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Abstract

The paper deals with the impulsive Dirichlet problem

u'(t) = f(t,u(t),u'(t)),
u(0) =4, u(T)=2B,
u(tyH) = Lu(ty), o) = M), G =1,

where f € Car((0,T) x Rz), f has time singularities at t = 0 and t =T,
I;, Mj € C°(R), A, B € R. We prove the existence of a solution to this
problem under the assumption that there exist lower and upper functions
associated with the problem. Our proofs are based on the Schauder fixed
point theorem and on the method of a priori estimates.
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1 Introduction

The theory of impulsive differential equations is a lot richer than the correspond-
ing theory of differential equations (see e. g. [30] or [22]). Moreover, impulsive
equations seem to represent a natural framework for mathematical modelling
of several real world phenomena. It is known that bursting rhytm models in
medicine and biology, optimal control models in economics, pharmacokinetics
and frequency modulated systems do exhibit impulsive effects ([6], [7], [14], [15],
[17]). Kruger-Thiemer model for drug distribution ([21]) is a nice illustration
of simple impulsive problem. On the other hand, in certain problems in fluid
dynamics and boundary layer theory ([9], [10]), the generalized Emden-Fowler
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equation u"” + 9 (t)u* = 0 arised. Here, ¢ is continuous on (0,1) but it is not
Lebesgue integrable on [0,1]. It means that % has time singularities at ¢ = 0
and ¢t = 1 and we call such equation singular.

Motivated by these examples we will consider A, B € R, T > 0, [0,T] C R,
a division D of the interval [0,7],

D:{tl,...,tp}, p€EN

such that 0 =ty <t; < ... <t, <tpy1 =T and the problem

u(t) + f(t,u(t), ' (t)) =0, (1)
u(0) =A, u(T)=B, (2)
u(ti—l—) = Jz(u(tz)), ul(ti—i-) = Mi(u'(ti)), 7 = 1, .oy P, (3)

where J;, M; € C°(R) for each i = 1,...,p (C°(R) is the set of real valued
functions which are continuous on R) and f has time singularities at the points
t =0 and t = T. More precisely, we assume that f satisfies the Carathéodory
conditions on each set [a, b] x R?, where [a,b] C (0,7, but f does not satisfy the
Carathéodory conditions on [0, 7] x R%. Recall that f satisfies the Carathéodory
conditions on [a,b] x R? if

(i) f(-,z,y) : [a,b] — R is measurable for all (z,y) € R?
(ii) f(t,-,-) : R? = R is continous for a. e. t € [a, b];

(iii) for each compact set K C R? there is a function my € L[a,b] such that
|f(t,z,y)| < mg(t) for a. e. t € [a,b] and all (z,y) € K,

(where L(E) denotes the set of all real valued functions which are Lebesgue
integrable on the measurable set £ C R equipped with the norm

s =/ lu(t)|dt for each u € L(E)).
E

We will write f € Car([a,b] x R?). If for each [a,b] C (0,T) we have f €
Car([a,b] x R?), we will write f € Car((0,T) x R?).

Definition 1 We say that f € Car((0,7) x R?) has time singularities at the
points 0 and T if there exist (z1,41), (22, y2) € R? such that

€ T
/0 |f(t,$1,y1)|dt:OO, L |f(t,$2,y2)|dt200

for each sufficiently small € > 0. The points 0 and 7" are called singular points
of f.

For the interval [0,7] and its division D, we define the set PC? of all u :
[0,7] — R, where u is continuous on (t;,¢;4+1) for ¢ = 0,...,p, u is continuous
from the left at ¢; for each i = 1,...,p and from the right at 0 and there exists



u'(ti+) = limy_yy, + v/ (¢) for each i = 1,...,p. The set PCY is equipped with the
supremum norm

llullpco = ||ul|loo = sup{|u(t)| : t € [0,T]} for each u € PC°.

We consider Banach spaces X; = (C°[t;,ti1], || - |loo) for each i = 0,...,p.
There exists an isometric isomorphism 1 : PC? — [17_y X; (the space [TF_, X,
is a set of elements of the form [u[g},...,up,], where uy € X; for i =0,...,p
and becomes a Banach space with the usual algebraic operations and the norm
defined by

p
|lul| = max{[juflloc :7=0,...,p} foreachu € H Xi).
i=0

The isomorfism 1 has the form 9u = [uj),...,u)y,] for each u € PCY where
ufg) is defined by

W = U(t) for te€ (t’iat’H-l]a
U7 w(ti4) for t=t.

Therefore we can consider these spaces as identical and write
u = [ufg),...,up| foreachu € PC°.

