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Abstract

This paper deals with second order nonlinear boundary value problems. We
suppose the existence of upper and lower solutions of the problems which are well
ordered, i.e. the lower solution is less than the upper one, and we also consider
the case of upper and lower solutions having the opposite ordering. We prove the
relation between the topological degree and strict upper and lower solutions in both
cases and using this we get the existence and multiplicity results for the boundary
value problems under consideration.

1 Introduction

When we study boundary value problems for the second order differential equation

x′′ = f(t, x, x′), (1)

with certain linear or nonlinear boundary conditions on the compact interval J = [a, b] ⊂
R we often use the properties of lower and upper solutions for (1). Let us remind the
definition.

Definition 1.1. Let f be continuous on J ×R2 (or let f satisfy the Carathéodory condi-
tions on J ×R2 ). The functions σ1, σ2 ∈ C2(J) (or AC1(J) ) are called lower and upper
solutions for (1), if they satisfy

σ′′
1(t) ≥ f(t, σ1(t), σ

′
1(t)), (2)

σ′′
2(t) ≤ f(t, σ2(t), σ

′
2(t)),

for all t ∈ J ( for a.e. t ∈ J). If the inequalities in (2) are strict, then σ1, σ2 are called
strict lower and upper solutions.

We distinguish two basic cases:
1. The functions σ1, σ2 are well ordered, i.e.

σ1(t) ≤ σ2(t) for all t ∈ J. (3)
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2. The functions σ1, σ2 are not well ordered, i.e. the condition (3) fails.
Most existence results concern the first case, but there are existence results for the

second case, as well. We can refer to the papers [5], [2] or [3].
Here, we want to present existence and multiplicity results for (1) (with various bound-

ary conditions) in the first case and also in the second case where σ1, σ2 have the opposite
order, i.e.

σ2(t) ≤ σ1(t) for all t ∈ J. (4)

Our results are based on the relation between the topological degree of the operator
corresponding to the boundary value problem and strict lower and upper solutions fulfilling
(3) or (4) (in the strict sense).

For getting the existence and multiplicity results we need a priori estimates of solutions
of the original boundary value problem or of solutions of proper auxiliary boundary value
problems. Working with σ1, σ2, we want to estimate the solutions just by σ1, σ2. For the
estimation at the endpoints a, b of J we use certain connection between σ1, σ2 and the
boundary conditions. It is well known that for the classical two-point boundary conditions
such connection has the form:

• for the periodic conditions

x(a) = x(b), x′(a) = x′(b), (5)

we suppose
σi(a) = σi(b), (σ

′
i(b)− σ′

i(a)) (−1)i ≥ 0, i = 1, 2; (6)

• for the Neumann conditions

x′(a) = 0, x′(b) = 0, (7)

we assume
σ′

i(a)(−1)i ≤ 0, σ′
i(b)(−1)i ≥ 0, i = 1, 2. (8)

Similarly,

• for the four-point conditions

x(a) = x(c), x(d) = x(b), a < c ≤ d < b, (9)

σ1, σ2 have to satisfy

(σi(c)− σi(a)) (−1)i ≤ 0, (10)

(σi(b)− σi(d)) (−1)i ≥ 0, i = 1, 2,
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• for the nonlinear conditions

g1 (x(a), x′(a)) = 0, g2 (x(b), x′(b)) = 0, (11)

where g1, g2 ∈ C(R2) are increasing in the second argument, we can impose on σ1, σ2

g1 (σi(a), σ′
i(a)) (−1)i ≤ 0, (12)

g2 (σi(b), σ
′
i(b)) (−1)i ≥ 0, i = 1, 2.

Let us note that for more general nonlinear boundary conditions the compatibility of
the boundary conditions with σ1, σ2 was introduced in [11]. For the special cases of the
conditions (5), (7) and (11) this notion leads just to the assumptions (6), (8) and (12).

In this paper we will study the boundary value problems (1),(k), and we will assume the
existence of lower and upper solutions σ1, σ2 of (1) with the property (k+1), k∈{5,7,9,11}.
We will consider the classical case of f continuous on J×R2, here. The case of f satisfying
the Carathéodory conditions will be considered in the next paper.

