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Abstract. Motivated by a problem arising in the theory of shallow mem-
brane caps we investigate the solvability of the singular boundary value
problem

((0)) + p(O)f (s p(e0) =0, Jixm p(e (1) =0, w(T) =0,
—
where [0,7] C R, p € C[0,T] and f = f(t,z,y) can have time singularities
at t = 0 and/or t = T and space singularities at z = 0 and/or y = 0. A
superlinear growth of f in its space variables = and y is possible. We present
conditions for the existence of solutions positive and decreasing on [0, 7).
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1. Introduction.

Let [0,7] C R = (—00,00), D C R2?. We deal with the singular mixed
boundary value problem

(1.1) (p(t)u') + p(£) f (£, u, p(t)u’) =0,
(1.2) Jim p(t)u'(£) =0, u(T) =0,

where p € C[0,T] and f satisfies the Carathéodory conditions on (0,7") x
D. Here, f can have time singularities at ¢ = 0 and/or ¢ = T and space
singularities at « = 0 and/or y = 0. We provide sufficient conditions for the

existence of solutions of (1.1), (1.2) which are positive and decreasing on
[0,T).

Let [a,b] C R, M C RZ?. Recall that a real valued function f satisfies the
Carathéodory conditions on the set [a,b] x M if

(i) f(-,z,y) : [a,b] = R is measurable for all (z,y) € M,

(ii) f(¢,-,-) : M — R is continuous for a.e. t € [a, b],
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(iii) for each compact set K C M there is a function mg € L]0, 7] such
that |f (¢, z,y)| < mg(t) for a.e. t € [a,b] and all (z,y) € K.
We write f € Car([a,b] x M). By f € Car((0,T) x D) we mean that
f € Car([a,b] x D) for each [a,b] C (0,T) and f & Car(]0,T] x D).

Definition 1.1. Let f € Car((0,7) x D).
We say that f has a time singularity at ¢ = 0 and/or at ¢ = T if there
exists (z,y) € D such that

T

[ 15wt =00 andfor [ |7(twpldt = o
0 T

—€

for each sufficiently small € > 0. The point t = 0 and/or ¢ = T" will be called
a singular point of f.
We say that f has a space singularity at z =0 and/or at y = 0 if

limsup |f(¢,z,y)] = oo for a.e. t € [0,T] and for some y € (—o0,0)
r—0+

and/or

limsup |f(¢,z,y)| = 0o for a.e. t € [0,7] and for some z € (0, 00).

y—0—

Definition 1.2. By a solution of problem (1.1), (1.2) we understand
a function u € C[0,T] N C*(0,T] with pu’ € AC|0,T] satisfying conditions
(1.2) and fulfilling

(1.3) (p(t)u' ()" + p(t) f (¢, u(t), p(t)u' (t)) =0 for a.e. t € [0,T].

The study of equations with the term (pu’)’ was motivated by a problem

arising in the theory of shallow membrane caps, namely

3

_ aot— —bot "' =0, lim t*/(t) =0, u(l) = 4,
u

3
(t3u')' + —
t—0-+

Su?

where ag > 0,bp > 0,4 >0,y > 1.

Singular mixed problem (1.1), (1.2) was studied for example in the works [1,
6] and special cases of (1.1), (1.2) were investigated in [3, 4, 5, 7]. In [2] we
can find a mixed problem with ¢-Laplacian and a real parameter. Here, we
generalize the existence results of [7] and extend those of the work [1]. We
offer new and rather simple conditions (in comparision with those in [1]),
which guarantee the existence of positive solutions of the singular problem
(1.1), (1.2) provided both time and space singularities are allowed.
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2. Approximating regular problem.

First, we will study the auxiliar regular mixed problem
(2.1) (4()u)" + h(t,u,q(t)u') =0, '(0) =0, w(T) =0,

where ¢ € C[0, 7] is positive on [0,7] and h € Car([0,T] x R?). In order to
1
]

]
prove the solvability of problem (2.1) we will modify the classical lower and
[5])-

upper functions method (see e.e. [5

Definition 2.1. A solution of the regular problem (2.1) is defined as a
function u € C’l[O T] with qu’ € AC|0,T] sastistying v'(0) = w(T) = 0 and
fulfilling (q(¢)u'(¢))" + h(t, u(t), q(t)u'(t)) = 0 for a.e. ¢t € [0,T].