For a given set £ C R, let C'(E) denote the set of real valued functions
defined on F having a continuous first derivative on E, AC°(E) (or AC*(E))
denotes the set of functions which are absolutely continuous (or have absolutely
continuous first derivatives) on E and AC_ (E) (or AC. (E)) denotes the set
of functions which are absolutely continuous (or have absolutely continuous first
derivatives) on each compact subset of £. Further, we define the space

PC' = {u e PC": up) € Cti tiy1] foreach i =0,...,p}
and for v € PC! we define u' as a function
u' = [(up)’, ..., (up)'] € PC°.
Throughout the paper, we will need the following spaces

APC = {u e PC": ujy) € AC [t;, tiy1] for each i = 0,...,p},
APC' = {u e PC": ug) € ACYt;, tiy1] for each i =0,...,p},

APC?

loc

— {U S PCO : ’UJ[O} € ACl(g)c(t()atl],u[p] e ACl(g)c[tpatp—l—l),
up) € AC[t;, tipq] foreach i = 1,...,p — 1},

APClloc = {u e PCY; u[o] S AClloc(tOutl],u[p] c AC]%c[tpatp—l—l),
up) € Acl[tiati-H] foreachi=1,...,p —1}.

For the purpose of proving the existence principle for singular problem we
will need this modification of the Arzeld—Ascoli lemma.



Lemma 2 Let us consider the sequence {u,} C PC? satisfying conditions
(i) {up,[;} is bounded in COts, tiz1],
(i) {wy,[;} is equicontinuous

for each ¢ = 0,...,p. Then there exists a subsequence {uy,} C {u,} and
u € PCY such that
ug, — v uniformly on [0,7T].

We will search for solutions of the problem (1) — (3) in the space APC!
which means that each solution has continous first derivatives at the singular
points 0 and T'.

Definition 3 A function v € APC?, which satisfies the equation (1) for a. e.
t € [0,7] and fulfils conditions (2) and (3) is called a solution of the problem

(1) — ().

We can find a lot of papers providing the existence of one or more solutions
of regular problem (1) — (3), i. e. of problem (1) — (3) with f € Car([0,T] x R?)
or f continuous on [0, T] x R%, See [11], [2], [13], [12]. Almost all papers dealing
with singular problem (1), (2) or singular impulsive problem (1) — (3) provide
the existence of solutions whose first derivatives are not defined at the singular
points 0 and 7T'. Here we will call them w—solutions.

Definition 4 A function u € APCL ., which satisfies the equation (1) for a. e.
t € [0,7] and fulfils conditions (2) and (3) is called a w—solution of the problem

(1) — ().

Clearly each solution is a w—solution and each w—solution which moreover be-
longs to APC! is a solution.

As concern existence results for singular impulsive problem (1) - (3), we
can only refer to the papers [1], [28], [31] — [33]. The paper [1] establishes
existence of positive solutions of impulsive BVPs for both the first order and
the second order differential equations. Here f is allowed to have time and
space singularities. Other types of conditions which guarantee existence of
positive solutions to impulsive Dirichlet problem with space singularities can
be found in [28]. In the papers [31] and [32] the second order equation of
the generalized Emden—Fowler type has been studied. Under the assumption
that the relevant impulsive problem has time singularities the existence of one
or more w—solutions has been proved. Existence and multiplicity results for
impulsive BVPs in Banach spaces with time singularities are proved in [33].

More results can be found for singular problem (1), (2). The existence of
w-solutions is proved e. g. in [3], [8], [18] — [20], [23] — [27]. But we have found
just two papers concerning solutions. Habets and Zanolin in [16] have studied
the equation

u' = f(t,u), (4)

where f € CY((0,7") x R) has time singularities at ¢ = 0 and ¢t = 7. Assuming
the existence of lower and upper functions o; < oy of problem (4), (2), they



have obtained the existence of a solution u € AC'[0,7] of (4), (2) provided
f(t,z) has for = € [01(t), 02(t)] a majorant which is integrable on [0,7]. Yong
Zhang in [34] dealt with the equation

u" + p(t)ut =0, (5)

where p € C°(0,7) had time singularities at ¢ = 0 and ¢t = T, p(t) > 0 on (0,7)
and A € (0,1). He assumed that

T
0< / A1 = £ p(t) dt < oo (6)
0
and proved the existence of a solution v € AC'[0,T] of (5), (2).

Let us show the importance of the existence of solutions which are smooth
at the singular points 0 and 7T'. It occurs for example if we search for positive,
radially symmetric solutions to the nonlinear elliptic partial differential equation

Au+g(r,u) =0 on £, (7)

where (2 is the open unit disk in R" (centered at the origin) and r is the radial
distance from the origin. Under the assumption u'(0) = 0, radially symmetric
solutions of (7) can be found as solutions of the following singular ordinary
differential equation

-1
u" + nTu' +g(t,u) =0 on (0,1). (8)

We see that just solutions of (8) having continuous first derivatives at the sin-
gular point 0 have sense for the associated equation (7). In addition, numerical
computations ([4], [5]) lead to smooth solutions of singular Dirichlet problems.

The main task of this paper is to provide conditions which imply the exis-
tence of solutions (or w—solutions) both for problem (1), (2) and for impulsive
problem (1) - (3).

2 Existence principle for singular problem

If we investigate the solvability of singular problems we often construct approx-
imating regular problems whose solutions converge to a solution (a w—solution)
of the original singular problem. The next theorem shows which properties of
approximating functions f, imply the existence of a w—solution or a solution of
problem (1) — (3). Let

1 1
no € N satisfying — < ¢y and ¢, <T — —. (9)
no ng
For each n € N, n > ny we denote
1 1
D= 10,2)U(T — 2,11 (10)
n n



and we consider a (regular) problem
u"(t) + fo(tu(t),d' (1) =0, (2), (3), (11)
where f,, € Car([0,T] x R?).

