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Abstract

This paper investigates discrete boundary value problems (BVPs) involving second-
order difference equations and two-point boundary conditions. General theorems
guaranteeing the existence and uniqueness of solutions to the discrete BVP are es-
tablished. The methods involve a sufficient growth condition to yield an a priori
bound on solutions to a certain family of discrete BVPs. The a priori bounds on
solutions to the discrete BVP do not depend on the step-size and thus there are no
“spurious” solutions. It is shown that solutions of the discrete BVP will converge to
solutions of ordinary differential equations.
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1 Introduction

The field of difference equations occupies a central and growing area in modern applicable
analysis. The interest in studying difference equations has been created, and is sustained,
by two main factors:

1. due to the theory’s significant and diverse modelling applications to almost all areas
of science, engineering and technology where discrete phenomena abound;

2. from the advent and rise of computers, where differential equations are solved by
employing their approximative difference-equation formulations.

Thus the need for, and interest in, scientific advancements in the area is naturally moti-
vated.

This paper investigates the following discrete boundary value problem (BVP) involving
second-order difference equations and two-point boundary conditions:

∆∇yk

h2
= f(tk, yk,

∆yk

h
), k = 1, . . . , n− 1,(1.1)

y0 = A, yn = B,(1.2)

where: f is a continuous, scalar-valued function; the step size is h = N/n with N a
positive constant and n ≥ 2; the grid points are tk = kh for k = 0, . . . , n; and A, B are
given constants in R. The differences are given by:

∆yk =

{
yk+1 − yk, for k = 0, . . . , n− 1,
0, for k = n;

∆∇yk =

{
yk+1 − 2yk + yk−1, for k = 1, . . . , n− 1,
0, for k = 0 or k = n.

This paper addresses three points of interest regarding the discrete BVP (1.1), (1.2):

• Under what conditions does the discrete BVP (1.1), (1.2) have at least one solution?

• Under what conditions does the discrete BVP (1.1), (1.2) have a unique solution?

• In what sense, if any, will the above solutions to (1.1), (1.2) approximate solutions
to the continuous BVP

y′′ = f(t, y, y′), t ∈ [0, N ],(1.3)

y(0) = A, y(N) = B?(1.4)

Particular significance in these points lie in the fact that when a BVP is discretized,
strange and interesting changes can occur in the solutions. For example, properties such
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as existence, uniqueness and multiplicity of solutions may not be shared between the “con-
tinuous” differential equation and its related “discrete” difference equation [1, p.520].

A major problem in the numerical approximation of solutions to ordinary differential
equations are the existence of “spurious solutions” generated by the approximative differ-
ence equation [3, p.417]. These types of solutions do not correspond to any of the solutions
to the original differential equation as h → 0. It is desirable to eliminate such irrelevant
solutions, if possible.

Sufficiently motivated, the paper is organised as follows.
In Section 2, a general theorem guaranteeing the existence of at least one solution to

(1.1), (1.2) is established. The method involves a sufficient growth condition on |f(t, u, v)|
in |u| and |v| to yield an a priori bound on solutions to a certain family of discrete BVPs.
Topological ideas involving homotopy theory and the non-zero property of Brouwer degree
are then applied to yield the existence of at least one solution. Next, a theorem is presented
that employs a Lipschitz-type condition on f , ensuring that (1.1), (1.2) will have a unique
solution.

In Section 3 the a priori bound results from Section 2 are applied to show that solutions
to the discrete BVP (1.1), (1.2) will converge to solutions of the continuous BVP (1.3),
(1.4). The a priori bounds on solutions to the discrete BVP do not depend on the step-size
and thus there are no spurious solutions. Some examples are presented to illustrate the
theory.

For recent and classical results on difference equations and their comparison with dif-
ferential equations, including existence, uniqueness and spurious solutions, the reader is
referred to: [1]-[8], [10]-[16].

A solution to problem (1.3) is a twice continuously differentiable function y = y(t) that
satisfies (1.1) for all t ∈ [0, N ].

A solution to problem (1.1) is a vector y = (y0, . . . , yn) ∈ Rn+1 satisfying (1.1) for
k = 1, . . . , n− 1.

