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Abstract We provide sufficient conditions for solvability of a singular Dirichlet boundary value
problem with ¢-Laplacian
(¢(u"))" = f(t,u,u'),

uw(0) =4, uwT) =8,
where ¢ is an increasing homeomorphism, ¢(R) = R, $(0) = 0, f satisfies the Carathéodory conditions
on each set [a,b] x R? with [a,b] C (0,7) and f is not integrable on [0, T] for some fixed values of its
phase variables. We prove the existence of a solution which has continuous first derivative on [0,77].
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1 Formulation of the problem

In a certain problem in fluid dynamics and boundary layer theory ([1], [2]), the gen-
eralized Emden-Fowler differential equation u” + ¢(t)u = 0, t € (0, 1), arises. This
equation is singular, because ¥ need not be Lebesgue integrable on the whole interval
[0,1].

On the other hand, due to various applications, for example to diffusions of flows
in porous media ([3], [4]), several authors have proposed the study of second order
ordinary differential equations with the p-Laplacian (¢,(u'))’, where p € (1,00) and
bp(y) = |y[P~2y for y € R. Usually the p-Laplacian is replaced by its abstract and
more general version called a ¢-Laplacian.

Throughout the paper ¢ will be an increasing homeomorphism with ¢(R) = R,
»(0) = 0and A,B € R, [0,T] C R. We study the problem of existence of smooth
solutions of the Dirichlet problem with ¢-Laplacian

(p(u) = f(t,u,u’), (1.1)
w(0) = A, w(T) =B, (1.2)

where f satisfies the Carathéodory conditions on each set [a,b] x R?, where [a,b] C
(0,7, but f does not satisfy the Carathéodory conditions on [0,T] x R?.

Recall that a real valued function f satisfies the Carathéodory conditions on the set
[a,b] x R? if

(i) f(-,z,y) : [a,b] = R is measurable for all (z,y) € R?,



(ii) f(t,-,-) : R*> — R is continuous for a.e. t € [a, b],

(iii) for each compact set K C R? there is a function mg € L[a,b] such that
|f(t,z,y)| < mk(t) for a.e. t € [a,b] and all (z,y) € K.

We write f € Car([a,b] x R?). By the assumption f ¢ Car([0,7] x R?) we mean that
condition (#ii) is not fulfilled for [a,b] = [0,T7], i.e. that f has time singularities at
the endpoints 0 and 7'.

Definition 1.1 We say that f has time singularities at the points 0 and T, respec-
tively, if there exist x,y € R such that

£ T
/0 f(t,2,9)|dt = 00 and (2, 9)|dt = o0 (1.3)

T—e¢
for each sufficiently small € > 0. The points 0 and 7" are called singular points of f.

We will seek solutions of problem (1.1), (1.2) in the space of functions having contin-
uous first derivatives on [0,T], in particular at the singular points 0 and 7.

Definition 1.2 A function u : [0,7] — R with ¢(u') € AC[0,T] is called a solution
of problem (1.1), (1.2) if u satisfies

(B(u (1)) = f(t, u(t), ' (t))
for a.e. t € [0,7] and fulfils (1.2) .

Note that the condition ¢(u') € AC[0,T] implies u € C*[0,T].

Majority of papers dealing with time singularities use an alternative approach to the
solvability of problem (1.1), (1.2), (see [5] - [15]). These papers understand solutions
as functions whose first derivatives need not exist at singular points. Here we will call
them w-solutions. More precisely:

Definition 1.3 A function u € C[0,T] is called a w-solution of problem (1.1), (1.2) if
d(u') € AC,.(0,T), u satisfies

(@(u'(1)" = f(t,u(t),w'(t))
for a.e. t € [0,7] and fulfils (1.2) .

Since the condition ¢(u') € AC},:(0,7T) implies that a w-solution u belongs only to
C1(0,T), we do not know the behaviour of u' at the singular endpoints 0, T.