Definition 5 A function u € APC!, which satisfies the differential equation
from (11) for a. e. t € [0,7] and fulfils (2) and (3) is called a solution of the
problem (11).

Theorem 6 Assume that f € Car((0,T) x R?) has time singularites at t = 0
and t =T,

fa(t,z,y) = f(t,z,y)  fora. e t €[0,T]\ Ay (12)
and each x,y € R, n > ny,

there exists a bounded set Q@ C PC' such that regular problem (11) (13)
has a solution u,, €  for each n € N,n > ny.

Then

(i) there exists u € PC® and a subsequence {ug, } C {u,} such that

lim [fun, — ullpeo =0, (14)
k—o00
and
lim wy, (t) =u'(t) locally uniformly on (0,T), (15)

k—o00
(i) uw € APCL,_ is a w—solution of the problem (1) — (3).
Moreover, assume that

there exist n > 0, A, A2 € {1, -1}, y1,y2 € R and ¢y € L[0,T]
Avsgn(ug, — Y1) fu(t, un(t),uy, (1)) > tho(t)  a. e t € (0,n), (16)
Az sgn(ul, — y2) fn(t, un(t),ul, (t)) > o(t) a. e t€ (T —n,T).

Then u € APC! is a solution of the problem (1) — (3).

Proof.  Let us consider a sequence {u,} C € from (13). The boundedness
of Q in PC' implies that {u, [;)} satisfies assumptions of Lemma 2 for each
i=0,...,p. We get a function u € PC® and a subsequence {uy, } C {u,} such
that (14) is valid. Without any loss of generality we can write {u,} = {ug, }.
Obviously, (2) and

u(t;+) = nll}ngo un (t;i+) = nll}ngo Ji(un(t;)) = Ji(u(t;)) foreachi=1,...,p.

are satisfied.
Now, we will prove (15). Let € > 0 be such that e < ¢; and ¢, < T — € and
a sequence {v,} be defined by

vn(t) = ul(t) for each t € [e,T — €. (17)



To prove the relation (15) we consider the space PC%([e, T —¢]) which is defined
in the same way as the space PCY where ¢ and T — ¢ take place of 0 and 7.
The notation related to PC° remains unaltered for PC°([¢, T — ¢]) and will be
used in this part of the proof, only.

We will prove that {v,;} C PCO([e, T — ¢]) satisfy the assumptions of
Lemma 2 for i = 1,...,p — 1. Since Q in PC" is bounded it follows that {v,}
is bounded, too. Let 71, 7 € [t;,ti1+1], where i € {1,...,p —1}. In view of (17)
and (13) we have

|V, [i)(T2) — V3 (71)]

[ Fultun(0) (1)) | =

[" e oad s

The properties of the function f imply that there exists h € L[t;, t;11] such that

/: h(t) dt‘.

Therefore {v, ;} is equicontinous sequence for i = 1,...,p — 1. We will
prove the equicontinuity of the sequence {v, g} C C[e, t1]. Let 71, 72 € [€,1].
Then (12) implies (18) for ¢ = 0 and for n > n; > ny, where n% < €. Since
f € Car((0,T) x R?), there exists h € L[e, ;] such that

/: ft,un (1), ul, () dt‘ <

|f(t,z,y)| < h(t) for a.e.t € [e,t1] and each |z|, |y| < K = K().

Analogously we can prove the equicontinuity of {v, ,;}. Thus {v,} satisfies
the assumptions of Lemma 2. Hence, by Lemma 2, (17) and (14), we get the
subsequence {uy, } such that (15) is valid and

uT[E,T_E] € PCe, T — €.
The relation (15) implies
u'(ti+) = nllgloo%k (tit+) = lim_ M;(up, (t:)) = Mi(W'(t:), i=1,....p.
Using (12), (14) and (15) we obtain
lim  fo, (¢, un, (8),u;, (8) = f(t,u(t),u'(t)) for a. e. t € [0,T]. (19)

T, — 00 ? Tk

Let us choose 7; € (t;,t;+1) for each ¢ = 0,...,p. Then

t
() =t (7)o (5,10 (5), ), (5)) ds = 0
for each t € [t;,t;+1]. There is a function m € Lle, T — €] such that
|f(t,u(t), ' (t)] < m(t) and |fp, (¢, Un,, up, ()] < m(t) for each k € N

and for a. e. t € [e,T — ¢]. These facts, the relations (19), (15) and Lebesgue
dominated convergence theorem imply

W0 )+ [ Flsu(s) () ds =0

7



for each ¢t € [t;,t;r1] N[e,T — €] for i = 0,...,p. Since € > 0 is an arbitrary
number satisfying € < ¢, t, < T — ¢, these equalities and the properties of f
imply that u € APCL . and (1) is satisfied for a. e. t € [0, 7.