2 Existence and Uniqueness of Solutions

In this section some new existence and uniqueness results for solutions to (1.1), (1.2).
Our first result involves a sublinear growth condition on |f(t, u, v)| in |u| and |v|.

Theorem 2.1 Let f be continuous on [0, N ] × R2 and let α, β and K be non-negative
constants. If there exist c, d ∈ [0, 1) such that

(2.1) |f(t, u, v)| ≤ α|u|c + β|v|d + K, ∀(t, u, v) ∈ [0, N ]× R2,

then the discrete BVP (1.1), (1.2) has at least one solution.

Proof The BVP (1.1), (1.2) is equivalent to the summation equation

(2.2) yk = −h
n−1∑
i=1

G(tk, si)f(si, yi,
∆yi

h
) + φ(tk), k = 0, . . . , n,
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where G(t, s) is the Green’s function for the following discrete BVP

∆∇yk

h2
= 0, k = 1, . . . , n− 1,

y0 = 0, yn = 0,

and is given explicitly by

0 ≤ G(t, s) =
1

N


t(N − s), for 0 ≤ t ≤ s ≤ N,

(N − t)s, for 0 ≤ s ≤ t ≤ N ;
(2.3)

and φ is the unique solution to the BVP

∆∇yk

h2
= 0, k = 1, . . . , n− 1,

y0 = A, yn = B,

which is given explicitly by

φ(tk) =
A

N
(N − tk) +

B

N
tk, k = 0, . . . , n.

Consider the operator T : Rn+1 → Rn+1 given by

Tk(y) = −h
n−1∑
i=1

G(tk, si)f(si, yi,
∆yi

h
) + φ(tk), k = 0, . . . , n.

Thus we want to show that there exists at least one y ∈ Rn+1 such that

Ty = y.

To do this, introduce the family of mappings

Hλ = I − λT, λ ∈ [0, 1],

where I is the identity operator and consider

(2.4) Hλ(y) = 0, λ ∈ [0, 1].

We show that Hλ(y) 6= 0 for all λ ∈ [0, 1] and all y ∈ ∂BR, for some suitable ball
BR ∈ Rn+1. Let us choose a λ ∈ [0, 1] and let y be a solution to the problem (2.4) with
this λ. Consider the equivalent summation formulation

(2.5) yk = −h

n−1∑
i=1

G(tk, si)λf(si, yi,
∆yi

h
) + λφ(tk), k = 0, . . . , n, λ ∈ [0, 1],
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where G and φ are given above. Then, for k = 0, . . . , n− 1, we get∣∣∣∣∆yk

h

∣∣∣∣ =

∣∣∣∣∣−
n−1∑
i=1

[∆G(tk, si)]λf(si, yi,
∆yi

h
) + λ

∆φ(tk)

h

∣∣∣∣∣
≤

n−1∑
i=1

|∆G(tk, si)|
∣∣∣∣f(si, yi,

∆yi

h
)

∣∣∣∣+ ∣∣∣∣∆φ(tk)

h

∣∣∣∣
≤

n−1∑
i=1

|∆G(tk, si)|

[
α|yi|c + β

∣∣∣∣∆yi

h

∣∣∣∣d + K

]
+

∣∣∣∣∆φ(tk)

h

∣∣∣∣ .(2.6)

Put

ρ = max
k∈{0,...,n−1}

∣∣∣∣∆yk

h

∣∣∣∣ , P = max
k∈{0,...,n}

|φ(tk)|.

Then maxk∈{0,...,n} |yk| ≤ ρ + P . Further

(2.7)

∣∣∣∣∆φ(tk)

h

∣∣∣∣ =
|B − A|

N
, for k = 0, . . . , n,

and

(2.8)
n−1∑
i=1

|∆G(tk, si)| =
h2

N

(
k∑

i=1

i +
n−1∑

i=k+1

(n− i)

)
≤ N

2
, k = 0, . . . , n− 1.

