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Abstract. We study singular boundary value problems with mixed boundary
conditions of the form
(p(t)u) + p(t) f(t,u,p(t)u') =0, tlir&p(t)u'(t) =0, u(T)=0,
4}

where [0,7] C R. We assume that D C R?, f satisfies the Carathéodory condi-
tions on (0,7) x D, p € C[0,T] and ;7 need not be integrable on [0, 7]. Here f can
have time singularities at ¢ = 0 and/or ¢t = T and a space singularity at x = 0.
Moreover, f can change its sign. Provided f is nonnegative it can have even a

space singularity at y = 0. We present conditions for the existence of solutions
positive on [0,7).
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1 Introduction

Assume that [0, 7] C R, D C R? and that f satisfies the Carathéodory conditions
on (0,7) x D. We investigate the solvability of the singular mixed boundary value
problem

(p(@)) + p(t) f (£, u, p(t)u’) = 0, (1.1)



tl_i}rgip(t)u'(t) =0, u(T)=0, (1.2)

where p € C[0,7] and f can have time singularities at ¢ = 0 and/or t = 7" and a
space singularity at = 0. In particular, f can have even a space singularity at
y =0 if f is nonnegative (Theorem 2.1). In [19] we have studied a special case of
the above problem with p(t) =1 on [0, 7] and in [20] we have proved solvability
of (1.1), (1.2) provided zl) € L,]0,T]. Here we investigate problem (1.1), (1.2)
under the assumption that % need not be integrable on [0,7]. This assumption
is motivated by a problem arising in the theory of shallow membrane caps (see
[10], [13]), which is controlled by the equation

t
(tSUI)I + — — aog — botQ’yil = 0, ag > 0, by > 0,’)/ > ].,

with p(t) = 3. We see that this is the case % ¢ L1[0,T]. But in our paper, in
contrast to the above example, we will investigate equations where the right-hand
side f depends both on u and on u'.

Note that the importance of singular mixed problems consists also in the
fact that they arise when searching for positive, radially symmetric solutions to
nonlinear elliptic partial differential equations (see [9], [12]).

In this paper we prove existence of solutions of (1.1), (1.2) which are positive
on [0, 7). For other existence results of singular mixed problems we refer to [1] -
[8], [11], [14] - [22].

Here we extend results of [2], [19], [20] and offer new conditions which guar-
antee the existence of positive solutions of the singular problem (1.1), (1.2) pro-
vided both time and space singularities are allowed. Moreover, we also admit f
to change its sign (Theorem 2.2).

First, we recall some definitions and results. Let [a,b] C R, M C R%. We say
that a real valued function f satisfies the Carathéodory conditions on the set
[a, b] x M if

(i) f(-,x,y) : [a,b] = R is measurable for all (z,y) € M,

(ii) f(t,-,-) : M — R is continuous for a.e. t € [a, b,

(iii) for each compact set K C M there is a function mg € L;[0,T] such that
|f(t,z,y)| < mg(t) for ae. t € [a,b] and all (z,y) € K.
We write f € Car([a,b] x M). By f € Car((0,7) x D) we mean that f €
Car([a,b] x D) for each [a,b] C (0,T) and f & Car(]0,7] x D).

Definition 1.1. Let f € Car((0,7) x D). We say that f has a time singularity
at t =0 and/or at t = T if there exists (z,y) € D such that

T

[ 1wyl =00 andjor [ |f(tm,y)lde = oo
0 T
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for each sufficiently small € > 0. The point t = 0 and/or t = T will be called a
singular point of f.
Let D = (0,00) x I, I C R. We say that f has a space singularity at x = 0 if

limsup |f(t,z,y)| = oo for a.e. t € [0,7] and for some y € I.
z—0+

Let D = (0,00) x (—00,0). We say that f has a space singularity at y = 0 if

limsup |f(t,z,y)| = o0 for a.e. t € [0,7] and for some x € (0, 00).

y—0
Definition 1.2. By a solution of problem (1.1), (1.2) we understand a function
u € C[0,T] with pu' € AC|0, T'] satistying conditions (1.2) and fulfilling
(1) (1) + p(E) F (1, u(t), p(O)'(8)) = 0 forae. t€(0,7)  (13)

Now consider an auxiliar regular problem
(q(t)u") + h(t,u,q(t)u’) =0, «'(0) =0, u(T) =0, (1.4)
where ¢ € C[0,T) is positive on [0,7T] and h € Car([0,T] x R?).