Although most of the known existence results concern w-solutions, we often need
the existence of solutions in the sense of Definition 1.2. For example, when searching
for positive, radially symmetric solutions to the partial differential equation

—Apu = f(u) + h(zx) (1.4)

on an open ball © in R"™ (centered at the origin), N > 1, where the N-dimensional
p-Laplacian has the form
Apu = div(|VulP~2Va),



equation (1.4) reduces under the assumption «'(0) = 0 to the singular ordinary differ-
ential equation

(=) + Sl 2+ )+ h(0) = 0 (1.5

with a time singularity at ¢ = 0. We can see that only solutions of (1.5) belonging to
C'[0,T] have sense for the associated equation (1.4).

Further, we can check that the function u(t) = 1 — ¢? is a solution of the singular
problem

1 12t2\/u
u')?) 4+ Zu' + +2=0, u(0) =1, u(l)=0. 1.6
(@) + qu+ 25 0 =1, u() (1.6
We see that the function f(t,z,y) = ty + 1\%2_—‘{25 + 2 has time singularities at ¢ = 0
and t = 1 and problem (1.6) has at least one solution u € C*[0,1].

In addition, numerical computations ([16], [17]) lead to smooth solutions of singular
Dirichlet problems, as well.

Motivated by these facts we provide new existence principles which lead to sufficient
conditions guaranteeing the existence of a solution of the singular problem (1.1), (1.2)
in the sense of Definition 1.2.

N | =

2 Existence principle

Singular problems are usually investigated by means of auxiliary regular problems. To

establish the existence of a solution of the singular problem (1.1), (1.2) we introduce

a sequence of approximating regular problems which are solvable. Then we pass to

the limit in the sequence of approximate solutions to get a solution (a w-solution) of

the original problem (1.1), (1.2). In the next theorem we provide an existence principle

which contains the main rules for the construction of such approximating sequences.
For n € N consider equations

()" = fult,u,u’), (2.1)

where f,, € Car([0,T] x R?). Solutions of problem (2.1), (1.2) are understood in the
sense of Definition 1.2. Denote

1 1y s 3
Ol 4 e
Theorem 2.1 Assume that
f € Car((0,T) x R?) has time singularities att =0 and t = T, (2.3)
forallne N, f.(t,xz,y) = f(t,z,y) for a.e. t € J,, and all z,y € R, (2.4)

there exists a bounded set 0 C C'[0,T) such that for each n € N (2.5)
the regular problem (2.1),(1.2) has a solution u,, € Q.

Then



e there exist u € C[0,T]NC(0,T) and a subsequence {u,,} C {u,} such that
limy o0 [|un, — ullcpo,r) = 0,  limy—oo uy,, (1) = u'(t) locally uniformly on (0,T),

e u is a w-solution of (1.1),(1.2).

Moreover, assume that there exist n € (0, %), A, A2 € {=1,1}, y1,y2 € R and ¢ €
L[0,T] such that for each n € N

{Alsignwm—y1>fn<t,un<t>, L) > o(t)  ae on (0,n),

(t) a.e. on (T —n,T). (26)

)\2 Sign(u (t) - y?)fn(ta un(t)a
Then u is a solution of (1.1), (1.2).

Proof
By (2.5) there exists ¢ = ¢(£2) > 0 such that

lunllcpo,r) < ¢ llupllep,r) < ¢ Vn €N,

so the sequence {u,} is bounded in C*[0,77] and
Ve>030>0Vn e NVt,sel0,T]: [t—s|<d=
¢
= fun(®) = un(9)] = | [ wi(rr] <t~ o,

which means that the sequence {u,} is equicontinuous on [0,7]. Due to the Arzela-
Ascoli theorem, we can choose a subsequence {uy,, } C {u,} which is converging uni-
formly on [0,7] to a function u € C[0,T]. Clearly, u satisfies (1.2), because each u,
does.

1. Let us take an arbitrary compact interval K C (0,7). Then, by (2.3), f €
Car(K x R?) and there exists ng € N such that

K c J, forall n>ng. (2.7)
Further, by (2.4),
fu(t,z,y) = f(t,z,y) for ae. t € K, for all z,y € R and all n > ny. (2.8)

Then there exists hx € L[0,T] such that for each ¢,s € K

¢ (un, (1)) — P(uq, (5))] = |/ o (73 tny (1), (7)) | =
= |/ f(T,unk(T),’U/;lk(T))dT| < |/ hK(T)dT| Vng > ng.