Therefore if we take the maximum in (2.6), we obtain

ρ ≤ N

2

[
α(ρ + P )c + βρd + K

]
+
|B − A|

N

and so

ρ + P ≤ N

2

[
α(ρ + P )c + β(ρ + P )d + K

]
+
|B − A|

N
+ P.

Hence

1 ≤ N

2

[
(α(ρ + P )c−1 + β(ρ + P )d−1

]
+

(
KN

2
+
|B − A|

N
+ P

)
ρ−1 = g(ρ).

Since limρ→∞ g(ρ) = 0, there exists Q > 0 such that

(2.9) max
k∈{0,...,n−1}

|yk| < Q, max
k∈{0,...,n}

∣∣∣∣∆yk

h

∣∣∣∣ < Q.

Define the open ball Ω ⊂ Rn+1 by

Ω =

{
y ∈ Rn+1 : |yk| < Q, k = 0, . . . , n,

∣∣∣∣∆yk

h

∣∣∣∣ < Q, k = 0, . . . , n− 1

}
.
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The continuity of f implies that T : Ω → Rn+1 is a continuous map. According to (2.9) we
see that for an arbitrary λ ∈ [0, 1] there are no solutions to (2.4) (with this λ) belonging
to ∂Ω. Hence the following Brouwer degrees are defined and are independent of λ ∈ [0, 1]
and thus a homotopy principle is applicable [9, Chap.3]. Since 0 ∈ Ω, we get

dB(Hλ, Ω,0) = dB(I − λT, Ω,0) = dB(H0, Ω,0) = d(I, Ω,0) = 1.

Therefore, by the non-zero property of Brouwer degree, there exists at least one solution
y ∈ Ω to (2.4) for each λ ∈ [0, 1]. For λ = 1 see that (2.4) is equivalent to (1.1), (1.2) and
thus the result follows. 2

The next theorem allows |f(t, u, v)| to grow linearly in |u| and |v| and thus may apply
to certain problems where Theorem 2.1 may be inapplicable.

Theorem 2.2 Let f be continuous on [0, N ] × R2 and let α, β and K be non-negative
constants. If

(2.10) |f(t, u, v)| ≤ α|u|+ β|v|+ K, ∀(t, u, v) ∈ [0, N ]× R2, and

(2.11)
αN2

8
+

βN

2
< 1,

then the discrete BVP (1.1), (1.2) has at least one solution.

Proof We argue as in the proof of Theorem 2.1 and derive (2.5). Taking the absolute value
in (2.5) and using (2.10) we obtain

(2.12) |yk| ≤ h
n−1∑
i=1

G(tk, si)

[
α|yi|+ β

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+ |φ(tk)|, k = 0, . . . , n

and

(2.13)

∣∣∣∣∆yk

h

∣∣∣∣ ≤ n−1∑
i=1

|∆G(tk, si)|
[
α|yi|+ β

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+

∣∣∣∣∆φ(tk)

h

∣∣∣∣ .
Further we have

(2.14) h

n−1∑
i=1

G(tk, si) =
tk
2

(N − tk) ≤
N2

8
, k = 0, . . . , n,

and

(2.15) |φ(tk)| ≤ max{|A|, |B|}, k = 0, . . . , n.

Now, by (2.12), (2.14) and (2.15),

max
k∈{0,...,n}

|yk| ≤
N2

8

[
α max

i∈{1,...,n−1}
|yi|+ β max

i∈{1,...,n−1}

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+ max{|A|, |B|},
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and by (2.13), (2.8) and (2.7),

max
k∈{0,...,n}

∣∣∣∣∆yk

h

∣∣∣∣ ≤ N

2

[
α max

i∈{1,...,n−1}
|yi|+ β max

i∈{1,...,n−1}

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+
|B − A|

N
.

Denote

max
k∈{0,...,n}

|yk| = ρ, max
k∈{0,...,n−1}

∣∣∣∣∆yk

h

∣∣∣∣ = σ.

Then we get

ρ ≤ N2

8
[αρ + βσ + K] + max{|A|, |B|}, N

4
σ ≤ N2

8
[αρ + βσ + K] +

|B − A|
4

.