Definition 1.3. A solution of the regular problem (1.4) is defined as a function
u € CU0,7T] with qu’ € AC[0,T] sastisfying v'(0) = u(T) = 0 and fulfilling
(q(t)u' ()" + h(t,u(t), q(t)u'(t)) = 0 for a.e. t € [0,T].

In the proofs of our main results we will use the following lower and upper
functions method for problem (1.4).

Definition 1.4. A function o € C[0,T] is called a lower function of (1.4) if there
exists a finite set X C (0,7") such that go’ € AC},.([0,T]\X), o'(7+),0'(7—) € R
for each 7 € %,

(q(t)d'(t) + h(t,o(t),q(t)o’(t)) > 0 for a.e. t €[0,T] (1.5)

and
d(0) >0, o(T)<0, o'(r—)<o'(r+) foreach e X. (1.6)

If the inequalities in (1.5) and (1.6) are reversed, then o is called an upper function

of (1.4).

Lemma1.5. ([20], Theorem 2.3) Let 01 and oy be a lower function and an upper
function for problem (1.4) such that oy < o9 on [0,T]. Assume also that there is
a function ¢ € L]0, T] such that

|h(t,z,y)| < (t) for a.e. t €]0,T], all x € [01(t),02(t)], v € R. (1.7)
Then problem (1.4) has a solution u € C*0,T] satisfying qu’ € AC[0,T] and
o1(t) < u(t) < oy(t) fortelo,T). (1.8)



2 Main results

The first existence result for the singular problem (1.1), (1.2) will be proved under
the assumptions

1
p € C[0,T], p>0on (0,7], — need not belong to L,[0, 77, (2.1)
p

and

D = (0,00) x (—00,0), f € Car((0,T) x D),
f can have time singularities at t =0, t =T (2.2)
and space singularities at x =0, y = 0.

Theorem 2.1. Let (2.1), (2.2) hold. Assume that there exist € € (0,1), v €

(0,7), ¢ € (v,00) and positive functions ¢ € Ly, (0,1), w € C(0,00), h €

C[0,00) such that

1 st
S5 o PR € L, 0.1, (23
f(t,P(t),—c) =0 forae te(0,7T), (2.4)
e < f(t,x,y) forae te(0,v], all xz € (0,P()], y€[-v,0), (2.5)
and
{ 0 < f(t,z,y) < pt)(w(z) + h(z)) (2.6)
for a.e. t € (0,T), all x € (0, P(t)], y € [—¢,0),
where r g
s
Pt)=c o Frte@ (2.7)
w s nonincreasing, h is nondecreasing and
tim M) oo, (2.8)
r—0

Then problem (1.1), (1.2) has a solution v € C[0,T] positive and decreasing on
[0,T") with pu’ € AC[0,T.

Note. Condition ¢ € Ly, (0,7) or ¢ € Ly, [0,7) means that ¢ € Li[a,b] for
each [a,b] C (0,T) or [a,b] C [0,T), respectively. Functions satisfying (2.3) are
for example p(t) = t* and ¢(t) = t=7 + (T — t)~3, where a > 1,8 € (0, 2).

Proor. Let k € N, k > % In the following Steps 1-5 we argue as in the proof
of Theorem 3.1 in [20]. So we will show just an abridgement of these steps.