) =

Definition 2.2. A function o € C[0,T] is called a lower function of

(2.1) if there exists a finite set ¥ C (0,7") such that go’ € AC;,.([0,T]\ X),
o'(t+),0'(t—) € R for each 7 € ¥,

(2.2) (q(t)o' () + h(t,o(t),q(t)o’(t)) > 0 for a.e. t €[0,T]
and
(2.3) d'(0)>0, oT)<0, o'(r—)<o'(r+) foreach T e X.

If the inequalities in (2.2) and (2.3) are reversed, then o is called an upper
function of (2.1).

Theorem 2.3. (Lower and upper functions method) Let oy and
o9 be a lower function and an upper function for problem (2.1) such that
o1 < oy on [0,T]. Assume also that there is a function ¢ € L1]0,T] such
that
(2.4)  |h(t,z,y| <(t) for a.e. t €[0,T], all x € [01(t),02(t)], ¥ € R.
Then problem (2.1) has a solution u € C*[0,T) satisfying qu’' € AC[0,T] and

(2.5) o1(t) <u(t) < oy(t) fortel0,T].

Proof. Step 1. For a.e. t € [0,T] and each z,y € R, ¢ € [0,1],7 = 1,2, put
w;(t, €) = sup{|h(t, 0i(t), q(t)oi(t)) — h(t,0:(t), )| : lg(t)oi(t) —y| < e},

h(t, 09(t),y) — wa(t, 222y — 2= g 25 5,(F)

) x—0o9 t)+1 $—0'2(t)+1
h*(t,z,y) =< h(t,z,y) t t for o1(t) < x < oo(t)
h(t, o1 (), y) +wi (8, ;40220 + 22 for 5 < o (1)

and consider the auxiliary problem

(2.6) (qt)u) + h*(t,u,q(t)u’) =0, «'(0) =0, u(T)=0.
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Define the operator F : C1[0,T] — C*[0,T] by

(2.7) (Fu)(t) = /t Tﬁ /0 "t (s, u(s), q(s)u (s))dsdr.

Solving (2.6) is equivalent to finding a fixed point of the operator F. More-
over h* € Car([0,T] x R?) and there exists 1)* € L1[0,T] such that

|h*(t,z,y)| <™ (t) for a.e. t €[0,7] and each z,y € R.

Therefore F is continuous and compact and the Schauder fixed point theorem
yields a fixed point u of F. By (2.7),

T 1 T . ,
u(t) :/t ﬁ/o h*(s,u(s),q(s)u'(s))dsdr for t € [0,T],

which implies that u is a solution of (2.6).

Step 2. We prove that u satisfies the equation in (2.1). Put v = u—o09 on
[0,T] and assume that max{v(t) : t € [0,T]} = v(ty) > 0. Since o2(T") > 0
and u(T) = 0, we can assume that ¢ty € [0,7"). Hence v'(tp) = 0 and we can
find § > 0 such that for ¢ € (to,tg + 0)

Therefore

t

0< [ (als)v'(s))ds = a(t)0' (1
to

for each ¢ € (to,to + 0), which contradicts the fact that v(¢p) is the maximal

value of v. So u < g9 on [0,7]. The inequality oy < w on [0,T] can be proved

analogously. Using the definition of h* we see that w is also a solution of

(2.1). O

3. Main result.

We are interested in positive and decreasing solutions of singular problem
(1.1), (1.2) and hence the following existence result will be proved under the
assumptions

1
(3.1) p € C[0,T], p>0on (0,7], . € L[0,T7,



Irena Rachunkovd 5

and

D = (0,00) X (—00,0), f e Car((0,T) x D),
(3.2) f can have time singularities at t =0, t =T
and space singularities at z = 0, y = 0.

Theorem 3.1. (Existence result) Let (3.1), (3.2) hold. Assume that
there exist € € (0,1), v € (0,T), ¢ € (v,00) such that

(3.3) ft, P(t),—c) =0 for a.e. t€|0,T],
(3.4) 0< f(t,z,y) forace te€[0,T], all z € (0,P(t)], y € [—¢,0),

3.5)  e< f(t,z,y) forace tel0,v], allz € (0,P(t)], ye [-r0),

P(t)zc/tT]%.