The problem (1),(k), k∈{5,7,9,11}, can be written in the form of the operator equation

(L + N) x = 0, (13)

where L : domL → Y is a linear operator and it is a Fredholm map of index 0, and
N : C1(J) → Y is, in general, nonlinear and it is L−compact on any open bounded set
Ω ⊂ C1(J). The form of L and N and the choice of the spaces domL and Y depend on
the type of boundary value problems. Here we put for k∈{5,7,9} domL = {x ∈ C2(J) : x
satisfies (k)}, Y = C(J), L : x 7−→ x′′, N : x 7−→ −f(·, x(·), x′(·)); for the boundary
condition (11) we put domL = C2(J), Y = C(J) × R2, L : x 7−→ (x′′, 0, 0), N : x 7−→
(−f(·, x(·), x′(·)), g1(x(a), x′(a)), g2(x(b), x′(b))) . For more details see [1], [6], [7].

If the equation (13) has no solution on the boundary of Ω then there exists the degree
of the map L + N in Ω with respect to L

dL(L + N, Ω).

In [4], the relation between the degree and strict lower and upper solutions satisfying (3)
(in the strict sense) is shown. In the following section we will formulate and prove this
relation for the above boundary value problems.

2 Well ordered lower and upper solutions

For the simplicity we will suppose that f is bounded:

∃M ∈ (0,∞) : |f(t, x, y)| < M for ∀(t, x, y) ∈ J ×R2. (14)

For f unbounded we can use the method of a priori estimates and replace the condition
(14) by conditions of the growth or sign types. For such results see the papers [8], [9] and
[10].

3



Theorem 2.1. Suppose k∈{5,7,9,11}. Let (14) be fulfilled, (13) be the operator equation
corresponding to the problem(1),(k) and let σ1, σ2 be strict lower and upper solutions of
(1),(k) with

σ1(t) < σ2(t) for all t ∈ J.

Then
dL(L + N, Ω1) = 1, (15)

with

Ω1 = {x ∈ C1(J) : σ1(t) < x(t) < σ2(t), |x′(t)| < c

for all t ∈ J},
where c ≥ (2M + r + 1)(b− a) for k ∈ {5, 7, 9}

and c ≥ (2M + r + 1)(b− a) + 2(r + 1)/(b− a) for k=11,

r = ‖ σ1 ‖max + ‖ σ2 ‖max .

In the proof we will need the following two lemmas which concern the case of constant
lower and upper solutions −r, r for the problems (1),(k), k∈{5,7,9,11}.

Lemma 2.2. Consider the problem (1),(k), k∈{5,7,9} and the corresponding equation
(13). Let (14) be fulfilled and let there exists r ∈ (0,∞) such that

f(t,−r, 0) < 0, f(t, r, 0) > 0 for all t ∈ J. (16)

Then
dL(L + N, Ω2) = 1,

where
Ω2 = {x ∈ C1(J) : |x(t)| < r, |x′(t)| < c, for all t ∈ J},

with c ≥ (M + r)(b− a).

Proof. Let us put
f̃(t, x, y, λ) = λf(t, x, y) + (1− λ)x

for λ ∈ [0, 1]. Consider the parameter system of equations

x′′ = f̃(t, x, x′, λ), λ ∈ [0, 1],

with the boundary conditions (k), k∈{5,7,9}, and the corresponding operator equations

Lx + Ñ(x, λ) = 0, (17)

where

domL = {x ∈ C2(J) : x fulfils (k)},
L : domL → C(J), x 7−→ x′′,

Ñ(·, λ) : C1(J) → C(J), x 7−→ −f̃(·, x(·), x′(·), λ).
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Let us show that no solution of (17) for λ ∈ [0, 1] and k∈{5,7,9} lies on ∂Ω2. Suppose on the
contrary that for some λ ∈ [0, 1] and for some solution u ∈ Ω̄2 of (17) there exists t1 ∈ J
such that max{u(t) : t ∈ J} = u(t1) = r. Then u′(t1) = 0, u′′(t1) ≤ 0 and, simultaneously
u′′(t1) = λf(t1, r, 0) + (1 − λ)r > 0, a contradiction. Supposing min{u(t) : t ∈ J} = −r,
we can argue similarly. Moreover, from (k) and (14) it follows

|u′(t)| < (M + r)(b− a) for all t ∈ J.

Therefore the degree dL(L+ Ñ(·, λ), Ω2) is well defined for all λ ∈ [0, 1]. By the invariance
of the degree under a homotopy we get

dL(L + Ñ(·, 0), Ω2) = dL(L + Ñ(·, 1), Ω2).