Step 1. Approzimate solutions.
For t € [0,T], z,y € R put

P(t) if x> P(t)
ap(t,e)={ @ if p<a<P@) (2.9)
% it z< %
and L. .
Brly) =< v if —ec<y<—4,
—c if y<-—c
and
€ if y>-—v
Yy)=q et if —c<y<-v. (2.10)
0 it y<-—c
For a.e. t € [0, 7] and all z,y € R define
() if tel0,)
fk(taxay) = f(taak(tax)aﬂk(y)) if te [%,T— %]
0 it te (T - %,T]
and . _ .
0 max{p(t),p(3)} if t€[0,¢) (2.11)
D = . .
’ p(t) it tellT]
Then py € C[0,T], pr > 0 on [0,7T], and there is ¢, € L;[0,T] such that
Ik (t) fr(t, z,y)| < ¢(t) forae. t€[0,T] and all z,y € R. (2.12)
We have got a sequence of auxiliary regular problems
(Pe(O)W)" + pe(t) fio(t, u, pe(t)u’) = 0, w'(0) =0, u(T) =0, (2.13)

ke N, k> 2. If we put

o1() = 0, o(t) = c/tde—& for ¢ € [0, 7],

then oy and oy are lower and upper functions of (2.13) and, by Lemma 1.5,
problem (2.13) has a solution uj € C*[0,T] satisfying

0 < ug(t) < o9 (t) fort e 0,7). (2.14)
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Step 2. A priori estimates of approximate solutions uy.
Conditions (2.14) and ug(T') = 09x(T) = 0, px(0)u},(0) = 0 and the monotonicity
of pruj, give
—c¢ < pr(t)ui(t) <0 on [0,T]. (2.15)

Choose an arbitrary compact interval J C (0,7°). By virtue of (2.5) and (2.15)
there is k; € N such that for each K € N, k > k,

o Su(t) < kg —ky Sug(t) < - (2.16)
—c < pr(t)up(t) < =& fort e J, '
and hence there is ¢ € L;(J) such that
|k () fre (¢, ug(t), pr(t)uy(t))| < (t) a.e. on J. (2.17)

Step 3. Convergence of a sequence of approximate solutions.
Using conditions (2.16), (2.17) we see that the sequences {u;} and {pyu)} are
equibounded and equicontinuous on .J. Therefore by the Arzela-Ascoli theorem
and the diagonalization principle we can choose u € C'(0,T") and subsequences of
{ug} and of {pyu} which we denote for simplicity in the same way such that

lim uy = w, lim pguj = pu’ locally uniformly on (0,7), (2.18)
k—o0 k—o0

0<u(t) <P(t), —c<pt)(t)<0 forte(0,T). (2.19)
Step 4. Convergence of a sequence of approzimate problems.
Choose an arbitrary £ € (0,7") such that

f(&,-,-) is continuous on (0,00) X (—00,0).

There exists a compact interval Je C (0,7") with £ € J¢ and, by (2.16), we can
find k¢ € N such that for each & > k¢

1
> _
Therefore

im0 Pk (8) fie (2, un (2), pr () (8)) = p(£) f (¢, w(t), p(t)u'(2))

(2.20)
for a.e. t € (0,7).

Integrating (2.13), letting & — oo and using the Lebesgue convergence theorem
we get for an arbitrary ¢ € (0,7)

2

p(3) v (3) o000 = [0 f ) pr) ), (221)



i.e. (1.3) is valid.
Step 5. Properties of pu'.
According to (2.13) and (2.15) we have for each k >

N

[ 216 el wn(s),pr(s)i () = (DT € (0.,

which together with (2.6), (2.19) and (2.20) yields, by the Fatou lemma, that
p(t) f(t,u(t), p(t)u'(t)) € L]0, T]. Therefore, by (2.21), pu’ € AC[0,T].