Assume (16) holds. To prove u € APC*, we have to show that
ftu(t),u'(t)) € L0,n] and  f(t u(t),u'(t)) € LT —n,T],

for some 7 > 0 such that n < ¢; and ¢, < T —1n. We will prove the first relation,
only. Let us denote

Vi={te€(0,n): f(t,-,-) is not continuous },
Vo = {t € (0,n) : t is an isolated zero of the function v’ — y; },
Vs ={t € (0,n) : u”(t) does not exist or the equation (1) is not satisfied }.

It is easy to see that meas(V) = 0, where V' = V; UV, U V3. Let us choose
arbitrary ¢ € (0,17) \ V.

CASE A. Let ty is an accumulation point of the set of all zeros of the function
u’ — y;1 on the interval (0,7). Then there exists a sequence {t,,} C (0,7) such
that limy, o0t = to and u'(¢,,) = y1. The continuity of «' on the interval
(0,7) implies that u'(t9) = y1,

"(tm) — u/(t
L ) = (t)
tm—to tm_to

=0
and since ty € V3 it follows
0= ’u”(to) = —f(to,u(to),u,(to)).
The relations (12), (14), (15) and ¢y ¢ V; imply
Hm fr, (to, uny (to), U, (t0))
= lim f(to, un, (to), up, (to)) = f(to,u(to), v (to)) = 0
k—00
and thus

kli—glo A1 Sgn(u%k (to) — Y1) fry (o, tny (o), U;Lk (o))
= Ausgn(u'(to) — y1) f (to, u(to), u' (t0))- (20)

CASE B. Let u'(tp) # y1. Assume that u'(¢y9) > y1, i. e. sgn(u'(tg) —y1) = 1.
Then there exists 7 € N such that for each ng > n

sgn(i, (to) — 1) = 1

holds. In view of (19) we get (20). For the case u'(ty) < y; we proceed similarly.
We have proved that (20) is valid for a. e. ty € (0,7). Let us put

Pny (1) = Avsgn(ug, (8) = y1) £ (£ un, (£), ug, (8)) + [$(2)]



and
p(t) = A sgn(u'(t) —y1) f(t, u(t), u'(t) + [ (t)]

for each ny, € Nand a. e. t € (0,7). Then ¢, € L[0,n] and (16), together with
(20) implies

@n, () >0, lim @y, (t) = ¢(t) fora.e. te (0,7).
k—o0

These facts and uy, (t) = (uy, (t) —y1)" imply

U " "
[ om0t = <A [Tsenun, (0= ), =)' de+ [ o)
" n
= —>\1/0 |t (£) = yll’dt+/0 lp(t)[dt < C = C(n,9,Q2,y1) € (0,00).
Using Fatou lemma we get ¢ € L[0, 7], and thus

£ Coul),u' ()] = le = [9l| € L[0,7)].

Similarly, we get f(-,u(-),u'(-)) € LT —n,T]. 0

3 Regular Dirichlet problem

We bring some results which will be exploited in the investigation of singular
problem (1) — (3). Since we will apply Theorem 6 we will study approximating
regular problems and prove their solvability. Therefore we will consider a regular
equation

u”(t) + h(t,u(t),u'(t) =0, (21)

where h € Car([0,T] x R?), and prove lower and upper functions method for
regular problem (21), (2), (3).

Definition 7 A function u € APC?, which satisfies the equation (21) for a. e.
t € [0,7T] and fulfils conditions (2) and (3) is called a solution of the problem

(21), (2), (3).

Definition 8 A function oy € APC! is called a lower (upper) function of the
problem (21), (2), (3) provided the conditions

[0} (t) + h(t, ok (t), 0} (£)](-1)F <0 for a. e. t €[0,T], (22)
(08(0) = A)(=1)* 20, (ox(T) - B)(-1)" >0, (23)

o(ti+) = Jilow(t:), o (tit) = Mi(op(t)I(=1)* <0, i=1,....p, (24)
where k =1 (k = 2), are satisfied.



Lemma 9 Let us suppose that

o1, oy are lower and upper functions of the problem (21), (2), (3) (25)
and o1 < oy on [0,T],

Ji, M; € C°(R), M; are nondecreasing,
Ji(o1(t:)) < Ji(@) < Jiloz(t))  for o1(ti) < @ < oa(ti), (26)
foreachi=1,...,p,

there exists m € L[0,T] such that
|h(t, z,y)| < m(t) fora. e tel0,T], each z € [01(t),02(t)], y € R.  (27)
Then the problem (21), (2), (3) has a solution u € APC" such that
o1 <u<oy onl0,T] (28)