Then problem (1.1), (1.2) has a positive decreasing solution u € C[0,T] with
pu' € AC[0,T] satisfying

where

(3.6) 0 <u(t) < P(t), —c<p(t)u'(t) <0 forte (0,T).

Proof. Let k € N, where N is the set of all natural numbers and let k£ >

3
T-
Step 1. Approzimate solutions. For z,y € R put

P(t) if x> P(t)

ag(z) = z if §<z<P(t)
% if z <%
and
—% it y> —%
Prly)=q v if  —e<y<-—p,
—c if y < —c
and
€ if Yy > —v
y) = el if —ec<y<-v.

0 if y< —c
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For a.e. t € [0,7] and z,y € R define

() if  tel0,f)
fk(taxay) = f(t’ ak(a“)aﬂk(y)) if te [%’T - %]
0 if  te(T-¢,T)

and
{ max{p(t),p(2)} if te€[o, i)
pr(t) =

p(t) it telgT]
Then pyfr, € Car([0,T] x R?) and there is 9 € L]0, 7] such that
(3.7) Pk (t) fe(t, z,y)| < Pp(t) for ae. t €[0,7], all z,y € R.
We have got a sequence of auxiliary regular problems
(3.8) (P ()u)" + pi(t) fio(t, u, i (t)u') = 0, w'(0) =0, w(T) =0,

forkEN,kZ%.Put

o1(t) =0, o9 (t) = c/tT for t € [0,T7].

pr(s)
Then py(t)o, (t) = —c for ¢ € [0,T7] and conditions (3.3) and (3.4) yield

pk(t)fk(ta07 0) > Oa pk(t)fk(t7 02k(t)’ _C) =0 forae te [O’T]

Hence 0, and oy are lower and upper functions of (3.8). By Theoremm 2.3
problem (3.8) has a solution uy € C'[0,T] satisfying

(3.9) 0 < ug(t) < og(t) fort e [0,T].
Note that since py € C[0,T] is positive on [0,T], we have oo, € C'[0,T.
Step 2. A priori estimates of approzimate solutions. The conditions (3.9)

and ug (1) = o9,(T) = 0 give

Uk(sz : ;tk(t) > pe() 02k(T12 : ;fzk(t) 7

Pr(t)

which yields pg (T")uj, (1) > pr(T')oly;, (T') = —c. Further, by (3.8), pr(0)u} (0) =
0. Since pyuj, is nonincreasing on [0, 7], we have proved

(3.10) —c < pr(t)uy(t) <0 on [0,T].
Due to pg(0)u}.(0) = 0, there is ¢ € (0,7 such that

—v < pp(t)uy(t) <0 for t € [0,
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If tx, > v, we get by (3.5)

pr(t)uy(t) < —e /Otp(s)ds for t € [0, v].

Assume that ¢, < v and pg(t)u)(t) < —v for t € (¢, v]. Then

t
(8l () < —¢ / p(s)ds for t € [0, 1]
0
and, since —v < —¢t for ¢t € (tx,v], we get
pr(t)up(t) < —et for t € (tg,v].
Choose an arbitrary compact interval [a,T] C (0,7 and denote

m = min{p(t) : t € [a, T}, M =max{p(t):te€a,T]},

d = min{a, v, /Oa p(s)ds, /pr(s)ds}.

Using the fact that pyuj, is nonincreasing on [0, 7] we obtain by (3.10) and
the above inequalities —c < py(t)uj(t) < —ed for ¢t € [a,T] and hence, for
each sufficiently large k, we get

d
(3.11) —%gu;(t)g—% for ¢ € [a,T]
and

ed c
12 T <ut) < (T-0E fortelaT).
312 T <ul) <@ -5 fortefe]

Step 3. Convergence of a sequence of approximate solutions. Consider
the sequence {uy}. Choose an arbitrary compact interval J C (0,7'). By
virtue of ( 3.11) and (3.12) there is k; € N such that foreach k € N, k > k;

A <ugt) <ky, —kj <ul(t) < -1,
(3.13) { ks g ks

—c < pr(t)u(t) < —% for t € J,
and hence there is ) € L;(J) such that

(3.14) [P (8) it un (£), PO ()] < $(t) e on .