So {¢(uy, )} is equicontinuous on K. By virtue of the uniform continuity of ¢ on
compact intervals, the sequence {u;, } is equicontinuous and, by (2.5), equibounded
on K. By the Arzela-Ascoli theorem, we can find a subsequence of {u}, } uniformly
converging on K. Now we will show that there exists a subsequence {u,,, } C {uj, }
which converges locally uniformly on (0,T") to «' € C(0,T).

Let us consider a sequence of compact intervals K; = [a;,3;] C (0,T),i € N, K; C



Kitq, lim; oo a; = 0, lim; oo B; = T'. Then there exists a subsequence {uj ,}5>; C
{up, } which converges uniformly on K;. We can choose {uy ,}5° 1 C {uj ,} which
converges uniformly on K, and for each i € N, {u;,} C {u} , ,} which converges
uniformly on K, i.e.

Vie NVe>03k; € NVte K; Vn>k;:|u,(t) —u(t)] <e.

Let us take {uy, ,}. This sequence converges uniformly on K; for all i € N, because
for each i there are only i — 1 terms of {uj, ,} which do not belong to {u},}. Clearly,
for each compact interval K C (0,7') there exists iy € N such that K C K; for all
1 > ip. Hence

Ve >0Vte K Vn> ki : |u,,(t) —u'(t) <e.

This implies that
VK C (0,T)Ve>03dme NVite KVn>m: |u,,(t) —u' ()] <e.

So the sequence {u,, ,,} C {u;,, } converges locally uniformly on (0,7") to u' € C(0,T).
2. Let us denote {uy, ,,} as {u;, } and take an arbitrary compact interval K C (0,7').
There exists ng € N such that (2.7) and (2.8) are valid. Therefore for all n; > ng we
have

0w, (0) = 8w () + [ Fsun (o), (Nds forte k. (29)

Since f is continuous in its phase variables for a.e. ¢ € (0,7") and because

loc

Uy, Zwon [0,T] and wu, = u' on (0,T), (2.10)
we get

llirgo J(t g, (t),u, () = f(t,u(t),u'(t) forae. te[0,T].

g
Recall that
Shi € L[0,T] : [ f(t, un, (t),uy, (t)] < hx(t) forae. t € K and all n; > ny.

Letting | — oo in (2.9), using the Lebesgue dominated convergence theorem on K and
the fact that K C (0,T) is arbitrary, we get

d)(u'(t)):¢(u'(§))+/If(s,u(s),u'(s))ds for t € (0, 7).

Hence, ¢(u') € ACj,.(0,T) and u satisfies (1.1) for a.e. ¢t € [0,7]. It means that u is
a w-solution of (1.1), (1.2).

3. Let (2.6) be fulfilled. It remains to prove that ¢(u') € AC[0,T]. It is sufficient to
prove that ¢(u') € AC[0,n]N AC[T —n,T]. Now, we will show that for a.e. ¢ € (0,7)

i sign (1, (8) = ) o (1, (0), 18, (8) = sign( (8) = y2) f(1,u(t), (1) (2.10)
Put

Vi ={t € (0,n): f(t,-,-) : R”* = R is not continuous},
Vo ={t € (0,7m) : t is an isolated zero of u' — y; },
Vs ={t € (0,m) : (¢(u'(t)))" does not exist or (1.1) is not fulfiled}.