Step 6. Properties of u.
Since pu' is continuous on [0, 7] and zl) is continuous on (0,7, we get u € C(0,T].
It remains to prove that u € C[0,7]. By (2.19) u is decreasing on (0,7"), which
yields

0< A= lim u(t).
t—0+

Therefore it is sufficient to prove that A < co.
By (1.3), (2.6) and (2.19) we deduce that

—(p(t)u'(1))" < p(t)p(t) (w(u(t)) + h(u(t)) for ae. t € (0,T). (2.22)
Let By € (0,00) and g € (0, A) be such that
w(xy) = h(xg) + By € (0, 00).
Then there is ¢y € (0,7") such that
u(ty) = xo, xo < u(t) < Afort e (0,tp),
and having in mind monotonicity of w and h we obtain
—(p®)u' ()" < p(H)p(1)(2h(A) + Bo)  for a.e. t € (0, 1], (2.23)

where h(A) = lim,_, 4 h(z). By virtue of (2.8) we can find a € (0,00) such that

and due to (2.3) there is ¢, € (0, ¢) satisfying

/'Ota B /OSP(T)QD(T)deS < 3i

p(s) a

Integrating (2.23) we get

—d(s) < (2h(A) + BO)Z% /0 T p(P)e(r)dr, s € (0,4],



and integrating the last inequality we obtain

(t) = ulte) < (2h(4) + By) | . ]ﬁ [ oetridrds, v (0,0).
Hence, for ¢ — 0+ we get
A u(t) + ) + 80 [ [ prptrdrds < ) + ZE D

and 9h(A) + B
| ult) | 2h(4) By

A 3aA

there exists A* € (0,00) such that Fi(x) < 1 for each
we have A4 < A*.

= F(A).

Since lim, o, F(z) < %,
x > A*. Since F(A) > 1,
o

The second existence result is applicable to sign-changing nonlinearities. Now
we will assume (2.1) and

f can have time singularities at t =0, t =T (2.24)

D= (0,00) xR, feCar((0,T) x D),
and a space singularity at = 0.

Theorem 2.2. Let (2.1) and (2.24) hold. Assume that there exist r,e,p,v €
(0,00), ¢ € (v,00) and positive functions ¢ € Ly, (0,T), ¢ € L1[0,T], w €
C(0,00), h € C[0,00) such that

% [ pts)ps)ds € Lo, ), (2.25)
f(t,P(t),—c) <0 forae te(0,7), (2.26)
e < f(t,z,y) forae te (0,T), allz € (0,v],y € [-v,v], (2.27)
and
{ —(t) < f(t,2,y) < p()(w(@) + h(@)(ly| + 1) +ry? (2.28)
for a.e. t € (0,T), all x € (0,P(t)], y € R, '

hold, where w is nonincreasing, h is nondecreasing, ¢ and h satisfy (2.3) and
(2.8), respectively, and P is given by (2.7). Then problem (1.1),(1.2) has a posi-
tive solution v € C[0,T| with pu’ € AC[0,T].

PROOF. Let k € N,k > 2.
Step 1. Approximate solutions.
Fort € [0,7T], =,y € R define oy, 7 and pg by (2.9), (2.10) and (2.11), respectively.



Consider a sequence {p;} C (1,00) satisfying limg_,o, pr = 00, and put for a.e.
t€[0,7) and all z,y € R

_ )y if |yl < pe
Bely) {pksigny it [yl > pr,

v(y) if +el0,7)U(T - T]
t,r,y) = . k k
LR ORI e
In such a way we have got a sequence of regular problems (2.13) fulfilling (2.12)
and consequently a sequence of their solutions {u} satisfying (2.14).
Step 2. A priori estimates of approximate solutions uy.
Without loss of generality we can assume that € > 0 is so small that

6/0Tp(s)ds <. (2.29)

(I) Assume that uy(0) > v. Since ugx(T) = 0 there exist sy € [0,7T), 70 € (S0, 7]
such that
uk(t) > v fort e |0, sy (2.30)

and
uk(so) = v, wuk(t) <wvforte (sy, )

Then u}(sp) < 0 and we will consider two cases: —v < pg(so)ui(so) < 0 and
Pr(s0)ug(s0) < —v.
Case A. Let —v < pg(so)ui(so) < 0. Then there exists ¢ty € (sg, 7] such that for
t e [So, to]