Using conditions (3.13), (3.14) we see that the sequences {uy} and {pyu} }
are equibounded and equicontinuous on J. Therefore by the Arzela-Ascoli
theorem and the diagonalization principle we can choose v € C'(0,7) and a
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subsequences of {u;} and of {pyu)} which we denote for the simplicity in
the same way such that

(3.15) klim ug = U, klim pruy, = pu’  locally uniformly on (0,7).
—00 —00

Having in mind (3.9), (3.10), (3.13) and the fact that

(3.16) kli_}rglopk(t) = p(t), kli)rglo o9k(t) = P(t) forte[0,T]

we get (3.6).
Step 4. Conwvergence of a sequence of approxzimate problems. Choose an
arbitrary £ € (0,7') such that

f(&,-,-) is continuous on (0,00) X (—00,0).

There exists a compact interval Je C (0,T) with £ € J¢ and, by (3.13), we
can find k¢ € N such that and for each k > k¢

1 1 1

1
ug(§) > ke pr(&)uy (&) < e Je C [E’T_ E]'

Therefore

Fi(&,ur (), pre(§)ur (€)) = f(& ur(§), pr(§)ur(€))
and, due to (3.15), (3.16), we have for a.e. t € (0,7")

(B17) T p(o) itk (6, pi (1) () = p(0) (1, (0), p(0) ().

Choose an arbitrary s € (0,7"). Then there exists a compact interval Jy C
(0,T) containing s and (3.14) holds for J = J; and for all sufficiently large
k. By virtue of (3.8) we get

Dk <g) uj, (%) — pr(s)uy(s) = /;pk(T)fk(T, wi (1), pe (7Yl (7))

Letting & — oo and using (3.14)-(3.17) and the Lebesgue convergence the-
orem on Jy we get for an arbitrary s € (0,7)

319 p(5)u (3) P = [, PO ulr)plr (7).

2

Step 5. Properties of u and pu'. By virtue of (3.18) we have pu’ €
AC):(0,T) and

(3.19) (M)A ®)) +pt)f(t,ut),pt)d () =0 for ae. t € (0,T).
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According to (3.8) and (3.10) we have for each k > 2

/OTpk(S)fk(s,Uk(S),pk(S)uz(S))ds = —pe(T)up(T) < ¢,

which together with (3.4), (3.6) and (3.17) yield, by the Fatou lemma, that
p(t) f(t,u(t),p(t)u’(t)) € L1[0,T]. Therefore, by (3.19), pu’ € AC[0,T].
Denote v = pu'. Since v € C[0,T], we have by (3.1) that ' € L1[0,7] and
consequently u € C[0,T] N C1(0,T].

Further for each k > 2 and ¢ € (0,T)

[P (8 (2)] < /Ot [Pk (8) fie (5, un (5), Pr(s)ug(s) — p(s)f (s, u(s)p(s)u'(s))|ds

+ [ D)1 ute), Pl () s
and . .
ue(®] < [ k(o) = ()lds + [ o' (s)lds.
Hence, by (3.15) and (3.17),
Ve >0 30 >0Vt e (0,0) Iky = ki(e,t) € N :

|(pu") ()] < (pu')(8) = (Pry g, ) (O] + | (Pry uk, ) (2)] <€

and
Ve>030>0Vte (T —0,T) kg = ko(e,t) € N :

u(B)] < Ju(t) = ury (B)] + |ug, ()] <e.
This implies

(3.20) w(T) = lim u(t) =0, (pu)(0) = lim (pu)(t) = 0.

a
Remark 3.2. By virtue of (3.20) there is a point #y € (0,7"] such that

u(t) < P(t), —c<p(t)u'(t) fortel0,ty).

Ezample. Let a,y € (0,00), B € [0,00), 8 € (0,1). By Theorem 3.1 the
problem

tu) + (™ +u? + 1)(1 = (%)) = 0,

: 0,1 _ —
tgr(ﬁt uw(t) =0, wu(l)=0,
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has a solution u € C[0, 1] satisfying t’u’ € AC[0,1] and

1— tl—@

o —1<t%/(t) <0 forte (0,1).

0 <u(t) <

, e=1-(3)7 and f(t,z,y) =

D=

To see this we put p(t) =t’, c =1, v =
(@ +a” +1)(1 = (=y)).
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