Since Lx + Ñ(x, 0) = x′′ − x, we get

dL(L + Ñ(·, 0), Ω2) = 1.

From the equality Ñ(·, 1) = N the assertion of Lemma 2.2 follows. ♦

Lemma 2.3. Consider the problem (1),(11) and the corresponding equation (13). Let f
satisfy the assumptions of Lemma 2.2 and moreover (according to (12))

g1(−r, 0) ≥ 0, g1(r, 0) ≤ 0,
g2(−r, 0) ≤ 0, g2(r, 0) ≥ 0.

}
(18)

Then
dL(L + N, Ω3) = 1,

where
Ω3 = {x ∈ C1(J) : |x(t)| < r, |x′(t)| < c for all t ∈ J}

with c ≥ (M + r)(b− a) + 2r/(b− a).

Proof. We can follow the proof of Lemma 2.2 with this small modification: we put

g̃i(x, y, λ) = λgi(x, y) + (1− λ)x(−1)i, i = 1, 2,

domL = C2(J),

L : domL → C(J)×R2, x 7−→ (x′′, 0, 0),

Ñ(·, λ) : C1(J) → C(J)×R2,

x 7−→
(
−f̃(·, x(·), x′(·), λ), g̃1(x(a), x′(a), λ), g̃2(x(b), x′(b), λ)

)
,

and prove that solutions of (17) for λ ∈ [0, 1] do not belong to ∂Ω3. Supposing for a
λ ∈ [0, 1] and for a solution u ∈ Ω̄3 of (17) that

max{u(t) : t ∈ J} = u(t1) = r,
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we get for u′(t1) = 0 the contradiction like in the proof of Lemma 2.2. For t1 = a and
u′(a) < 0, we get by (18),

g̃1 (u(a), u′(a), λ) = λg1 (u(a), u′(a))− (1− λ)r < 0,

a contradiction. If t1 = b and u′(b) > 0 we use (18) for g2. Similarly we get that min{u(t) :
t ∈ J} 6= −r. Thus, supposing u ∈ Ω̄3, we have |u(t)| < r on J. From the latter inequality
we get a point ξ ∈ J such that |u′(ξ)| < 2r/(b− a). Since u fulfils (17), we have on J

u′′ = λf(t, u, u′) + (1− λ)u.

Integrating this equation we obtain

|u′(t)| < (b− a)(M + r) + 2r/(b− a),

which implies that u /∈ ∂Ω3. Therefore the degree dL(L + Ñ(·, λ), Ω3) is well defined for
all λ ∈ [0, 1] and we can finish our proof like in the proof of Lemma 2.2. ♦

Proof of Theorem 2.1. Put

h(t, x, y) =


f(t, σ2(t), y) for x > σ2(t)
f(t, x, y) for σ1(t) ≤ x ≤ σ2(t),
f(t, σ1(t), y) for x < σ1(t)

f ∗(t, x, y) =


h(t, x, y) + M for x ≥ r + 1
h(t, x, y) + (x− r)M for r < x < r + 1
h(t, x, y) for −r ≤ x ≤ r
h(t, x, y) + (x + r)M for −r − 1 < x < −r
h(t, x, y)−M for x ≤ −r − 1

and

Ω∗
2 = {x ∈ C1(J) : |x(t)| < r + 1, |x′(t)| < (2M + r + 1)(b− a)

for all t ∈ J}.

We can see that f ∗ satisfies the assumptions of Lemma 2.2 with 2M and r + 1.
Thus, for k∈{5,7,9}, we get

dL(L + N∗, Ω∗
2) = 1, (19)

where L is from Lemma 2.2 and

N∗ : C1(J) → C(J), x 7−→ −f ∗(·, x(·), x′(·)).

For k=11 we put

ϕi(x, y) =


gi(σ2(t), y) for x > σ2(t)
gi(x, y) for σ1(t) ≤ x ≤ σ2(t)
gi(σ1(t), y) for x < σ1(t)

, i = 1, 2,
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and

g∗i (x, y) =


ϕi(x, y) + m(−1)i for x ≥ r + 1
ϕi(x, y) + (x− r)m(−1)i for r < x < r + 1
ϕi(x, y) for −r ≤ x ≤ r
ϕi(x, y) + (x + r)m(−1)i for −r − 1 < x < −r
ϕi(x, y)−m(−1)i for x ≤ −r − 1

,

where

m = max

{
2∑

i,,j=1

|gi(σj(t), 0)| : t ∈ J

}
.