Therefore

max{ρ,
N

4
σ}
(

1−
(

αN2

8
+

βN

2

))
<

KN2

8
+ max{|A|, |B|}+

|B − A|
4

,

which implies by (2.11) that (2.9) holds with

(2.16) Q =

(
1 +

N

4

)
KN2/8 + max{|A|, |B|}+ |B − A|/4

αN2/8 + βN/2
.

Now, the rest of the proof follows that of Theorem 2.1.
2

Corollary 2.3 If f is continuous and bounded on [0, N ] × R2 then the BVP (1.1), (1.2)
has at least one solution.

Proof The result follows from Theorem 2.1 for c = d = 0. 2

The following theorem gives us conditions for the existence of a unique solution to (1.1),
(1.2) and may be considered as a discrete version of [4, Chap. XII, Theorem 4.1], where
the uniqueness of solutions to (1.3), (1.4) were established.

Theorem 2.4 Let f be continuous on [0, N ] × R2 and let α, β be non-negative constants
satisfying (2.11). If

(2.17) |f(t, u, v)− f(t, ũ, ṽ)| ≤ α|u− ũ|+ β|v − ṽ|, ∀t ∈ [0, N ], u, ũ, v, ṽ ∈ R,

then the discrete BVP (1.1), (1.2) has a unique solution y satisfying (2.9), where Q is
given by (2.16) and K = maxt∈[0,N ] |f(t, 0, 0)|.

Proof See that (2.17) implies that

|f(t, u, v)| ≤ α|u|+ β|v|+ |f(t, 0, 0)|, ∀(t, u, v) ∈ [0, N ]× R2

and thus (2.10) holds. By virtue of (2.11) we have the existence of at least one solution
by Theorem 2.2.
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Now consider two possible solutions to (1.1), (1.2) given by y and ỹ and let z = y− ỹ.
Now z must satisfy the BVP

∆∇zk

h2
= f(tk, yk,

∆yk

h
)− f(tk, ỹk,

∆ỹk

h
), k = 0, . . . , n− 1,(2.18)

z0 = 0, zn = 0.(2.19)

Rearranging (2.18), (2.19) into an equivalent summation equation, taking absolute values
and using (2.10) as in the proof of Theorem 2.2 we obtain

(2.20) |zk| ≤ h
n−1∑
i=1

G(tk, si)

[
α|zi|+ β

∣∣∣∣∆zi

h

∣∣∣∣] , k = 0, . . . , n,

and

(2.21)

∣∣∣∣∆zk

h

∣∣∣∣ ≤ n−1∑
i=1

|∆G(tk, si)|
[
α|zi|+ β

∣∣∣∣∆zi

h

∣∣∣∣] , k = 0, . . . , n− 1.

Multiplying (2.21) by N/4 and using (2.14) in (2.20) and (2.8) in (2.21) we derive

max

{
|zk|,

N

4

∣∣∣∣∆zk

h

∣∣∣∣}(1−
(

αN2

8
+

βN

2

))
≤ 0

and since (2.11) holds we must have |zk| = 0 for k = 0, . . . , n. Thus, the solution is unique.
2

Remark 2.5 Note that the conditions in Theorems 2.1, 2.2 and 2.4 do not involve any
restrictions on the step-size h (apart from the assumption that h ≤ N/2 which is made so
that the problem is well-defined). Thus the conclusions of these theorems apply to those
discrete BVPs which do not arise as approximations to continuous BVPs, for example, the
case h = 1.

Remark 2.6 Note that the the conditions in Theorems 2.1, 2.2 and 2.4 also guarantee
the existence and uniqueness of solutions to (1.3), (1.4).

3 Convergence of Solutions

In this section the results of Section 2 are applied to formulate some convergence theorems.
The following result is restated version of [7, Lemma 9.2] (see also [3, pp.414–415]).

Lemma 3.1 Let n0 and C be positive constants. Assume that the discrete BVP (1.1),
(1.2) has a solution yn = (yn

0 , . . . , yn
n) for n ≥ n0 and that the condition

(3.1) n|∆yn
k | ≤ C, k = 0, . . . , n− 1, n ≥ n0
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is sastisfied. Then there is a subsequence {yni} and a solution y to (1.3), (1.4) such that

(3.2) lim
i→∞

max
0≤t≤ni

|yni
k − y(Nt/ni)| = 0.