Proof. We define an auxiliary functions

—h(t,01(t),y) — wi (1 77050 ) 285 for @ < ou(t),

Yo (t)—x+1 ) or(t)—z+1
g(t,z,y) = —h(t,z,y) for o1(t) <z < oa(t),
—h(t,09(t),y) + wa (£, 3507 )+ 5520 for o (t) <

where
wi(t,€) = sup{|h(t, 0i(t), 0i(t)) — h(t,0:(t), )| : lo7(t) —y| < €},
for a. e. t € [0,T], and for e € [0,1], i = 1,2,

o1(t) for z <oi(t),
o(t,x) =¢ = for o1(t) <z < o9(t),
oo(t) for o9(t) < x,

for allt € [0,T], z € R,

oy for |yl <,
oy) = { csgny for |y| > ¢,

where

¢ =2 max {(tis1 = ) Hloallow + 72lloc) + 101 + 1o oo + 75 oo + L

We define an auxiliary problem
u' — g(tu U(t), ul(t)) =0, (29)
u(0) =4, u(T) =B, (30)

u(ti+) — u(t;) = Ji(o(t, u(ts) — o(ti, u(ts)), o
W (i) — /(1) = Mi(0(u! (1)) = 3(u' (1)), }f‘“ i=l..op G

10



and an operator T': PC' — PC! by
T ¢
(Tu)(t) = / G(t,)9(s, u(s),u'(s)) ds + A+ (B - A) 5
0
L oG

+2_ 55 G talJi(o(ti u(ti)) — ot u(ti))]
i=1
+ 2 Gt 1) [Mi(0(u' (1)) — 8(u'(t2))]
i=1
for each u € PC*! and t € [0,T]. Function G(t,s) : [0,7]> — R is defined by

the formula
sET) for 0<s<t<T,

G(t,s) = r
() {@ for 0<t<s<T,

It can be proved that T : PC' — K C PC', where K is a bounded, closed ball
in PC'. From the properties of functions G, g, M;, §, J;, o it follows that 7" is a
compact operator. The Schauder fixed point theorem implies that there exists
at least one fixed point u € K of the operator T', i. e. T'u = u. It is possible to
prove that u is a solution of the problem (29) - (31),

01 Su< o9

and
[u'floo < c.

Now, it is easy to see that u is a solution of the problem (21), (2), (3). Similar
proof is thoroughly lead in Proposition 8 and Theorem 9 in [29]. O

Now, we will prove a priori estimates which enable to extend the existence
result of Lemma 9 to more general right—-hand sides h subjected one—sided
growth restrictions (see Prop. 11).

Lemma 10 Let us suppose that there exist a, b € (0,t1), a < b, y1, y2 € R,
co >0, M; € C°(R), M; is nondecreasing for i =1,...,p and

oo _ds (32)

w € C0[0,00) positive and | () = °©-

g € L[0,T] be nonnegative and }

Then there exists pyg > ¢o such that for each u € APC' satisfying conditions
lu(t)| < co, for each t €[0,T] (33)
W(€) < co for some £ € [ab], (34)

—u"(t) sgu(u’(t) — y1)
< w(lu'(t) —wl)(g(t) + [’ (t) —wul)  for a. et €[0,0],  (35)

—u"(t) sgn(u’(t) — y2)
> —w(lu'(t) = y2)(g(t) + [u'() = w2]) fora. e telaT], (36)

11



o' (ti+) = M;(W'(t)) i=1,...,p, (37)

the estimation
W ()] < po for every t € [0,T]

15 valid.

Proof. We put
vi(t) =d'(t) —y1 t €0,

Obviously, from (34) we have

[0 (O] < [/ ()] + w1l < co + |11l = cr.

By virtue of (32) there exists p; > ¢; such that

o _ds 20 + T 38
[ o > el + 20+ Tl (38)

We will prove
|0} (t)] < p1 for each t € [0, &]. (39)

Let us consider that (39) is not valid. Then there exists an interval [a, §] C [0, €]
such that

(@] > p1, LB <er and [}(H)] £0 for each ¢ € [a, B,
In view of (35) and the definition of v| we get

ol (t) sguv)(¢)

w([o1(®)])

Integrating this inequality on [a, 8] and substituing s = |v] (¢)| we get
/pl ds . /Iv'l(a) ds /v’l(ﬂ)l ds
o wW(s) T ) wis) v (o) w(s)

B
/a (), () — ) dt

< g(t) 4+ |vi(t)| for a.e. t€]0,£].

< llgllx + < lgllL + 2¢0 + T)y1l,

which contradicts (38). We will prove that v5(¢) defined by
vh(t) = u'(t) —yy for each t € [¢,T]
is bounded by a constant independently on «’. The relation (34) implies
[05(E)] < [0 ()] + Iy2| < co + [y2| = c20-

In view of (32) there exists pag > c29 such that

[ gl + 2e0 + T (40)
— > ||gl|1 + 2¢0 + 1 '|y2|.
ea0 W(8)
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Let us consider that there exists [, 5] C [¢,t1] such that
[vh ()| < c20, [V5(B)| > p2o and |vh(t)| #0 for each t € [a, B].

Similarly, we can proceed as for |v]| and get the contradiction to (40). It is
valid
[y ()| < p2o  for each t € [€, 1]

By virtue of (37), property of M; and an inequality |[v5(¢1)| < p2o we have
vy (f1+)| < max{|M1(p20 + y2)|, [M1(=p20 +y2) I} + [y2| = ca1.

In view of (32) it follows that there exists pg; > ¢91 such that

[ gl + 200 + Tl ()
7 gl co Y2|-
en w(s)

Let us suppose that there exists [«, 8] C (¢1, 2] such that
[vp(a) < ea1,  [05(B)] > p21 and  |vy(t)] #0 for each ¢ € [ov, B].