Let L be from Lemma 2.3 and

H∗ : C1(J) → C(J)×R2,

x 7−→ (−f ∗(·, x(·), x′(·)), g∗1(x(a), x′(a)), g∗2(x(b), x′(b))) .

Put

Ω∗
3 = {x ∈ C1(J) : |x(t)| < r + 1, |x′(t)| <

(2M + r + 1)(b− a) + 2(r + 1)/(b− a)

for all t ∈ J}.

Since g∗1, g
∗
2 satisfy (18) with r + 1, we get from Lemma 2.3

dL(L + H∗, Ω∗
3) = 1. (20)

Now, let us show that:

(i) for k∈{5,7,9}, each solution u of the equation (L + N∗)x = 0 satisfies u ∈ Ω∗
2 ⇒ u ∈

Ω1;

(ii) for k=11, each solution u of the equation (L + H∗)x = 0 satisfies u ∈ Ω∗
3 ⇒ u ∈ Ω1.

Suppose the contrary and put

v2(t) = u(t)− σ2(t) , v1(t) = σ1(t)− u(t).

Then for an i ∈ {1, 2}, max{vi(t) : t ∈ J} = vi(t0) ≥ 0 .

(i) By (k), k∈{5,7,9}, v′i(t0) = 0, v′′i (t0) ≤ 0 for t0 ∈ (a, b) as well as for t0 = a, t0 = b. On
the other hand if i = 2, v′′2(t0) = u′′(t0)− σ′′

2(t0) ≥ f(t0, σ2(t0), σ
′
2(t0))− σ′′

2(t0) > 0
and if i = 1, v′′1(t0) = σ′′

1(t0) − u′′(t0) > 0. We get the contradiction in the both
cases.
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(ii) If k=11, then either v′i(t0) = 0 and v′′i (t0) ≤ 0 and we get the same contradiction like
in (i), or t0 is one of the endpoints of J and v′i(t0) 6= 0. If t0 = a, then v′i(a) < 0 and
provided i = 2 we have

g∗1(u(a), u′(a)) ≤ g1(σ2(a), u′(a)) < g1(σ2(a), σ′
2(a)) ≤ 0,

and provided i = 1 we have

g∗1(u(a), u′(a)) ≥ g1(σ1(a), u′(a)) > g1(σ1(a), σ′
1(a)) ≥ 0,

a contradiction. For t0 = b we can use the similar arguments.

So, by the excision property of the degree, using (19) and (20), we get

dL(L + N∗, Ω1) = 1

for k∈{5,7,9}, and
dL(L + H∗, Ω1) = 1

for k=11.
Since N∗ = N for k∈{5,7,9} (H∗ = N for k=11) on Ω̄1, Theorem 2.1 is proved. ♦

3 Upper and lower solutions with opposite order

Theorem 3.1. Suppose k∈{5,7,9}. Let (14) be fulfilled, (13) be the operator equation
corresponding to the problem (1),(k) and let σ1, σ2 be strict lower and upper solutions of
(1),(k) satisfying

σ2(t) < σ1(t) for all t ∈ J.

Then
dL(L + N, Ω4) = −1, (21)

where

Ω4 = {x ∈ C1(J) : ‖x‖max < A, ‖x′‖max < B,

∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)},

with B ≥ 2(b− a)M, A ≥ ‖σ1‖max + ‖σ2‖max + 2(b− a)2M.

Proof. Put

f ∗(t, x, y) =


f(t, x, y) + M for x ≥ A + 1
f(t, x, y) + (x− A)M for A < x < A + 1
f(t, x, y) for −A ≤ x ≤ A
f(t, x, y) + (A + x)M for −A− 1 < x < −A
f(t, x, y)−M for x ≤ −A− 1

,

8



Ω = {x ∈ C1(J) : ‖x‖max < A + 1, ‖x′‖max < B + (A + 2)(b− a)}.
We can see that f ∗ satisfies (14) with 2M and (16) with A + 1. Thus, by Lemma 2.2

dL(L + F ∗, Ω) = 1, (22)

where F ∗ : C1(J) → C(J), x 7−→ −f ∗(·, x(·), x′(·)).
Now, consider the pairs −A − 1, σ2(t) and σ1(t), A + 1. They are well ordered strict

lower and upper solutions for the problem

x′′ = f ∗(t, x, x′), (k). (23)

So, we can define the sets

∆1 = {x ∈ Ω : σ1(t) < x(t) for all t ∈ J}

and
∆2 = {x ∈ Ω : x(t) < σ2(t) for all t ∈ J}.

