ [0, γn],
we get, by (9),

f(un(t)) > 0 for t ∈ (0, γn].

By (15), (16) and (60), p(t)u′n(t) is increasing and positive on (0, γn], and so

u′n(t) ≤ p(γn)u′n(γn)
1
p(t)

, t ∈ (0, γn].

Using (61), we get by integration over (0, γn)

C −Bn ≤ p(γn)u′n(γn)
∫ Γ

0

dt
p(t)

. (62)

In view of (15) and (60) we get(
1
2
p2(t)u′2n (t) + p2(t)F (un(t))

)′
= p(t)u′n(t)(p′(t)u′n(t) + p(t)u′′n(t)− p(t)f(un(t))) + 2p(t)p′(t)F (un(t))
= 2p(t)p′(t)F (un(t)) ≥ 0

for each t ∈ (γn, bn). It follows that for t ∈ (γn, bn)

1
2
p2(t)u′2n (t) + p2(t)F (un(t)) ≥ 1

2
p2(γn)u′2n (γn) + p2(γn)F (un(γn)).

Consequently,

p2(t)u′2n (t) ≥ p2(γn)u′2n (γn)− 2p2(t)F (C), t ∈ (γn, bn). (63)

Since limn→∞Bn = −∞, we get by (62),

lim
n→∞

p(γn)u′(γn) =∞. (64)

Let {bn} be bounded, that is we can find b0 > 0 such that bn ≤ b0 for n ∈ N.
Then, by (63) and (64), there is n0 ∈ N such that for n ≥ n0

p2(t)u′2n (t) > p2(b0), t ∈ (γn, bn),
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and u′2n (t) > 1, t ∈ (γn, bn). Therefore u′2n (bn) ≥ 1, contrary to (49).
Let {bn} be unbounded. We have limn→∞ bn = ∞ (otherwise we take a

subsequence). There is n0 ∈ N such that for n ≥ n0, we have Γ + 1 ≤ bn and,
due to (63) and (64),

p2(t)u′2n (t) > p2(Γ + 1)(L− C)2, t ∈ (γn,Γ + 1].

Hence, u′n(t) > L− C for t ∈ (γn,Γ + 1]. Integrating this we obtain

un(Γ + 1)− un(γn) > (L− C)(Γ + 1− γn).

Therefore, by (61), un(Γ+1) > C+L−C = L. Since un is increasing on (0, bn),
we get un(bn) > L, contrary to (49). We have proved that an escape solution
must exist for some B < B̄. �

The next theorem investigates the case when p does not fulfil (58) and we
add one new assumption for f to our basic assumptions (8) – (12).

Theorem 19 (On escape solutions II) Assume that f moreover fulfils

lim
x→−∞

|x|
f(x)

=∞. (65)

Then there exists B < B̄ such that a solution of problem (15), (16) is an escape
solution.

Proof. Let C < B̄ and let {Bn}, {un}, {bn} and {γn} be from Lemma 17
and let {Bn} satisfy (59) . Assume on the contrary that for any n ∈ N, un is
not an escape solution. Then (49), (60) and (61) for some Γ ∈ (0,∞) hold. Put
P (t) =

∫ t
0
p(s) ds. By (20),

lim
t→0+

P (t)
p(t)

= lim
t→0+

ϕ(t) = 0.

Therefore ∫ Γ

0

P (t)
p(t)

dt = Γ0 ∈ (0,∞). (66)

Choose an arbitrary n ∈ N. Then un fulfils (15) and this yields

p(t)u′n(t) =
∫ t

0

p(s)f(un(s)) ds, t ∈ (0, γn]. (67)

We can find n0 ∈ N such that Bn < 2C for n ≥ n0. Choose an arbitrary n ≥ n0.
There exists a unique γ̄n ∈ (0, γn) satisfying un(γ̄n) = Bn/2, and there exists
σn ∈ [1/2, 1] such that

f(σnBn) = max{f(x) : x ∈ [Bn, Bn/2]}.
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By (67),

u′n(t) ≤ f(σnBn)
P (t)
p(t)

, t ∈ (0, γ̄n],

and

un(γ̄n)− un(0) ≤ f(σnBn)
∫ γ̄n

0

P (t)
p(t)

dt.

Consequently,
1
2
|σnBn|
f(σnBn)

≤ 1
2
|Bn|

f(σnBn)
≤
∫ γ̄n

0

P (t)
p(t)

dt.

Letting n→∞ and using (61) and (65), we get ∞ ≤ Γ0 <∞, a contradiction.
Therefore an escape solution must exist for some B < B̄. �

Theorem 20 Let Me be the set of all B < 0 such that corresponding solutions
of problem (15), (16) are escape ones. Then Me is open in (−∞, 0).

Proof. Let B0 ∈Me and u0 be a solution of problem (15), (16) with B = B0.
So, u0 is an escape solution. By Lemma 5, if B < 0 is sufficiently close to
B0, then the corresponding solution u of problem (15), (16) must be an escape
solution, as well. �

6 Main results

Theorem 21 (On a homoclinic solution) Let our basic assumptions (8) – (12)
be fulfilled. Assume that moreover the assumptions of Theorem 18 or Theorem
19 be satisfied. Then problem (6), (7) has a strictly increasing solution with just
one zero.

Proof. Under assumptions (8) – (12), by Theorem 13 and Theorem 14, the
set Md is nonempty and open in (−∞, 0). By Theorem 20, the set Me is
open in (−∞, 0). We assume that the conditions of Theorem 18 or Theorem
19 are fulfilled. Using this theorem, we get that Me is nonempty. Therefore
the set Mh = (−∞, 0) \ (Md ∪ Me) is nonempty and if B ∈ Mh, then the
corresponding solution of problem (15), (16) is neither damped nor an escape
solution. According to Theorem 16, such solution u is homoclinic. By Definition
12, u is strictly increasing on [0,∞) and fulfils (7). By Lemma 11, u satisfies
(37) and so it is a solution of equation (6). �

In contrast to papers [1] and [2] we need assume neither that f ′(0) exists
and is different from 0 nor that

lim
x→0−

f(x)
x

> 0.

See the following example.
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Example 22 The function

f(x) =
{ √

|x| ln(|x|+ 1) for x < 0,
x(x− L) for x ∈ [0, L]

satisfies the conditions (8) – (10) and (65).
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