Then meas(M) = 0, where M = V; U V2 U V3. Choose an arbitrary to € (0,n)\M. If
to is an accumulation point of a set of zeros of u’ — y;, then there exists a sequence
{tn} C (0,n) such that u'(¢,,) = y1 and lim,,_,o t, = to. Since u' is continuous on
(0,m), we get u'(tg) = y1. Further, by virtue of ¢y ¢ Vs,

. 2 (12)) = O ()

tn —to tn — to

= 0= (o(u'(t0)))’
and we get

0= (8(u(t)))" = f(to, u(to),u' (to))-
Since to ¢ V1, we have by (2.4) and (2.10)

Jim f, (o, un, (o), uy, (to)) = Jim £ (to, un, (t0); up, (to)) = f(to, u(to), u'(tg)) = 0

and

lim sign(uy, (to) —y1) fr, (to, un, (to), up, (to)) = 0 = sign(u'(to) —y1) f (to, u(to), u' (o))-

[—o0

Let u'(to) # y1- If u'(to) > y1 then there exists ng € N such that uj, (to) > y; for
all n; > ng. It means that sign(uy, (to) —y1) = 1 and (2.11) is satisfied. Similarly
if u'(to) < y1. Therefore we have proved that (2.11) is fulfilled for a.e. ty € (0,n).
Further, for all n; € N we have

/077 sign(uy,, (t) — y1) fr, (t, un, (£), uy,, (t))dt =

- /O"signw(u;,(t))—¢<y1))<¢( () = dlp)dt = /|¢ dly (1)) — d(yn)|'dt =

= (16 (un, () = d(y1)| — [$(uz, (0)) — dy1)])-
By (2.6) there exists d = d(c,y1,%) > 0 such that

n
0< / (A1 sign(uq, () — y1) fr, (5, Un, (5),un, (s)) + [¢(s)|lds < d, ng€N. (2.12)
0
For a.e. t € (0,n) let us put

o, () = Avsign(up, () = y1) fr, (& un, (2), ug,, (8) + [ ()],
o(t) = Avsign(u'(t) — y1) £ (£, u(t), u'(t )) + @)

According to (2. 6) we can see that ¢, € L[0,n] are nonnegative a.e. on (0,n). Further,
by (2.11), ¢n, == ¢ on (0,n) and, by (2.12) fo ¢n, (s)ds < d . Using the Fatou
lemma, we conclude that ¢ € L[0,n]. Then |f( u,u’)| € L[O,n] and also f(-,u,u’) €
L[0,n]. It means that ¢(u') € AC[0,n]. In an analogous way, we can prove that
¢(u') € AC[T —n,T]. The theorem is proved.

|



3 Regular Dirichlet BVP’s

In order to fulfil the basic condition (2.5) in Theorem 2.1 we need existence results for
regular problems (2.1), (1.2) and a priori estimates for their solutions. To this aim we
consider a regular equation

(6(u))" = h(t, u,u’), (3.1)

h € Car([0,T] x R?), and use the lower and upper functions method to get solvability
of problem (3.1), (1.2).

Definition 3.1 Functions o1, o3 : [0,7] — R are respectively lower and upper func-
tions of problem (3.1), (1.2) if ¢(o}) € AC[0,T] for i € {1,2} and

(6(o1(1)))" 2 f(t,01(8),01(1),  ($(03(1))" < f(t,02(1),05(t))  for ace. t €[0,7],
Ul(O)SA,Ul(T)SB, Uz(O)ZA,Uz(T)ZB

Lemma 3.2 Let o1 and oy be respectively lower and upper functions of problem (3.1),
(1.2) and let 01 < 02 on [0,T]. Further assume that there is ho € L[0,T] such that

|h(t,z,y)| < ho(t) for a.e. t €[0,T] and for all (z,y) € [01(t),02(t)] X R.
Then problem (5.1), (1.2) has a solution u € C*[0,T] with ¢(u') € AC[0,T] such that
o1 <u<oyonl0,T] (3.2)

Since the lower and upper functions method for regular problems with ¢-Laplacian
can be found in literature (see e.g. [18] - [20]), we present just the main the ideas of
the proof of Lemma 3.2.

Sketch of the proof
For a.e. t € [0,T] and all z,y € R define an auxiliary function

h(t702yy) + w?(ta $z;;7j_1) + wi;;’j_l for z > UZ(t)a

g(t,x,y) =< h(t,z,y) for o1(t) < z < oa(t), (3.3)

h(t,O'l,y) —w (t7 0;71;—7-1) - afi;—‘f-l for z <oy (t)7

where
wi(tag) = sup{|h(t,ai,ag) - h(t7giay)| : |y - U” S E}: 1= ]-727 €€ [07 1]

and consider the equation
(@) = g(t, u,u'). (3.4)

We see that w; € Car([0,7T] x [0,1]) are nonnegative, nondecreasing in their second
variable and w;(t,0) = 0 for a.e. ¢t € [0,T], i = 1,2. Further we see that g €
Car([0,T] x R?) and there exists g € L[0,T] such that

lg(t,z,y)| <g(t) for ae. t€[0,T]and all z,y € R.