0<u®) v, Iprt)u(®)] < v

By (2.27) we get

peltyi (1) < —< [ " p(8)ds + p(s0)u (s0) < —e / " p(s)ds, 1 € (s0,10],

50 50

il.e. fort e [50, to]

t

Pe(t)ui(t) < —< [ p(s)ds. (231)

50
Therefore uy(t) < v, ul(t) < 0 and pg(t)uy(t) > —v on (sg,%p]. Assume that
to < T'. Then there exists t; € (ty, 7] such that py(t)u)(t) < —v for t € (to,t1],
which yields wuy(t) < v and (2.31) on [ty,t;]. Assume that ¢; < 7. Then there
exists o € (t1, 7] such that

¢
< —5/ p(s)ds < pi(t)uy(t) < 0 for t € (1, 1).
50
This implies that u, < v on (1, ts] and, by (2.27),
¢

pe(0)(1) < —< [ pls)ds + pe(t (1) < —= [ pls)ds for € (0,1,

t1 S0

9



a contradiction. So, we have proved t; = T and hence, by (2.29),
(2.31) and wg(t) <v hold on (sg,T7. (2.32)

Case B. Let pg(so)ui(so) < —v. Then there exists s; € (sg, 7] such that 0 <
uy(t) < v for t € (so, s1] and, by (2.29),

pr(t)ug(t) < —e /S: p(s)ds, t € (sg, s1]-
Assume that s; < 7. Then there exists sy € (s1,7] such that
—v< —¢ /tp(s)ds < pr(t)uy(t) <0 for t € (s1, $2].
50
This implies that u, < v on (s, se] and, by (2.27),
pe(t)ui(t) < —e /tp(s)ds + pr(s1)up(s1) < —¢ /tp(s)ds for t € (s1, s9),

51 50

a contradiction. So, we have proved s; = T, which yields (2.32).
Denote
M = max{p(t) : t € [0,T]}. (2.33)

Then, using (2.30) and integrating (2.31), we obtain

v for t € [0, so]

ur(t) = { i ftT Jo,p(T)drds for t € [sy,T]. (2.34)

II) Assume that u(0) € [0, ). Since pg(0)u;(0) = 0, we can argue as in (I) Case
k
A with sy = 0 and derive

pmm@gﬁfmmsquwm (2.35)

Integrating this inequality and using (2.33), we have

T rs
W@Zi//p@MEEMEMH (2.36)
M Je Jo
Choose an arbitrary interval
J =la,b] C (0,T).

According to (2.7), (2.14), (2.34) and (2.36) there exists ky € N such that for
each k > kg

1 1
J C [E’T — E] and ¢, < wug(t) < Pla) for te J (2.37)

10



where
cp = mln{u—/ / T)drds}.

Step 3. A priori estimates of |pyuj| on J.
By virtue of (2.37) there exists & € (a, b) such that

ug(b) — ug(a)

Pr(&r) i (&) = — Pr(&k)
and, using (2.33) and (2.37), we have
(6 (E)| < T = m,. 239

Let max{|pg(t)u(t)| : t € [a,b]} = |pr(me)uy(me)| = Rk, > my. Then we can find
(k € |a, b] such that

1Dk (Ce)uy(Ce)| =my  and  |pp(t)up(t)| > my  fort € [min{(y, nk}, max{Ce, nx -

Assume that pg(ne)uy(ne) = Ry and ¢, > nx. By (2.9), (2.11), (2.28), (2.33),
(2.37),

(Pk (1) uj (t))
/Ck pk( )U' (t) =M

and consequently

(w(ep) + h(P(a))) /b o(t)dt +rMP(a)| = My,

a

Rr (s
< M 2.39
LJHJ_ ). (2.39)

Assume that pg(ng)uy(ne) = —Ry and (x < 1. Similarly as above we get

[ oy
Ck

—pe(t)ul(t) +1 —

which gives (2.39). Since there exists p; > 0 such that [}’ s‘fl > My, we get
Rk < PJ-

If pr(ne)uy, (k) = Ry and ( < ng or p(ne)uy(ne) = —Ry and (g > 1k, we get by
(2.28)

Ry < my + /bp(t)w(t)dt.