We can proceed as in interval [0,¢;] and get contradiction to (41), again. Thus,
|vh(t)| < pa1 for each t € (t1,t2]. Similarly, we can proceed on the intervals
(ti,tit1] for i = 2,...,p and get constants pgo,. .., pz, such that

|vh(t)| < po; for each t € (t;,t;y1]-

We put
po = max{pao, ..., pP2p, 1} + |y1| + |y2l.
O

Proposition 11 Let the conditions (25), (26), (32) hold. Assume that there
exist
a,b €[0,t1], a <b, y1,y2 € R such that (42)

h(t, @,y +y1) sgny < w(ly|)(g(t) + [y)
for a. e. t € [0,b], each x € [01(t),02(t)], ¥y € R, (43)

h(t, z,y + y2) sgny = —w(ly[)(g(t) + ly])
for a. e. t € [a,T], each z € [o1(t),02(t)], y € R. (44)

Then the problem (21), (2), (3) has a solution u € APC" satisfying (28) and
there exists pg > 0 (from Lemma 10) such that

|u'(t)| < po  for each t € [0,T). (45)
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Proof. We put

1+b—-a
5o ol + llozlleo). (46)
For c¢o, a, b, y1, y2, M;, g and w, we get from Lemma 10 the existence of a
number py > ¢y having certain properties. We put

00:2

ro = po + |01 [l + |03l
We define x(y) : R — R by
for |y| <o,

1
x(y) =4 2% for ry <yl < 2r,
0 for 2rg <ly|,

function f(t,z,y) = x(y)h(t,z,y) for a. e. t € [0,7] and each z, y € R and
consider a problem

u"(8) + ftu(t), W' () =0, (2), (3). (47)

We will prove that o) from (25) is a lower function of the problem (47). Obvi-
ously, it is valid

o1(t) = =h(t,01(t),01(1)) = =x(o1())h(t, 01(t),01(1) = = (t,01(2), 01(2)).

Similar inequality holds for 0. It follows from the definition f that there exists
h € L[0,T] such that

| (t,z,y)| < h(t) for a.e. tel0,T], each x € [o1(t),02(t)], y € R.

By virtue of this fact, (25), (26), we can use Lemma 9 where we put h = f and
m = h. We get a solution u € APC?! of the problem (47) satisfying (28). We
will check the conditions (33) — (37). It follows from (28) that

u(®)] < llorfloo + llozfloo for each t € [0,T]
and from the Mean Value Theorem it follows that there exists £ € [a, b]

/ u() —u(a) _ 2([lo1floo + [loa]lo)
= < .
w() b—a T b—a
The relations (33) and (34) hold for ¢y defined in (46). It follows from (47),
definition of f and (43) that

—u’(t) sgu(u'(t) — y1) = f(t, u(t), u'(t)) sgu(u'(t) — y1)
= x (' (1)) h(t, u(t), u'(t)) sgu(u'(t) — 1)
< x(u'(®)w (| () — y1)(g(t) + ' (t) — 1)

< w(lu'(t) = yul)(g(t) + [u'(t) — 1))

for a. e. ¢t € [0,b]. We get (35). Similarly, the relation (36) can be obtained
from (44). The equalities follow from the definition of a solution of the problem
(47). We get (45) and thus

0 =u"(t) + f(t,u(t),u () = u"(t) + h(t, u(t), v (t))

for a. e. t € [0,T]. The function u € APC" is a solution of the problem (21),
(2), (3). O
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4 Main results

Next theorems and corrolaries provide existence results for singular impulsive
problem (1) — (3). The notion of lower and upper functions of the singular
problem (1) — (3) is needed, here. We will understand them by Definition 8,
where f takes place h.

Theorem 12 Let the conditions (25), (26), (32), (42),

[t 2,y +y1)sgny < w(ly)(g(t) + [y))
for a. e. t € [0,b], each x € [01(t),02(t)], ¥y € R, (48)

fltz,y +y2) sgny = —w(lyl)(g(t) + ly])
for a. e. t € [a,T], each z € [01(t),02(%)], v € R, (49)

be satisfied. Then there exists a w-solution u € APCL . of the problem (1) - (3)
such that

op<u<oy on[0,T] and |u'|<py on(0,T), (50)

where py is the constant (not depending on w) from Lemma 10. Assume in
addition that

there exist p > 0 A, A2 € {1,—1}, y1,y2 € R and ¢ € L[0,T]

Avsgn(y —yi) f(t,2,y) 2 9(t) for a. e.t€(0,n),
each z € [Ul(t),UQ B, |yl < po, (51)

(
Apsgn(y —y2) f(t,2,y) 2 9(t) fora. e te (T —n,T),
each x € [01(t), 02(t)], |y| < po,
hold. Then u € APC! is a solution of the problem (1) — (3).