We will prove the existence of a solution of the auxiliary problem (3.4), (1.2).
For fixed v € C'[0,T] define v, : R — R by

Yol@) = [y 671 (z+ [ go(s)ds)dr



where g, (s) = g(s,v(s),v'(s)) for a.e. s € [0,T]. The properties of ¢ and g imply that
for each v € C[0,T] there exists a unique 7, satisfying

T T
Yo(T0) = / ot (TU + / gv(s)ds) dr=B— A, (3.5)
0 0
and that there exists m > 0 such that |7,| < m for every v € C*[0,7]. Now define
an operator 7 : C1[0,7] — C[0,T7] by the formula

(Tu)(t)=A -|-/0 ¢ (1o + /07‘ gu(s)ds)dr.

Then we can check that if u is a fixed point of the operator 7 then u is a solution of
(3.4), (1.2). Using the Lebesgue theorem and the Arzela - Ascoli theorem we prove
that 7 is continuous and compact. Further, for all u € C*[0, T the following estimate
holds:

1 Tulloro,r < 1Al + (T + 1) max{|¢™" (=m — [gllcjo,r)ls |67 (m + 1Gllz0,m7) [} = Q-

Define Q = {u € C'[0,T] : ||ullc1jo,r; < @}. Then Q is a nonempty closed bounded
and convex set. The compact operator T sends the set Q into (). By the Schauder
fixed point theorem, operator 7 has a fixed point u. This fixed point is a solution of
problem (3.4), (1.2).
It remains to prove that « satisfies (3.2). We put v(t) = o1 (t) — u(t) for all t € [0,T].
By (1.2), we have v(0) < 0 and v(T") < 0, and then we can show that v does not
have a positive maximum at any point of (0,7'). The second inequality in (3.2) can
be proved similarly.
(3.2) and (3.3) yield that w is also a solution of problem (3.1), (1.2). The lemma is
proved.
|

Lemma 3.2 gives the existence result for (3.1), (1.2) provided the function h has
a Lebesgue integrable majorant hg. The method of a priori estimates enables us to
extend this result to more general right-hand sides h.

Lemma 3.3 (An a priori estimate)
Assume that a,b € [0,T],a < b, y1,y2 € R, cp € (0,00). Let go € L[0,T] be nonnega-
tive and let w € C[0,00) be positive and

/OOO % ~ o, (3.6)

Then there exists oo € (co,0) such that for each function u € C*[0,T] satisfying the
conditions
¢(u') € AC[0, T,

lu(t)] <o for each t €[0,T], (3.7)
W () <o for some £ € [a,b], (3.8)

(¢(u' (1)) sign(u'(t) — y1) > —w(|¢(u'(t) — d(y1)])(go(t) + [u' () — y1])
for a.e. t € [0,0] and for |¢p(u'(t))] > |d(y1)| (3.9)



and
(6(u' (1)) sign(u'(t) — y2) < w(lp(u'(t)) — dly2))(go(t) + [u'(t) — y21)
for a.e. t € [a,T] and for |p(u'(t))| > |o(y2)], (3.10)

the estimate
[u'(t)| < 0o for each t € [0,T] (3.11)

s valid.

Proof
We can see that sign(p(u/(t)) — ¢(y;)) = sign(u/(t) — y;), i = 1,2. Put vi(t) =
¢(u'(t)) — d(y;), i = 1,2. Then

03 ()] = 1¢(u' () — d(yi)| < max{|p(—co)l, p(co)} +[B(yi)| = i, i =1,2.
Condition (3.6) implies that there exists g; € (¢;,00) such that

Qi ds
— 2 T|y; i =1,2. 3.12
[ o > Il + 20 4 Tl i=1, (312)

First, let us prove the estimate
vy (t)] < o1 fort € 0,£]. (3.13)
By (3.9) we get

_ Vi(t) sign vy (t)

w(or(®)])

Asume that (3.13) is not valid, i.e. that there exists an interval [«, 8] C [0, £] such that

1B < e, |vr(a)l > 01 and vi(f) # 0 on [a, .