We can choose ,
py > my +/ p(t)y(t)dt

and then we have

@WW”SM,WWHS% for ¢ € J, (2.40)

11



where ¢; = min{p(¢) : t € J}.

Step 4. Convergence of sequences of approximate solutions and problems.
Having in mind (2.37) and (2.40) we get (2.17) and hence condition (2.18) and
the inequality

0<u(t)y<P(t) forte(0,T) (2.41)

are valid. Further we can follow Step 4 of the proof of Theorem 2.1 to obtain
(2.20) and (2.21).

Step 5. Properties of pu'.
By (2.32) and (2.35) we have py(T")u},(T) < 0. The conditions (2.14) and u (1) =
o (1) = 0 give

Uk(T) — Uk(t)
T —1

09k (T) — 09k (t)

> pi(t) T ¢

pr(t)

for t € (0,7),

which yields
—c < pp(T)uK(T) < 0. (2.42)

According to (2.13) and (2.42) we have for each k > 2
r / !
/0 Pr(8) fi (s, ur(s), pr(s)u(s))ds = —pp (T)ui(T) € (0, ],
This together with (2.28), (2.41), (2.20) yields, by the Fatou lemma, that

p(t)f(t, u(t), p(t)u'(1)) € Ls[0, T].

Therefore, by (2.21), pu’ € AC|0,T].
Step 6. Properties of u.
We will prove that u € C[0,T]. Since pu’ is continuous on [0, 7] and % is contin-
uous on (0,7], we get u € C(0,T]. It remains to prove that w is right continuous
at t = 0. Denote
lim sup u(t) = A. (2.43)

t—04
(i) Assume A < v. By (2.41) and (1.2) there is a 9 > 0 such that

u(t) € (0,v), |p(®)u'(t)| <v forte (0,d),
and so, due to (2.27), u is strictly decreasing on (0, dy). Hence

Jim u(t) = A€ (0,v),
which yields v € C[0,T.
(ii)) Assume A > wv. Then there exist ¢, € [0,7) and ¢, € (t,7] such that
u(to+) = v and u(t) < v fort € (ty,t1]. If to = 0, we get uw € C[0,7] as in (i).
Now, assume that ty > 0. Then we argue as in Step 2 and deduce t; = T'. Hence,

12



according to (1.2), we can find t* € (0,7) such that v < u(t) for ¢t € (0,t*). By
(2.8) we can find a € (0,00) such that

lim M < a.
T—>00 x

Further, by (2.3), (2.43) and (1.2), there is 6* € (0,¢*) such that

foa* zﬁ Jo p(T)p(T)drds < m; (2.44)
v<u(t)<A+1, |p)u(t)] <v forte(0,5).

| <w
Moreover, (2.27) and (2.28) yield ¢ < ¢(t)[w(v) + h(v)] for a.e. t € (0,7). Thus
for t € [0, 7]
£

0 S /Ot p(ls) [ p(ryiras < /Otﬁfosp(ﬂ@mdms,

and so, due to (2.3),

/06* ]ﬁ /Osp(T)des =" € (0,00). (2.45)

Integrating (2.28) and using (2.44) we get for t € (0,0)

¢ ¢
—p(t)u'(t) < (wv) +h(A+1))(v+1) /0 p(T)e(T)dT + 7"1/2/0 p(T)dr
and integrating this inequality once more and using (2.44) and (2.45) we have for
t e (0,0%)
1
u(t) < u(d*) + (w(v) + h(A+1)) o + rvict.
a

According to (2.43) we can choose a sequence {t,} C (0,6%), t, — 0, and u(t,) —
A. Therefore

A< u(d) + (W) + h(A+1)) 2i + e

and
L[ w@) ] (A Dh(A+)
ISZ U(5)+W+TVC‘|+ QCLA(A—FI) :F(A)