By Theorem 2.1, we get
dL(L + F ∗, ∆1) = 1 (24)

and
dL(L + F ∗, ∆2) = 1. (25)

Now, consider the set
∆ = Ω\(∆1 ∪∆2).

We can see that

∆ = {x ∈ Ω : ∃tx ∈ J with σ2(tx) < x(tx) < σ1(tx)}.

Let us show that if u ∈ ∆̄ is a solution of (23), than u /∈ ∂∆. Clearly u /∈ ∂Ω because

‖u′‖max < 2(b− a)M, ‖u‖max < A. (26)

Put v2(t) = u(t) − σ2(t) and v1(t) = σ1(t) − u(t) and suppose u ∈ ∂∆. Then for an
i ∈ {1, 2} we have max{vi(t) : t ∈ J} = vi(t0) = 0. Now we can get a contradiction like
in (i) in the proof of Theorem 2.1. Thus u /∈ ∂∆, and by the additivity property of the
degree

dL(L + F ∗, Ω) = dL(L + F ∗, ∆2) +

dL(L + F ∗, ∆1) + dL(L + F ∗, ∆).

From (22), (24) and (25) it follows that

dL(L + F ∗, ∆) = −1.

With respect to (26) and the excision property of the degree we get

dL(L + F ∗, Ω4) = −1.

Since F ∗ = N on Ω4, Theorem 3.1 is proved. ♦
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Theorem 3.2. Suppose k=11. Let all other assumptions of Theorem 3.1 be fulfilled.
Moreover suppose that g1 is nonincreasing and g2 nondecreasing in the first argument.
Then the assertion of Theorem 3.1 is valid with B ≥ 2(b−a)M +‖σ′

2‖max, A ≥ ‖σ1‖max +
‖σ2‖max + (b− a)B.

Proof. Put

g∗i (x, y) =


gi(x, y) + m(−1)i for x ≥ A + 1
gi(x, y) + (x− A)m(−1)i for A < x < A + 1
gi(x, y) for −A ≤ x ≤ A
gi(x, y) + (x + A)m(−1)i for −A− 1 < x < −A
gi(x, y)−m(−1)i for x ≤ −A− 1

,

where m = max
{∑2

i,j=1 |gi((A + 1)(−1)j, 0)| : t ∈ J
}

and consider f ∗ from the proof of

Theorem 3.1. Define the set

Ω =

{
x ∈ C1(J) : ‖x‖max < A + 1, ‖x ′‖max < B + (A + 2)(b− a)+

2(A + 2)/(b− a) + ‖σ′
2‖max

}
.

We can see that f ∗, g∗1 and g∗2 satisfy (14) with 2M instead of M and (16), (18) with A+1
instead of r. Therefore if we put

H∗ : C1(J) → C(J)×R2

x 7−→ (−f ∗(·, x(·), x′(·)), g∗1(x(a), x′(a)), g∗2(x(b), x′(b)))

and
L : C2(J) → C(J)×R2, x 7−→ (x′′, 0, 0),

we get by Lemma 2.3
dL(L + H∗, Ω) = 1.

By the same way like in the proof of Theorem 3.1, we define the sets ∆1, ∆2, ∆ and get

dL(L + H∗, ∆1) = 1

and
dL(L + H∗, ∆2) = 1.

Now, we need to prove that for any solution u of the problem

x′′ = f ∗(t, x, x′), (11) (27)

the implication u ∈ ∆̄ =⇒ u /∈ ∂∆ holds. Let us put v(t) = u(t) − σ2(t). Since u ∈ ∆̄,
there exists a tu ∈ J with v(tu) ≥ 0. Suppose v′(t) > 0 for all t ∈ J. Then v(b) ≥ 0 and
g2(u(b), u′(b)) > g2(σ2(b), σ

′
2(b)) ≥ 0, a contradiction. If v′(t) < 0 on J , we get v(a) ≥ 0

and the contradiction g1(u(a), u′(a)) > 0. Therefore v′(t0) = 0 for a t0 ∈ J , i.e.

u′(t0) = σ′
2(t0).
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(Similarly we can prove u′(t1) = σ′
1(t1) for a t1 ∈ J.) Integrating the equation in (27) we

get |u′(t)| < B on J which implies |u(t)| < A on J. Thus u /∈ ∂Ω. Suppose u ∈ ∂∆ and
put

vi(t) = (u(t)− σi(t)) (−1)i, i ∈ {1, 2}.