Integrating (3.14) over [«, 8] we arrive at

B " 3 U B o
[ -0y [ iy [ ) - i

w(|vi (8)]) a a

Using a substitution s = |v{(t)|, we obtain

/01 ds /Iv'l(a)l ds ool
—— < —— < |9ollLo, 1]+
e W(8) T Jupy wis) 011

53 B
+ / W (t)dt] + | / yrdt] < llgollujo.z) + 260 + Ty,

< go(t) + |u'(t) —y1| for a.e. t €]0,€]. (3.14)

which contradicts (3.12). Therefore (3.13) is valid. Similiarly we can prove the estimate
[v(t)] < 02 for t € [€,T). (3.15)
Now (3.13) and (3.15) imply that
|6(u' (1)) — ¢(y1)| < @1 on [0,€],  [¢(w' () — d(y2)| < 02 on [€, T,



wherefrom

|u'(£)] < max { |67 (= max{|p(y1)|, |6(y2)} — max{os, 02})],

|67 (max{|d(y1)], [¢(y2)[} +maX{91,92})|} =00 on[0,T].

|

Using Lemma 3.2 and Lemma 3.3 we get the existence result for (3.1), (1.2) under

one-sided growth restrictions of the Nagumo type (3.19), (3.20). Note that for ¢(y) =y

similar results can be found in [8] and for ¢ = ¢, in the papers [10], [19], [20], where
both-sided growth restrictions are assumed.

Theorem 3.4 Assume that the following conditions are fulfilled:

o1 and oo are respectively lower and upper functions of (3.1),(1.2)
and o1 < 02 on [0,T], (3.16)

1+b-a
b—a
g € L[0,T] is nonnegative, w € C[0,00) is positive and fulfils (3.6), (3.18)

a,b € (0,T), a<b, y1,y2 € R, co > 2 (lolleo + llozlloo), (3.17)

h(t, z,y)signy = —w(|p(y) — d(y1)(9(t) + [yl)
for a.e. t €[0,0],Va € [01(t),02(t)],Vy € R such that |p(y)| > |(y1)| (3.19)

and

h(t, z,y) signy <w(|¢(y) — d(y2))(9(t) + |y])
for a.e. t € [a,T],Vx € [01(t),02(t)],Vy € R such that |p(y)| > [o(y2)]. (3.20)

Then problem (3.1), (1.2) has a solution u satisfying
o1 <u<oy onl0,T] (3.21)

and
WO <00 forte 0T, (3:22)
where o € (0,00) is the constant from Lemma 3.3 with go = g + |y1] + |y2|-

Proof
Put ro = 00+ |01 |oo + |04 ||cc where gp is given by Lemma 3.3 and define functions

1 if |y| S To,
x(y) = 2 — % if ro< |y| < 2rp,
0 if |y > 2ro

and

h(t,z,y) = x(y)h(t, z,y) (3.23)
for a.e. t €10,7), z, y € R.
For (z,y) € [01(t),02(t)] X R, the function h is bounded on [0,7] by a Lebesgue

10



integrable function. In addition, o1, o2 are respectively lower and upper functions of
the problem

(¢(a' (1)) = h(t,z(t),2'(£),  (1.2). (3.24)