Since lim,_,o F(z) < 3, there exists A* € (0,00) such that F(z) < 1 for each
x > A*. Since F(A) > 1, we get A < A*, which means that u is bounded on
[0,7]. Due to (2.44) and (2.28)

—p(t)(t) < (PO (1) < p(t) [p()(W¥) + HA+1)) (v + 1) + 1v’]
holds for a.e. ¢t € (0,6%). If we put K} = (w(v) + h(A+1))(v+1), Ky = rv? and
integrate the above inequalities, we get on (0,0%)

1 /t , 1 1

- pTwTdTg—ut§K—/p7'g07'dT+K—/pTdT.
Due to (2.3), (2.25) and (2.45) there exists hy € L]0, 6*] such that |u'(t)| < ho(t)
for a.e. t € (0,0%). Therefore u € C[0,6*|, which completes the proof. o
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3 Examples

In Theorems 2.1 and 2.2 we assume that w € C'(0,00) is positive and nonincreas-
ing but no additional assumption about the behaviour of w near the singularity
x = 0 is required. Therefore w(z) can go to +oo for © — 04 very quickly, which
means that f(¢,z,y) can have at © = 0 a strong singularity.

Example 3.1. Let o, 7,0 € (0,00), ¢1,¢y € [0,00), 5 € [0,1],0 < 6 < min{2,60 +
1}. By Theorem 2.1 the problem

(") + 170 (cyu™ + cpu” + 1)1 = (L)])7) = 0, (3.1)
Jim "4 (t) =0, u(l)=0 (3.2)

has a positive decreasing solution.
To see this we put p(t) = ¢, p(t) = t7°, v =4, e =1-(3)7, ¢ = 1,

w(@) = c1x™+1, h(z) = ca” + 1 and f(t,2,y) =t (cra” O‘+02$6+1)(1— |?J| )-

Remark 3.2. Note that:

1. Since a can be chosen in (0,00), equation (3.1) can have both a weak
singularity at x = 0 (if we choose a € (0,1)) and a strong singularity at = = 0
(if we choose av > 1). Hence we generalize the results of [2] where only weak
singularities are admitted. See Examples 2.2 and 2.3 in [2].

2. 0 € (0,00) implies that we can choose 6 > 1 and get % ¢ L]0, 1].

3. Similarly, 0 < § < min{2,0 + 1} implies that if § > 1 we can choose
d €[1,2) and get p & L,]0,1].

4. Since B € [0,1], the function f can have for x — oo either a sublinear
growth (if § € (0,1) ) or a linear growth ( if 5 = 1) or f can be bounded for
large x (if 8 =0).

5. 7 € (0,00) yields that f can have a similar behaviour for large y as for
large x but, moreover, f can have also a superlinear growth for |y| — oo (if we
choose v > 1).

Example3.3. Let a € [0,00), 8 € [0,1], 7,0 € [1,00), § € [1,2). Denote
qt) =t 2+ (1 -8, q(t) = ﬁ + \/% and consider the equation

(') + () [(u® + uf + 1)1+t + 4(1 + t%u")?]

—t%q1 () (sin®(u + 1) + 1) = 0. (3.3)

By Theorem 2.2 the problem (3.3), (3.2) has a positive solution.

To see this we put p( ) =17 p(t) = q(t) + 2q:(t), ¥(t) =2q.(t), r =4, e = 1,
v=7zc=1wx) =2"+1 hz) =2 +1and f(t,z,y) = q(t)[(a7* + 2” +
D1 +y[+4(1+y)*] - ql(t)(81n2($ +1)+1).

14



Remark 3.4. In Example 3.1 the function f is nonnegative on the set where we
have found solutions, i.e. for t € (0,1], z € (0,00), y € [=1,0). Let us show that
in Example 3.3 the function f changes its sign. We can see that f(¢,z,—1) < 0
for t € (0,1), z € (0,00). On the other hand, for t € (0,1), z € (0,3], y € [—3, 3]
we have f(t,z,y) > 1.
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