Proof. We will use Theorem 6. We will define functions f,. Let us suppose
that (9) is valid and n € N such that n > ny. The set A,, can be expressed as
a disjoint union, we write A\, = Ap1 U Apo, where

Apy = {t € Ap: Ul(t) = Ug(t)},

Dng = {t € Dy 2 01(t) < 0a(1)}-

We put
fzy) if tE A,
fult,z,y) =< —of(t) if teAp, (52)
—falt,z) if t€ Apo,

for a. e. t € [0,7], each z € R, y € R, where

ab(t) it = > oy(t),
Fultw) = § SRR i 01(0) < v < o0a(0)
of (t) it =z <o(t).
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Then the condition (12) is satisfied. We will prove that o1 and o9 are lower and
upper functions of the problem (11) for n > ng. It is sufficient to show, that oy
and o9 satisfy conditions (22) for A = f,. It is valid

ol (t) + fult, 01(2),01(t)) = 01 (t) + f(¢,01(t),01(t)) 2 0
for a. e. t € A\, and
o1 (1) + fult,01(t),01(1) = 01 (t) = fult,01(t) = o7 (t) — 07 (t) =0

for a. e. t € Apa. If t € Apy, then from (25) and continuity of of, of, at the
point ¢ it follows that of(¢) = o4(¢). From (32) and (22) for h = f it follows

of(t) > —f(t,01(t),01(t) = = f(t,02(t), 03(t)) > 03 (t)
for a. e. t € AA,1. From these relations it follows
i (t) + fult, 01(t),01(t) = of (t) — o (t) =0
and
o5 (t) + fult, 02(t),05(t)) = 05(t) — 03(t) =0

for a. e. t € Ay1. Thus o1, 09 is a lower and upper function of the problem
(11) for n > ng, respectively. Without any loss of generality we can assume
that w > 1 on [0,00) and g > max{|o/|,|045|} a. e. on [0,T]. Then Proposition
11 (where h = f,) yields the assertion (13) and

o1 <up <oy on[0,7] and |ul,| <py on (0,T),

where u, € APC! is a solution of the problem (11) for n > ng. It follows from
the properties of the constant py that {u,,} is contained in some bounded subset
Q C PC!. Then assertions (i) and (ii) of Theorem 6 are valid and u satisfies
(50). To prove u € APC!, it is sufficient to verify the validity of (16). It follows
from (52) and (51) with ¢y = min{y,of, o} }. O

Corollary 13 Let the condition (32) hold. Assume that there exist A, B € R,
ag,---,ap, bo,...,bp €ER, a,b €[0,t1], a < b such that

f(t,a;,0) >0, f(t,0;,0) <0 fora. e te(t,tit1), i=0,...,p, (53)

GOSAaapSBabOZAaprBa
a; = Ji(ai—1), by = Ji(bi—1), M;(0) =0, i=1,...,p, (54)
a; <bj, 1=0,...,p,

Ji(ai_l) < Jl(x) < Ji(bi—l) for each T € [ai_l,bi_l], 1=1,...,p, (55)
M; is nondecreasing fori=1,...,p, (56)
f(tvxvy) sgny < w(|y|)(g(t)+|y|) for a. e te [Ovb]v T € [a’OabO]v (NS Rv (57)

f(t,z,y) sgny > —w(lyl)(g(t) + |y])
fora. e. t €a, T]N(ti,tiy1), = € [ai,bi], i =0,...,p, y € R. (58)
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Then there exists a w-solution u of the problem (1) — (3) such that
ap < u(0) < by and a; <u(t) <b; for each t € (t;,t;11]
for each i =0,...,p and there exists py (from Lemma 10) such that
lu'(t)] < po for each t € (0,T).
Moreover if the condition

there exist n > 0, A, Ao € {1,—1}, and ¢ € L[0,T] such that
Arsgnyf(t,z,y) > (t) a. e te€(0,n)),

each x € [ao,bo] ly| < po, (59)
Xosgnyf(t,z,y) > () a.e te (T —nT),

each x € [apvbp] lyl < po.

holds, then wu is a solution of the problem (1) — (3) and satisfies (45).

Proof. It suffices to put o1(t) = ag, o2(t) = by for t € [0,¢1], o1(t) = aj,
o2(t) = b; for t € (t;,ti41], 1 =1,...,p and use Theorem 12.

Corollary 14 Let the condition (32) hold and let us assume that there exist A,
B eR, ag,...,ap, by,..., by, co,...,cp €R, a,b€[0,t1], a < b such that

fltai +(t —ti)ei,e) >0, f(,0; + (¢ —ti)ei,¢) <0 )
fora. e te (tytiz1) i=0,...,p,

ag < A, ap+ (T —tp)ep, < B, bg > A, by + (T —t,)cp, > B,

a; = Ji(ai1 + (t; —ti_1)ci—1), by = Ji(bi—1 + (ti — ti1)ci1),
Mi(Ci_l):Ci, t=1,...,p,

aigbh Zzoaap J

(60)

Jilai—1 + (t; — ti—1)ciz1) < Ji(x) < Ji(bi—1 + (8 — ti—1)ci—1) (61)
for each x € [a;—1 + (t; — ti—1)ci—1,bi—1 + (t; —ti—1)ci1], i =1,...,p,