According to Lemma 3.2 there exists a solution u of problem (3.24) satisfying (3.2).
Let us prove that u is also a solution of problem (3.1), (1.2). Conditions (3.2) and
(3.17) imply that w fulfils (3.7) and (3.8). Moreover, by (3.19) and (3.23),

h(t,z,y) sign(é(y) — ¢(y1)) = x(y)h(t, x,y)signy
> —w(|o(y) — d(y) ) (g(t) + lyl) > —w(lo(y) — d(y1)]) (9o (t) + |y — w1)

fora.e. t € [0,T], for all z € [0 (t), 02(t)] and for every y € R such that |¢(y)| > |¢(y1)],
where go(t) = g(t)+|y1[+]y2|. (Note that [p(y)| > |$(y1)| implies sign(y—yi1) = signy.)
It means that (3.9) is valid. Similarly, using (3.20), we can derive that (3.10) is valid.
We have shown that all conditions of Lemma 3.3 are satisfied. So, the estimate (3.11)
is true and u is a solution of problem (3.1), (1.2). This concludes the proof of Theorem
3.4.

|

4 Main result

In this section we prove our main result about the solvability of the singular Dirichlet
boundary value problem (1.1), (1.2).

Theorem 4.1 Assume that conditions (3.18),
(l,be (OaT)7a<b7 7"1;7"2;Z/1>Q2GR> (41)

r1 + tyr <min{A, B}, ry + ty> > max{A4,B} forte€|0,T],
f(t,T1 +ty17y1) S 07 f(t,T2 +ty2>y2) Z 0 fOT‘ a.e. t € [OaT]a

[t m,y)signy > —w(|¢(y) — d(y1))(9(t) + [yl)
for a.e. t € [0,b],Vz € [r1 + ty1,72 + ty2], Yy € R such that |¢(y)| > |op(y1)| (4.3)

and

[tz y)signy < w(|o(y) — oy2))(9(t) + 1yl)
for a.e. t € [a,T],Va € [r1 + ty1, 72 + ty=], Yy € R such that |d(y)| > |p(y2)| (4.4)

are satisfied. Then there exists oo > 0 such that problem (1.1), (1.2) has a w-solution
u € C(0,T) satisfying

1+ tyr < u(t) <o+ tys fort €[0,T) (4.5)

and
|u'(t)] < 0o for each t € (0,T). (4.6)

Further, let there exist n) € (0, %), A, A2 € {—1,1}, v € L]0, T] such that
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Avsign(y —y1) f(t, 2, y) > o(t)
for a.e. t € [0,n],Vx € [r1 + ty1,r2 + tya],Vy € [—00, 00],
Ao sign(y — y2) f(t, 2, y) > o(?)
for a.e. t € [T —n,T),Vz € [r1 + ty1, 72 + ty2],Vy € [—00, 00].

(4.7
Then u € C[0,T] is a solution of problem (1.1), (1.2).
Proof
For each n € N define J,, by (2.2),
t,x, for a.e. t € J,,Vz,y € R,
fultyzy) = 4L B0 va,y € Ry (48)
0 for a.e. t € 0,7)U (T — -, T],Vz,y € R.

Then f, € Car([0,7] x R?) for each n € N. Choose n € N and show that problem
(2.1), (1.2) satisfies the assumptions of Theorem 3.4. Let us put oy (t) = r1 + ty1 and
o3(t) =1y +tys for t € [0,T]. Then, according to (4.2), o1 and o3 are lower and upper
function of problem (2.1), (1.2), i.e. (3.16) holds. From inequalities (4.3) and (4.4) we
get

fu(t,m,y)signy = f(t,z,y)signy > —w(|d(y) — o(y1))(9(t) + |y])

for a.e. t € [0,b] N Jp, V& € [r1 + ty1, 72 + ty2],Vy € R, |p(y)| > |d(y1)],
fa(t, @, y)signy =0 > —w(|d(y) — o(y1))(9(t) + |y])

for a.e. t € [0,b0]\Jp, V& € [r1 + ty1, 72 + ty2),Vy € R,
fu(t,m,y) signy = f(t,z,y)signy < w(|o(y) — d(y2))(9(t) + |y])

for a.e. t € [a, TN Jp, V& € [r1 + ty1, 2 + tya],Vy € R, |p(y)| > |6(y2)|,
fu(t,z,y) signy =0 < w(|o(y) — o(y2)I)(9(t) + |yl)

for a.e. t € [a, T\ Jp,Vz € [r1 + ty1, 72 + ty2],Vy € R.