Then we can find an i ∈ {1, 2} and a t0 ∈ J such that

max{vi(t) : t ∈ J} = vi(t0) = 0.

We can argue like in (ii) in the proof of Theorem 2.1 and get a contradiction. Since we
have proven u ∈ ∆̄ =⇒ u ∈ Ω4,we finish this proof by the same way like the proof of
Theorem 3.1 working with H∗ instead of F ∗. ♦

Corollary 3.3. Suppose k∈{5,7,9,11}. If σ1, σ2 in Theorem 2.1 ( 3.1, 3.2 ) are not strict,
then either the problem (1),(k) has a solution on ∂Ω1( ∂Ω4) or the condition (15) ( (21)
) is valid.

Proof. Suppose that all assumptions of Theorem 2.1 are fulfilled but σ1, σ2 are not
strict. Let us choose µ0 ∈ (0,∞) such that

|f(t, x, y) + µ0| < M for all (t, x, y) ∈ J ×R2,

and for µ ∈ [0, µ0] put

ε(t, µ, x) =


µ for x ≥ σ2(t)

µ2x−σ2(t)−σ1(t)
σ2(t)−σ1(t)

for σ1(t) < x < σ2(t)

−µ for x ≤ σ1(t)

,

fµ(t, x, y) = f(t, x, y) + ε(t, µ, x).

Then for any µ ∈ (0, µ0], σ1 and σ2 are strict lower and upper solutions to the problem

x′′ = fµ(t, x, x′), (k). (28)

If we define the operator

Nµ : C1(J) → C(J), x 7−→ −fµ(·, x(·), x′(·)),

for µ ∈ [0, µ0], then, by Theorem 2.1

dL(L + Nµ, Ω1) = 1

for each µ ∈ (0, µ0]. Suppose that no solution of (L+N)x = 0 lies on ∂Ω1. Then, using the
invariance of the degree under a homotopy and the fact that N0 = N, we get (15). In the
case of Theorems 3.1 and 3.2 we can use the same arguments but σ1 and σ2 interchange
themselves in the formula for the function ε(t, µ, x) . ♦

11



4 Existence results

As the direct consequence of the Corollary 3.3, using a limiting process, we obtain the
following existence results for the problems (1),(k), k∈{5,7,9,11}.

Theorem 4.1. Suppose k∈{5,7,9,11}. Let (14) be fulfilled and let σ1, σ2 be lower and
upper solutions of (1),(k) with

σ1(t) ≤ σ2(t) for all t ∈ J.

Then the problem (1),(k) has at least one solution in Ω1, where Ω1 is the set from Theorem
2.1.

Remark 4.2. The existence results of Theorem 4.1 are known and they are presented
here for the completeness, only.

Theorem 4.3. Suppose k∈{5,7,9,11}. Let (14) be fulfilled and let σ1, σ2 be lower and
upper solutions of (1),(k) with

σ2(t) ≤ σ1(t) for all t ∈ J.

For k=11 suppose g1 nonincreasing and g2 nondecreasing in the first argument. Then the
problem (1),(k) has at least one solution in Ω4, where for k∈{5,7,9,} Ω4 is the set from
Theorem 3.1 and for k=11 it is the set from Theorem 3.2.

Remark 4.4. For k∈{5,7} the similar existence result is proven in [5] or [2].

5 Multiplicity results

In this section, using Theorems 2.1, 3.1 and 3.2, we get several multiplicity results for
(1),(k), both for the linear two-point or multipoint boundary conditions k∈{5,7} or k=9,
and for the nonlinear boundary condition k=11. In the last case we suppose that g1 is
nonincreasing and g2 nondecreasing in the first argument.