M; is nondecreasing fori=1,...,p, (62)
[tz y)sgny < w(lyl)(g(t) + [yl) (63)

for a. e. t €[0,b], x € [ag + tcy, by + teol, y € R,
f(tz,y)sgny > —w(|yl)(g(t) + lyl) (64)

for a. e. t € [a,T]N (ti,tix1), © € [a; + (t —ti)ci, by + (t —ti)ei], i =0,...,p,
y € R. Then there exists a w-solution u of the problem (1) — (3) such that

ag < U(O) < by and a; + (t - ti)ci < u(t) <b;+ (t — ti)Ci

for each t € (ti,tiy1], each i = 0,...,p and there exists py (from Lemma 10)
such that
lu'(t)] < po for each t € (0,T).
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Moreover if the condition

there exist n > 0, A, Ao € {1,—1}, and 9 € L[0,T] such that )

Avsgnyf(t,z,y) > P(t) a. e te(0,n),

each © € [ag + tco,bo + teol, |yl < po, (65)
Xosgnyf(t,z,y) > P(t) a. e te (T —nT),

each = € [ap + (t —tp)cp, by + (t —tp)cp),

lyl < po- J

holds, then wu is a solution of the problem (1) — (3) and satisfies (45).

Proof. It suffices to put o1(t) = ag + tco, 02(t) = by + teg for ¢t € [0,t1],
o1(t) = a; + (t — ti)ci, o2(t) = by + (t — t;)c; for t € (¢;,ti41], 4 =1,...,p and
use Theorem 12. O

Corollary 15 Let the condition (32) hold and let us assume that there exist
a,b €[0,t1], a < b such that

liminf f(¢,2,0) >0, limsup f(¢,z,0) <0, (66)

T—>—00 T—00
for a. e. t €10,T],

Ji, M; € C°(R) are nondecreasing, M;(0) =0, (67)
there exists k > 0 such that ( ) >1 for each |z| > k,

> d
there exists w € C°[0,00) such that / f
0

s)’
for each r > 0 there exists g, € L[0,T], nonnegative, such that

for each |z <r, ye R

ft,z,y)sgny < w(lyl)(gr(t) + |yl)  for a. e. t €[0,0], (68)
f@t,z,y)sgny > —w(|y|)(g-(t) + [y) for a. e. t €[a,T].

Then there ezists o > 0 and pg > 0 such that the problem (1) — (3) has a
w—solution u satisfying

lul <19 on[0,T] and lu'| < po on (0,T).
Moreover, if

there exist p > 0 A, A2 € {1, -1}, y1,y2 € R and ¢ € L]0, T]

Asgnyf(t, o, y) > (t) fora. et €(0,n),
each |z| <o, |y| < po, (69)

Aasgnyf(t,z,y) > p(t) fora e te (T —n,T),
each |z| < ro, |y| < po,

then u is a solution of the problem (1) — (3) and satisfies (45).
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Proof. The assumptions (66) imply that there exist « < A and § > B such
that for each a; < a, b; > [ relations (53) holds. Moreover, by (67), we can find
aj, b;, for i = 0,...,p, satisfying (54). For example we choose by > max{f, k},
b1 = Jl(bo) > bo and bi = Ji(bi—l) > bi—l for ¢ = 2,...,]) and similarly
ap < min{a, —k}, a; = Ji(aj—1) < aj—1 for i = 1,...,p. Then the assertion
follows from Corollary 13. O

Corollary 16 The assertion of Corollary 15 remains unaltered if the assump-
tion (67) is replaced by

Ji, M; € CY(R) are nondecreasing, M;(0) = 0,

there exists k >0, 6 € (0,1] and v € (0,1] (70)

such that % >v>0 foreach |z| >k,
foreachi=1,...,p.

Proof. The assumptions (66) imply that there exist « < A and f > B such
that for each a; < «, b; > S relations (53) holds. We choose ¢ > max{f, k} and
show that there exist bg, ..., b, such that

b; >c and b = Ji(bji—1) foreachi=1,...,p. (71)

We will look for by such that (71) holds. According to (70), the validity of
relation

bp = Jp(bp-1) > c,
can be ensured by inequalities J,(b, 1) > 7bg_1 > ¢ ie by > (0/7)§
Similarly the relation

1

C\ o
bp—1 = Jp—l(bp—2) > (;)

ooz () - ()

We can proceed this way and get
1\ stetts
bo > <—) - COP,
v

This inequality ensures that the relation (71) is valid. Similarly there exist
ao, - - -, ap such that (53) and (54) hold. Then the assertion follows from Corol-
lary 13. O

is valid if

Sl
e[S

Y=

Example 17 Let us consider the problem (1) — (3), where
F(t,y) = yl(T = )7 = %+ b ()] + ey — ho(t) (@™ — d) + h(t

fora.e. t €[0,T], each z,y € R, wherea > 1, 8 > 1, hy € L[0,T], he € L[0,T],
he > €, h3 is an essentially bounded measurable function defined a. e. on [0,7],
€ > 0, d € R. Further, J; are defined as follows

Ji(x) = kiw + ki, ki > 1, ki €R,

and M; a nondecreasing function such that M;(0) =0 for each i =1,...,p. We
can check that the conditions of Corollary 15 hold.
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