It means that conditions (3.19) and (3.20) are fulfilled. By Theorem 3.4, problem
(2.1), (1.2) has a solution u,, € C*[0,T] with ¢(u,) € AC[0,T]. Moreover, u,, satisfies
(4.5) and

W () <00 fort€[0,T], (4.9)

where go € (0, 00) is the constant from Lemma 3.3 with go = g+ |y1| + |y2|. By virtue
of Lemma 3.3, go does not depend on u,. Therefore condition (2.5) is fulfilled, where

Q={ueC([0,T): |lullee < llo1lloc + llo2]lo + 00}

Hence Theorem 2.1 yields the existence of a w-solution w of problem (1.1), (1.2).
Moreover, u satisfies (4.5) and (4.6).
Now, moreover, assume (4.7). Let us define

¥(t) = min{yo(t),0} for ¢ € [0,T].
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Then 9 € L[0,T]. We can see that

Av St un(t), w, (1)) sign(u, () — y1) =
At un(t) ey (1)) sign(uy (1) — 1) > wolt) > (1) for e £ € [0,7] 1 Ty,
A ot (1), (1)) sign(us (8) — 1) = 0 2 (1) Tor ae. £ € [0,5]\ .
X ot (0) 1, (8) sign(ul () — ) =
= Ao F(tun (0), 0, (6) sign(u (8) — y2) > o(t) = (8) for ac. £ € [T — 1,T] M,
Ao fn(t, un(t), ul, (t)) sign(ul, (t) —y2) = 0 > (t) for a.e. t € [T —n, T\ J.

It means that condition (2.6) is satisfied. By Theorem 2.1, u is a solution of (1.1),
(1.2).
|

Remark 4.2 A similar result about the existence of a w-solution of problem (1.1),

(1.2) with ¢(y) = y can be found in [8], Theorem 3.1, but we do not know another
result about the existence of a solution to (1.1), (1.2) in literature.

Example 4.3 (Existence of solution)
Let p> 1 and ¢,(y) = |y|P 2y for y € R. Consider the equation

1

(6p(u)" = () (W* —1%) + cp(u)u’ + (tia - m)(%(ﬂ') = ¢p(d),  (4.10)

where r,c,d € R, k € N is odd, a, f € (1,00), ¢ € L[0,T] is nonnegative. Then, by
Theorem 4.1, problem (4.10), (1.2) has a solution u € C*[0,T] with ¢,(u') € AC|0,T].
We will show that all the conditions of Theorem 4.1 are satisfied. Let 1,7y € R. Then

ft,ri +td, d) = q(t)((ri + td)* — %) + cp,(d)d for a.e. t €[0,T].

Since ¢ is nonnegative on [0, T], we can find a large positive r» and a negative r; with
large absolute value such that (4.2) holds. Denote

@ (t) = q(t) max{|z® —7*| ;1) +td <@ <ro+td} for ae. t €[0,T),

(T —t)=" for a.e. t € [0,a),
@)= (T —t) %+t for ae. t € [a,b],
e for a.e. t € (b,T].

Then for a.e. t € [0,b], each € [r1 +td,r2 + td] and each y € R, |¢,(y)| > |¢p(d)| we
have

f(t,m,y)signy = f(t,x,y)sign(¢,(y) — ¢p( ) > —qu(t)—
—lellép(y) — dp(Dly] = lellop(d)y] — T )ﬁl%( y) — ¢p(d)| >
—(I#p(y) = dp(d)] + D) ((Je] + D (|pp(d)| + 1)) (g1 ()] + lg2(8)] + |y])-

Therefore, if we put

w(s) = (L+s)co, co = (e[ +)(lgp(d)] +1),  g(t) = gL ()] + lg2(2)],
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we get (4.3). Similarly we obtain (4.4). Further, for a.e. t € [0,T], each z € [r1 +
td,ry + td] and each y € [—09, 00] we get

sign(b — ) f(t,2,y) sign(y — d) = f(t,2,y) sign(¢p(y) — dp(d)) >
> —qu(t) = |cldp(e0) o — q2(8)(dp(20) + [dp(d)]) = (1),

where 19 € L[0,T], which means that (4.7) is satisfied.
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