Theorem 5.1. Suppose k∈{5,7,9,11}. Let (14) be fulfilled and let σ1, σ2, σ3 be strict
lower, upper and lower solutions of (1),(k) with

σ1(t) < σ2(t) < σ3(t) for all t ∈ J. (29)

Then (1),(k) has at least two different solutions u, v satisfying

σ1(t) < u(t) < σ2(t), σ1(t) < v(t) for all t ∈ J,

σ2(tv) < v(tv) < σ3(tv) for a tv ∈ J.
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Proof. From Theorem 2.1 it follows the existence of a solution u in Ω1. We define an
auxiliary function

h(t, x, y) =

{
f(t, x, y) for x ≥ σ1(t)
f(t, σ1(t), y) for x < σ1(t)

and from Theorem 3.1 (Theorem 3.2 for k=11) we get a solutions v of the problem

x′′ = h(t, x, x′), (k).

Moreover, v lies in Ω4 which is defined by the couple σ2, σ3 instead of σ1, σ2. The inequality
σ1(t) < v(t) on J can be proven like in (i) or (ii) in the proof of Theorem 2.1. This
inequality implies that v is a solutions of (1),(k), as well. ♦

The dual situation is described in Theorem 5.2.

Theorem 5.2. Let all assumptions of Theorem 5.1 be fulfilled with the exception that
now σ1, σ2, σ3 are strict upper, lower and upper solutions. Then (1),(k) has at least two
different solutions u, v satisfying

σ2(t) < v(t) < σ3(t), u(t) < σ3(t) for all t ∈ J,

σ1(tu) < u(tu) < σ2(tu) for a tu ∈ J.

For constant lower and upper solutions we get the multiplicity result of the Ambrosetti-
Prodi type.

Theorem 5.3. Suppose k∈{5,7,9}. Let (14) be fulfilled and let n ∈ N, n ≥ 2, s1 ∈
(−M, M), r1, ..., rn+1 ∈ R be such that

r1 < r2 < ... < rn+1

and
(s1 − f(t, ri, 0)) (−1)i > 0 for all t ∈ J, i ∈ {1, ..., n}. (30)

Then there exist s2, s3 ∈ (−M, s1), s3 ≤ s2, such that the problem

x′′ + f(t, x, x′) = s, (k) (31)

has:
(i) at least n different solutions greater than r1 for s ∈ (s2, s1];
(ii) at least n+1

2
(n

2
) solutions greater than r1 for s = s2 and n odd (even);

(iii)provided s3 < s2 at least one solution greater or equal to r1 for s ∈ [s3, s2);
(iv) no solution greater or equal to r1 for s < s3.
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Proof. Let j ∈ {1, ..., n + 1}. The condition (30) implies that there exists s2 < s1

such that for j odd (even) rj is a strict lower (an upper) solution to (31) for s ∈ (s2, s1].
Therefore, using Theorem 5.1 we get (i). For s = s2 at least one of the strict upper
solutions rj of the problem (31) becames nonstrict and so two solutions of this problem
can identify. In the case where all the upper solutions became nonstrict for s = s2, all
neighbour pairs of solutions of (31) can be identic. Thus (ii) is proved. Suppose that x is
a solution of (31). Let k=5, 7. Then, integrating the equation (31) from a to b and using
(14), we get −M < s. For k=9 we integrate from α to β where α ∈ (a, c), β ∈ (d, b) are
zeros of x′ and get −M < s as well. Thus for s ≤ −M the problem (31) has no solution.
Suppose that for some s∗ ∈ (−M, s1) the problem (31) has a solution u∗. Then there
exists a solution of (31) for all s ∈ [s∗, s1], because u∗ is an upper solution and r1 a lower
solution of (31) for s ∈ [s∗, s1], and u∗(t) > r1 on J. So, we can put s3 = inf{s : s < s1,
(31) has a solution greater than r1}. Then s3 ∈ (−M, s2]. If s3 < s2, we consider a
sequence {σn} ⊂ (s3, s2) converging to s3 and the corresponding sequence of solutions
{un} of the problems {(31), s=σn}. This sequence is equi-bounded and equi-continuous
in C1(J) and by the Arzelà-Ascoli theorem, we can choose a subsequence converging in
the space C1(J) to a solution of (31) for s = s3. Thus (iii) and (iv) are valid. ♦
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[9] I. Rach̊unková: On the existence of two solutions of the periodic problem for the
ordinary second-order differential equation, Nonlinear Analysis TMA 22(1994), 1315-
1322.
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