In addition, if it is known that (1.3), (1.4) has at most one solution, then the original
sequence {yn} will converge to y in the above sense.

Proof Choose an arbitrary fixed n ≥ n0 and put

(3.3) zk = yn
k −

A

N
(N − tk)−

B

N
tk, k = 0, . . . , n.

Then z0 = zn = 0 and by (3.1)

n|∆zk| ≤ C + |B − A| = D, k = 0, . . . , n− 1, n ≥ n0.

Therefore

|zk| ≤ |∆zk−1|+ |zk−1| ≤
D

n
+

k − 1

n
D =

kD

n
, for k = 1, . . . , n− 1.

We see that

|yk| ≤ C + |B − A|+ max{|A|, |B|}, k = 0, . . . , n, n ≥ n0.

Now, the assertion follows from [7, Lemma 9.2]. 2

The following two theorems answer the third question from the Introduction concerning
the convergence of solutions for the discrete problem.

Theorem 3.2 Let the assumptions of Theorem 2.4 hold. Then the discrete problem (1.1),
(1.2) has a unique solution yn for each n ≥ 2 and the relevant continuous problem (1.3),
(1.4) has a unique solution y that satisfies

(3.4) lim
n→∞

max
0≤t≤n

|yn
k − y(Nt/n)| = 0.

Proof Since the conditions of Theorem 2.4 hold, the unique solution to (1.1), (1.2) satisfies
(2.9) for each n ≥ 2, which means that the condition (3.1) of Lemma 3.1 is fulfilled.
Moreover, by [4, Chap. XII, Theorem 4.1], the continuous problem (1.3), (1.4) has a
unique solution because α and β in (2.17) satisfy (2.11). Therefore, by Lemma 3.1, the
convergence in (3.4) holds. 2

Theorem 3.3 Let the assumptions of Theorem 2.1 or Theorem 2.2 hold. Then the discrete
problem (1.1), (1.2) has a solution yn for each n ≥ 2 and the relevant continuous problem
(1.3), (1.4) has a solution y that satisfies (3.2).

Proof Since the conditions of Theorem 2.1 or Theorem 2.2 hold, problem (1.1), (1.2) has
a solution yn satisfying (2.9) for each n ≥ 2. So, the condition (3.1) of Lemma 3.1 holds
and the result follows from there. 2
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Example 3.4 Consider the discrete BVP

∆∇yk

h2
= a(tk)|yk|csign yk + b(tk)

∣∣∣∣∆yk

h

∣∣∣∣d + g(tk), k = 0, . . . , n− 1,(3.5)

y0 = A, yn = B,(3.6)

where a, b, g are continuous functions on [0, N ] and c, d ∈ [0, 1).
Then, by Theorem 2.1, problem (3.5), (3.6) has at least one solution yn for each n ≥ 2.

By Theorem 3.3 there is a solution y to the relevant continuous problem

y′′ = a(t)|y|csign y + b(t)|y′|d + g(t), t ∈ [0, N ],

y(0) = A, y(N) = B,

such that (3.2) holds for some sequence {yni} of solutions of (3.5), (3.6). 2

Example 3.5 Consider the discrete equation

∆∇yk

h2
= a(tk)yk + b(tk)

∆yk

h
+ g(tk), k = 0, . . . , n− 1,(3.7)

y0 = A, yn = B,(3.8)

where a, b, g are continuous functions on [0, 1]. If

max
t∈[0,1]

|a(t)|+ 4 max
t∈[0,1]

|b(t)| < 8,

then by Theorem 2.4 problem (3.7), (3.8) has a unique solution yn for each n ≥ 2. In
addition there is a unique solution y to the relevant continuous problem

y′′ = a(t)y + b(t)y′ + g(t), y(0) = A, y(1) = B,

and by Theorem 3.2 the convergence in (3.4) holds.
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